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Adaptive Consensus Clustering for Multiple
K-Means Via Base Results Refining

Peng Zhou , Liang Du , and Xuejun Li

Abstract—Consensus clustering, which learns a consensus clus-
tering result from multiple weak base results, has been widely stud-
ied. However, conventional consensus clustering methods only focus
on the ensemble process while ignoring the quality improvement
of the base results, and thus they just use the fixed base results for
consensus learning. In this paper, we provide an alternative idea to
improve the final consensus clustering performance by considering
the base results refining. In our framework, we adaptively refine
the base results in the process of the ensemble. In more detail,
on one hand, we ensemble multiple K-means results to learn the
consensus one by considering the consensus and diversity; on
the other hand, we apply the consensus result to design a graph
filter to learn a more cluster-friendly embedding for refining the
base K-means results. In our framework, the consensus learning
and base results refining are integrated into one unified objective
function so that these two tasks can be boosted by each other.
Then we design an effective iterative algorithm to optimize the
carefully designed objective function. The extensive experiments
on benchmark data sets demonstrate that the proposed method
can outperform both the single clustering and the state-of-the-art
consensus clustering methods. The codes of this paper are released
in http://Doctor-Nobody.github.io/codes/ACMK.zip.

Index Terms—Consensus clustering, graph filter, multiple k-
means.

I. INTRODUCTION

C LUSTERING is a fundamental unsupervised learning
problem and is widely studied in recent decades. Among

various clustering methods, K-means is one of the most famous
methods because of its easiness and effectiveness. However,
K-means also has some limitations on its stableness and robust-
ness [1], [2]. For example, K-means is sensitive to its initial-
ization and different initializations often lead to very different
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clustering results. Moreover, it can only handle sphere-shaped
data and often fails to partition data on complex manifolds.

To overcome these limitations, consensus clustering is pro-
posed [3]. Consensus clustering first runs K-means multiple
times to obtain multiple base clustering results. Although these
base results may be imperfect and unreliable, consensus cluster-
ing then ensembles them to learn a consensus clustering result
which is more stable and robust than the base ones. Since con-
sensus clustering can often improve the clustering performance,
it has attracted much attention [4], [5], [6], [7], [8], [9], [10].
Despite the benefits of these methods, we observe that all these
methods try to ensemble multiple fixed pre-given base results.
However, as introduced before, these base results are imperfect
and unreliable, and thus they may also mislead the ensemble
process.

Different from conventional consensus clustering methods,
which only apply the ensemble method to improve the clustering
performance, in this paper, we provide an alternative idea to
achieve this. Since the base results are unreliable, why not try
to improve the base results in the process of the ensemble? To
fulfill this idea, we propose a novel Adaptive Consensus Multiple
K-means (ACMK) method. In this method, instead of integrating
fixed base results, we adaptively update them in the process of
consensus learning. The benefits are twofold: on one hand, by
consensus learning, we can obtain a more stable and robust result
from base ones; and on the other hand, the consensus result can
further guide us to refine the base results in turn. Therefore, the
consensus learning and base results refining can be boosted by
each other.

In the process of consensus learning, we provide an ensemble
method to consider both the consensus and diversity proper-
ties. In the base results refining, with the consensus result, we
apply the graph filter method to learn a more cluster-friendly
embedding of the original data, which meets the manifold as-
sumption of clustering, and then run the multiple K-means on
this embedding to obtain multiple new base results. Since the
new embedding is more cluster-friendly than the embedding of
the previous iterations, the base results can also be increasingly
more reliable. Different from conventional graph filter methods
such as [11], [12], which use a fixed filter, our method designs
a learnable graph filter, i.e., the graph structure of the filter is
also automatically updated in the process of consensus learn-
ing, which can be more flexible to handle some complex data.
We carefully design an objective function to integrate the two
tasks (i.e., consensus learning and base results refining) into a
unified framework seamlessly. Then, we provide an effective
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ADMM [13] method to iteratively optimize the introduced
objective function. Finally, we conduct extensive experiments
by comparing it with the state-of-the-art consensus clustering
methods on benchmark data sets. The experimental results
demonstrate the effectiveness and superiority of the proposed
method.

The main contributions of this paper are summarized as
follows:
� We propose a novel consensus clustering method. Different

from conventional methods which just ensemble fixed base
results, the proposed one integrates the base results refining
into the consensus learning, which can improve the quality
of the base results and further improve the final clustering
performance.

