Appendix of "Top-k Feature Selection
Framework using Robust 0-1 Integer

Programming”

Appendix A: Optimization of Sub-problem 1

In sub-problem 1, we fix A and v to optimize Z and E. This sub-problem can
be solved by the ADMM as described in [1]. The augmented Lagrangian function is
given by:
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where Y and Y, are the Lagrange multipliers, 1+ > 0 is an adaptive parameter, and
(-, -) denotes the inner product.

When optimizing Z, we solve the following sub-problem:
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where 1 indicates the vector whose entries are all 1s. The closed-form solution of Eq.
(1) is:
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When optimizing QQ, we minimize the following objective function:
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Eq. (3) can be solved as:
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When optimizing E, we solve the following sub-problem:
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Similar to solving Eq.(1), we obtain its closed-form solution:
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At last, we update the Lagrange multipliers as follows:

Y§t+1) _ Ygt) + (X — XQUHD — B+,
Y;Hl) — Yét) + uD(QUHY — Zt+D) 4 diag(Z(HY)).

pHHD = o ®) %)

The ADMM algorithm for solving this sub-problem is shown in Algorithm 1.

Algorithm 1 ADMM for solving Sub-problem 1
Input: X and ©.

Output: Z and E.

1: while not converge do
2:  Update Z by Eq. (2).
3:  Update Q by Eq. (4).
4:  Update E by Eq. (6).
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:  Update Y1, Y, and u by Eq. (7).
: end while




Appendix B: Semi-supervised learning on W

In unsupervised learning, we use a data matrix X = [X1, -+, Xp, Xpt1, - ,XN]| €
RP*N “and a few labels Y; = [y1, - ,yn] € REX™, where y; is the label of x; and
is a C-dimensional indicator vector (in which y;; = 1 indicates that x; belongs to
the j-th class). x,,41,--- , X are unlabeled data, whose labels are inferred from the
labeled data. We define the label matrix of unlabeled data as Y,, € REX(NV-n),

When we obtain the soft data structure matrix W, we construct the Laplacian
matrix L = D — W, where D is a diagonal matrix with diagonal elements D;; =
Z;.V:l Wi;;. Then we learn Y, using the label propagation method, which solves the
following problem:
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where ) is the space of label matrices, i.e., ) = {Y, € {0,1}¢*x(N-n) . Yy, =
1c,rank(Y,) = C}.
Eq. (8) can be solved approximately using label propagation approaches, e.g., the

harmonic function approach [2]. Specifically, we first divide L into the following form:
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where L;; € R™™" and Ly, € RV-m*(N-1)  Then we compute the harmonic

solution:
Y., =Y, L,L;.. (10)

At last, we discretize Y, by setting the maximum value in each column as 1 and setting
the others as 0.
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