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Appendix A: Optimization of Sub-problem 1

In sub-problem 1, we fix A and v to optimize Z and E. This sub-problem can

be solved by the ADMM as described in [1]. The augmented Lagrangian function is

given by:

L1(Z,Q,E,Y1,Y2) =‖Z‖1 + λE‖E‖1 + λZ‖Z�Θ‖1

+ 〈Y1,X−XQ−E〉+ 〈Y2,Q− Z + diag(Z)〉

+
µ

2

(
‖X−XQ−E‖2F + ‖Q− Z + diag(Z)‖2F

)
.

where Y1 and Y2 are the Lagrange multipliers, µ > 0 is an adaptive parameter, and

〈·, ·〉 denotes the inner product.

When optimizing Z, we solve the following sub-problem:

Z(t+1) =argmin
Z

∥∥(11T + λZΘ)� Z
∥∥

1
+
µ(t)

2

∥∥∥∥∥Q(t) − Z + diag(Z) +
Y

(t)
2

µ(t)

∥∥∥∥∥
2

F

(1)

where 1 indicates the vector whose entries are all 1s. The closed-form solution of Eq.

(1) is:

Z(t+1) = Ẑ(t+1) − diag( ˆZ(t+1)). (2)

where Ẑ(t+1) = S 1

µ(t)
(1+λZΘij)

(
Q(t) +

Y
(t)
2

µ(t)

)
, and S(·) is the element-wise shrink-

age thresholding operator.
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When optimizing Q, we minimize the following objective function:

min
Q

〈
Y

(t)
1 ,X−XQ−E(t)

〉
+
〈
Y

(t)
2 ,Q− Z(t+1) + diag(Z(t+1))

〉
+
µ(t)

2

(
‖X−XQ−E(t)‖2F + ‖Q− Z(t+1) + diag(Z(t+1))‖2F

)
. (3)

Eq. (3) can be solved as:

Q(t+1) =
(
XTX+ I

)−1
(
XT

(
X−E(t) +

Y
(t)
1

µ(t)

)
+ Z(t+1) − diag(Z(t+1))

)
(4)

When optimizing E, we solve the following sub-problem:

min
E

λE‖E‖1 +
µ(t)

2

∥∥∥∥∥X−XQ(t+1) −E +
Y

(t)
1

µ(t)

∥∥∥∥∥
2

F

. (5)

Similar to solving Eq.(1), we obtain its closed-form solution:

E(t+1) = S λE

µ(t)

(
X−XQ(t+1) +

Y
(t)
1

µ(t)

)
. (6)

At last, we update the Lagrange multipliers as follows:

Y
(t+1)
1 = Y

(t)
1 + µ(t)(X−XQ(t+1) −E(t+1)).

Y
(t+1)
2 = Y

(t)
2 + µ(t)(Q(t+1) − Z(t+1) + diag(Z(t+1))).

µ(t+1) = ρµ(t). (7)

The ADMM algorithm for solving this sub-problem is shown in Algorithm 1.

Algorithm 1 ADMM for solving Sub-problem 1
Input: X and Θ.

Output: Z and E.

1: while not converge do
2: Update Z by Eq. (2).

3: Update Q by Eq. (4).

4: Update E by Eq. (6).

5: Update Y1, Y2 and µ by Eq. (7).

6: end while
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Appendix B: Semi-supervised learning on W

In unsupervised learning, we use a data matrix X = [x1, · · · ,xn,xn+1, · · · ,xN ] ∈
RD×N , and a few labels Yl = [y1, · · · ,yn] ∈ RC×n, where yj is the label of xj and

is a C-dimensional indicator vector (in which yij = 1 indicates that xj belongs to

the j-th class). xn+1, · · · ,xN are unlabeled data, whose labels are inferred from the

labeled data. We define the label matrix of unlabeled data as Yu ∈ RC×(N−n).

When we obtain the soft data structure matrix W, we construct the Laplacian

matrix L = D −W, where D is a diagonal matrix with diagonal elements Dii =∑N
j=1Wij . Then we learn Yu using the label propagation method, which solves the

following problem:

min
Yu

tr
(
[Yl,Yu]L[Yl,Yu]

T
)

(8)

s.t. Yu ∈ Y.

where Y is the space of label matrices, i.e., Y = {Yu ∈ {0, 1}C×(N−n) : YT
u 1N−n =

1C , rank(Yu) = C}.
Eq. (8) can be solved approximately using label propagation approaches, e.g., the

harmonic function approach [2]. Specifically, we first divide L into the following form:

L =

[
Lll Llu

LTlu Luu

]
(9)

where Lll ∈ Rn×n and Luu ∈ R(N−n)×(N−n). Then we compute the harmonic

solution:

Yu = YlLluL
−1
uu . (10)

At last, we discretize Yu by setting the maximum value in each column as 1 and setting

the others as 0.
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