� Different from the conventional graph filter methods,
which use a pre-given and fixed graph filter, we design a
learnable graph filter to learn a cluster-friendly embedding
which can guide the base results refining for consensus
learning. In our framework, the consensus learning ap-
proach can in turn guide us to learning a more appropriate
graph filter.

� The extensive experiments show that the proposed method
not only improves the single clustering performance but
also achieves better performance compared with the state-
of-the-art consensus clustering methods.

II. RELATED WORK AND PRELIMINARIES

In this section, we briefly introduce some related work and
preliminaries. First, we introduce some notations. We use bold
uppercase and lowercase letters to denote matrices and vectors,
respectively. Mij denotes the (i, j)-th element of matrix M and
vi denotes the i-th element of vector v.

A. K-Means

K-means [14] is one of the most famous clustering methods
and has been widely studied. Given a data set X ∈ R

n×d with
n instances and d features, supposing that we want to partition
them into c clusters, K-means uses the following formula to
generate the clustering result:

min
G,F

‖X−GF‖2F ,

s.t. G ∈ {0, 1}n×c, ∀i :
c∑

j=1

Gij = 1, (1)

where G ∈ R
n×c is a cluster indicator matrix, and F ∈ R

c×d

contains the c cluster centroids. Each row of G contains only
one 1 and other elements are 0 s. Gij = 1 means that the i-th
instance belongs to the j-th cluster.

Since (1) is non-convex, it is hard to find the global optima.
Traditional K-means can just find the local optima. That is
why we often get different clustering results if we use differ-
ent initializations. Therefore, K-means suffers from the stable
problem [15]. Moreover, since K-means applies the Euclidean
distance to measure the distance between the instance and the
cluster center, it is designed to handle only the sphere-shaped

data. If we use it to handle some other data on some complex
manifolds, it may lead to poor clustering results [16].

B. Consensus Clustering

Consensus clustering [3], also known as clustering ensem-
ble, learns a consensus clustering result from multiple base
clusterings. Since consensus clustering can provide a more
stable and robust clustering result, it attracts much attention
in recent years. One related work of consensus clustering is
multi-view clustering. Multi-view clustering takes the multiple
groups of features (a.k.a. views) of data as inputs and integrates
the multiple features to obtain a consensus result. For example,
Wang et al. characterized the local manifold structure of each
view and proposed a multi-view spectral clustering to preserve
such structures to obtain the consensus result [17], [18]; Zhou
et al. ensembled multiple views incrementally for multi-view
spectral clustering [19]; Liu et al. tried to ensemble multiple
incomplete views of data and proposed an effective and effi-
cient incomplete multi-view clustering method [20]; Wu et al.
applied the deep multi-view learning to unsupervised person
re-identification [21]; most recently, Wu et al. adopted recursive
Hermite polynomial networks to extract multi-scale features of
data for representation learning [22]. Different from multi-view
learning whose inputs are multiple groups of features, consensus
clustering often takes one group of features as input and applies
one or multiple base clustering methods to generate multiple
base clustering results for ensemble. Therefore, consensus clus-
tering often ensembles at the decision level instead of the data
or model level.

One natural idea of consensus clustering is to reformulate
the consensus clustering problem to a new clustering problem,
where each instance is represented by its base clustering result
instead of the original features [23], [24], [25]. For example,
Topchy et al. first regarded the base clustering results as the new
categorical features and applied the expectation-maximization
clustering method on them to obtain the final clustering re-
sult [23]; Nguyen et al. also viewed the base results as the new
categorical data and performs K-modes method for consensus
clustering [24]; Bai et al. provided an information theoretical
framework to do consensus clustering [25].

Some methods relabel each data by label alignment meth-
ods based on the multiple clustering results [26], [27], [28].
For example, Zhou et al. designed an alignment method for
multiple K-means [26]; Hore et al. proposed a scalable relabel
algorithm for consensus clustering [27]; Li et al. designed a
Dempster-Shafer evidence theory based relabel method to learn
a consensus clustering result [28].

