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Proof of Theorem 1

Theorem 1. Given any hypergraph G = {V, E ,W} with n nodes, if the rank of its

Laplacian matrix L, which is defined as L = I −D
− 1

2
v YWD−1e YTD

− 1
2

v , is n − c,

then G contains exact c connective components.

Proof. Before proving this Theorem, we provide the following lemma:5

Lemma 1. Given any connective hypergraph G = {V, E ,W} with n nodes (i.e., G

only contains one connective component), the rank of its Laplacian matrix is n− 1.

Proof. Denote H as the incidence matrix of G, we can compute its Laplacian matrix

L = I−D
− 1
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v . For any vector x ∈ Rn, we have

xTLx = xT (I−D
− 1
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where the third equation is due to the definition of Dv and De and the fourth equation10

is due to the completing square formula.

Obviously, for any node u, if x(u) =
√
Dv(u), we have xTLx = 0. Therefore,

this x is an eigenvector of L whose corresponding eigenvalue is 0. Since we aim

to prove that rank(L) = n − 1, we need to prove that L does not have any other

eigenvector x′ (which is linearly independent with x), whose corresponding eigenvalue15

is also 0.

We use the proof by contradiction. We assume that there exists such x′ whose cor-

responding eigenvalue is also 0, and x′ is linearly independent with x, i.e., there does

not exist a constant scalar t such that x′ = tx. Since x′’s corresponding eigenvalue is

0, we have

x′TLx′ =
1
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W(e)H(u, e)H(v, e)

De(e)

(
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− x′(v)√
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)2

= 0, (2)

which means for any two nodes u and v, if there exists a hyperedge e such that u ∈ e

and v ∈ e (i.e., H(u, e) = H(v, e) = 1), then x′(u)√
Dv(u)

= x′(v)√
Dv(v)

.

Since G is a connective hypergraph, which means for any two nodes u and v, there

exists at least one path e1, · · · , er such that u ∈ e1, u1 ∈ e1, u1 ∈ e2, u2 ∈ e2, u2 ∈ e3,20

..., ur ∈ er, and v ∈ er. Then, we have x′(u)√
Dv(u)

= x′(u1)√
Dv(u1)

= · · · = x′(v)√
Dv(v)

.

Therefore, x′ = t
√

diag(Dv) = tx, which is contradict with the assumption that x′ is

linearly independent with x. This concludes the proof of Lemma 1.

Now come back to the proof of Theorem 1. Suppose G has c′ connective com-

ponents G1, · · · ,Gc′ . It is easy to verify that the incidence matrix Y of G can be

written as the direct sum of incidence matrices Y1, · · · ,Yc′ of G1, · · · ,Gc′ , i.e., Y =

Y1⊕· · ·⊕Yc′ where⊕ denotes the direct sum. Then the Laplacian matrix L can also

be written as the direct sum of L1, · · · ,Lc′ . Therefore, we have

rank(L) = rank(L1 ⊕ · · · ⊕ Lc′) =

c′∑
p=1

rank(Lp). (3)

According to Lemma 1, for Gp which has np instances, we have rank(Lp) = np − 1.
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Then

rank(L) =

c′∑
p=1

rank(Lp) =

c′∑
p=1

np − c′ = n− c′. (4)

Note that rank(L) = n − c, we have c′ = c, i.e., G has c connective components,

which concludes the proof of Theorem 1.25
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