Another common strategy for consensus clustering is to trans-
form the base clustering results to graphs and learn the consensus
result from the graphs [29], [30], [31], [32], [33], [34]. For
example, Fern et al. constructed bipartite graph from base results
for consensus learning [35]; Iam-On et al. constructed the graph
with the similarity metric based on the link of data for consensus
learning [36], [37]; Tao et al. applied spectral clustering on the
graph constructed from base results [29]; Huang et al. proposed
an ultra-scalable spectral clustering method on the graph for

Authorized licensed use limited to: Anhui University. Downloaded on September 26,2023 at 02:40:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: ADAPTIVE CONSENSUS CLUSTERING FOR MULTIPLE K-MEANS VIA BASE RESULTS REFINING 10253

consensus clustering [30]; Zhou et al. designed a tri-level robust
clustering ensemble method by multiple graph learning [32];
Strehl et al. and Zhou et al. learned the consensus results on the
carefully constructed hyper-graph [3], [33].

Although consensus clustering has demonstrated promis-
ing performance, all of these methods use fixed pre-given
base results and never update the base results. Different
from these conventional methods, in this paper, we adaptively
adjust the base results and learn the consensus result from the
refined base results. By making the two tasks, i.e. base results
refining and ensemble, be boosted by each other, we can further
improve the clustering performance.

C. Graph Filter

Given a graph G with n nodes {v1, . . . , vn}, whose adja-
cency matrix is W ∈ R

n×n where Wij ≥ 0 and W = WT , its
normalized Laplacian matrix is L = I−D−

1
2WD−

1
2 , where

I is an identity matrix, and D is a diagonal matrix whose
diagonal element Dii =

∑n
j=1 Wij . Then we can obtain its

eigenvalue decompositionL = UΣUT , whereU ∈ R
n×n con-

tains n eigenvectors of L and Σ ∈ R
n×n is a diagonal matrix

whose diagonal elements are the eigenvalues of L. Obviously,
all diagonal elements of Σ are in the range [0,2]. According to
spectral graph theory [38], the eigenvectors of L are the Fourier
bases of the graph and the eigenvalues can be viewed as the
associated frequencies.

Given a graph signal s = [s(v1), . . . , s(vn)]
T on G, graph

filter aims to provide an operation (relative with G) on s. In our
clustering scenario, the data matrix X ∈ R

n×d can be viewed as
a kind of graph signal. If X has a clear clustering structure, it
should follow the cluster and manifold assumption, i.e., the data
in a cluster should be close to each other. According to [39], [40],
a smoother graph signal can lead to a clearer clustering structure
of data, which follows such cluster and manifold assumption.

Therefore, we need a graph filter to make the signal X
smoother. Some recent research [11], [39] shows that the smooth
signal should contain more low-frequency bases than the high-
frequency bases. To achieve this, they suggest constructing the
filtered signal ŝ as

ŝ = U

(
I− Σ

2

)k

UT s =

(
I− L

2

)k

s, (2)

where k is a positive integer to capture the k-hop neighborhood
relation [41]. Notice that small eigenvalues of L, which corre-
sponds to the low-frequency parts, will lead to large eigenvalues
of (I− L

2 )
k, which can preserve the low-frequency parts and

remove the high-frequency parts. Here it uses (I− L
2 )

k instead
of (I− L)k, because the eigenvalues of L are in the range [0,2],
and we transform all eigenvalues into the range [0,1] by the filter
(I− L

2 )
k, or otherwise (I− L)k is not a positive semi-definite

matrix and may contain negative eigenvalues.
The conventional graph filter methods, such as [11], [12],

often construct a pre-defined fixed graph filter, which may be
inappropriate for the complex real-world data. To tackle this
issue, in this work, we design a learnable graph filer on X and
obtain the smoother embedding (I− L

2 )
kX.

III. ADAPTIVE CONSENSUS MULTIPLE K-MEANS

In this section, we introduce our ACMK method in more
detail.

A. Multiple K-Means

Given a data set X ∈ R
n×d with n instances and d features,

we can use (1) to obtain the clustering result matrixG. However,
as introduced before, K-means is not stable, i.e., with different
initializations, K-means may obtain very different clustering
results. To tackle this problem, we run v times K-means with
different initializations and learn a consensus one from the mul-
tiple results. To run v times K-means, we can use the following
formula:

min
G(m),F(m)

v∑
m=1

‖X−G(m)F(m)‖2F ,

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1. (3)

where G(m) and F(m) are the m-th cluster indicator matrix and
cluster centroid matrix, respectively. cm is the number of clusters
in the m-th K-means result.

B. Base Results Refining With Graph Filter

Before ensembling multiple G(m) to obtain a consensus
result, we observe that traditional consensus clustering methods
often directly fuse fixed G(m). However, since single K-means
may be imperfect, directly ensembling these weak base results
may also lead to an unreliable consensus result. To address this
issue, we adaptively update the base results G(m) and ensemble
the refined base results instead.

To this end, we wish to obtain a cluster-friendly embedding
of X and learn the base results G(m) from such cluster-friendly
embedding as the refined base results. As introduced before, a
cluster-friendly embedding should satisfy the cluster and man-
ifold assumption, i.e., the embeddings of data which are in the
same cluster should be close to each other. According to [39],
since graph filter can provide a smooth and cluster-friendly
embedding of the original data, we can use graph filter to
generate a better embedding ofX and perform K-means on such
embedding. Due to the cluster-friendly embedding, the learned
G(m) will be more reliable.

To perform the graph filter, we need a graph G of the data.
Conventional graph filter methods often use a pre-defined graph
to construct the filter. However, the pre-defined fixed graph may
not be flexible enough to handle some complex dataX. To tackle
this problem, we design a learnable graph filter, whose structure
will be adaptively updated in the process of the ensemble. Here
we assume that we already have such graph G and we will
introduce how to learn it later.

Suppose that the adjacency matrix of G is W ∈ [0, 1]n×n.
We then construct its normalized Laplacian matrix L = I−
D−

1
2WD−

1
2 . As introduced before, we perform the high-order

graph filter (I− L
2 )

k on X, which can characterize the high-
order relationship among instances, where k is the number of
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hops to capture the high-order relation of instances and in our
implementation we fix it to 3 for simplicity. By the graph filter,
we obtain a high-order smooth embedding (I− L

2 )
kX. Then,

we run multiple K-means on this embedding:

min
G(m),F(m)

v∑
m=1

∥∥∥∥∥
(
I− L

2

)k

X−G(m)F(m)

∥∥∥∥∥
2

F

,

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1. (4)

C. Consensus Learning for the Graph Structure

Now we consider how to construct the adaptive adjacency
matrix W. Different from the conventional methods which
directly construct a static graph, we learn a dynamic graph W
from base clustering results. The goal is twofold: first,W should
fuse the information in base clustering results (G(m)); second,
W should be adaptively updated because that, with better base
clusterings, we can construct a more accurate graph.

To achieve this, we impose a simple yet effective fusion term
‖W −∑v

m=1 αmG(m)G(m)T ‖2F on (4), where αm ∈ [0, 1] is
the weight of the m-th base result. Although this term seems
simple, it can leverage the two important properties of consen-
sus clustering, i.e. consensus and diversity. Notice that, when
minimizing this term, we have

min
W,G(m)

∥∥∥∥∥W −
v∑

m=1

αmG(m)G(m)T

∥∥∥∥∥
2

F

= min
W,G(m)

‖W‖2F − 2

〈
W,

v∑
m=1

αmG(m)G(m)T

〉

+
v∑

m=1

v∑
p=1

αmαp

〈
G(m)G(m)T ,G(p)G(p)T

〉
,

= min
W,G(m)

‖W‖2F − 2

〈
W,

v∑
m=1

αmG(m)G(m)T

〉
︸ ︷︷ ︸

Consensus

+
v∑

m �=p

αmαp

〈
G(m)G(m)T ,G(p)G(p)T

〉
︸ ︷︷ ︸

Diversity

+

v∑
m=1

α2
m‖G(m)G(m)T ‖2F, (5)

where 〈·, ·〉 is the inner production of two matrices. The first term
in (5) is a Frobenius norm regularizer of W. When minimizing
the second term, which is equivalent to maximizing the inner
production of W and

∑v
m=1 αmG(m)G(m)T , which makes W

to preserve the information of all G(m)’s. Obviously, it captures
the consensus property. Minimizing the third term is to make any
two base resultsG(m) andG(p) far away from each other, which
makes the refined base clusterings to be different from each
other, and it characterizes the diversity property. Moreover, let us

take a closer look at the fourth term
∑v

m=1 α
2
m‖G(m)G(m)T ‖2F .

Suppose there are c clusters inG(m), and there aren1, . . . , nc in-
stances in the c clusters, respectively. Since there is only one 1 in
each row of G(m), it is easy to verify that ‖G(m)G(m)T ‖2F =∑c

i=1 n
2
i . Since

∑c
i=1 ni = n which is a constant, to minimize

‖G(m)G(m)T ‖2F which is equivalent to minimizing
∑c

i=1 n
2
i ,

will lead to a more balanced clustering result which can avoid
the clustering collapse (i.e., most data are put in one cluster) to
some extent.

Now, we obtain our final objective function:

min
W,α,G(m),F(m)

v∑
m=1

∥∥∥∥∥∥
(
I+D−

1
2WD−

1
2

2

)k

X−G(m)F(m)

∥∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥W −
v∑

m=1

αmG(m)G(m)T

∥∥∥∥∥
2

F

,

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1,

∀i, j : 0 ≤Wij ≤ 1, W = WT ,

∀m : 0 ≤ αm ≤ 1,

v∑
m=1

αm = 1, (6)

where the constraints on W make sure that the values in the
adjacency matrix are between 0 and 1 and the adjacency matrix
should be symmetric, and λ is a balanced hyper-parameter.

Notice that on one hand, when optimizing G(m) and F(m),
we are doing the multiple K-means on the smooth embedding
of the data and moreover it can force the base clusterings to be
diverse from each other. On the other hand, when optimizing W
and α, we are ensembling multiple base results to construct the
consensus graph W.

D. Optimization

In this subsection, we will introduce how to optimize (6) in
detail. Note that the graph filter also involves W and makes (6)
difficult to be solved directly. To address this issue, we apply an
ADMM method to optimize it iteratively. First, by introducing

two auxiliary variablesA = I+D−
1
2 WD−

1
2

2 andV = W, we can
rewrite (6) as following:

min
θ

v∑
m=1

∥∥∥AkX−G(m)F(m)
∥∥∥2
F

+ λ

∥∥∥∥∥W −
v∑

m=1

αmG(m)G(m)T

∥∥∥∥∥
2

F

,

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1,

A = (I+D−
1
2WD−

1
2 )/2,

∀i, j : 0 ≤Wij ≤ 1, W = V, V = VT ,

∀m : 0 ≤ αm ≤ 1,

v∑
m=1

αm = 1. (7)

Authorized licensed use limited to: Anhui University. Downloaded on September 26,2023 at 02:40:39 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: ADAPTIVE CONSENSUS CLUSTERING FOR MULTIPLE K-MEANS VIA BASE RESULTS REFINING 10255

whereθ = {W,A,V,α,G(m),F(m)} is the set of all learnable
parameters.

By introducing the Lagrange multipliers Λ1 ∈ R
n×n and

Λ2 ∈ R
n×n, we can obtain its Lagrange formula:

min
θ

v∑
m=1

∥∥∥AkX−G(m)F(m)
∥∥∥2
F

+λ

∥∥∥∥∥W −
v∑

m=1

αmG(m)G(m)T

∥∥∥∥∥
2

F

+
〈
Λ1,A− (I+D−

1
2WD−

1
2 )/2

〉
+ 〈Λ2,W −V〉

+
μ

2

(
‖A− (I+D−

1
2WD−

1
2 )/2‖2F + ‖W −V‖2F

)
,

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1,

∀i, j : 0 ≤Wij ≤ 1, V = VT ,

∀m : 0 ≤ αm ≤ 1,

v∑
m=1

αm = 1. (8)

where μ > 0 is an adaptive parameter. Notice that, by introduc-
ing the Lagrange multipliersΛ1 andΛ2, we move the constraints
A = (I+D−

1
2WD−

1
2 )/2 and W = V to the objective func-

tion, and A, W, and V are independent variables, which can be
optimized by fixing others.

We initialize G(m) and F(m) by running K-means on X
with different initializations. We initialize αm = 1/v, W =
1
v

∑v
m=1 G

(m)G(m)T , V = W, Λ1 = Λ2 = 0, and μ = 1.
Then, we minimize (8) by optimizing one variable while fixing
other variables.

1) Optimize A: When optimizing A, we drop the terms
irrelative to A and obtain:

min
A
J1 = vtr

(
AkXXTAkT

)−2tr
(

v∑
m=1

G(m)F(m)XTAk

)

+ tr
(
ΛT

1 A
)
+

μ

2
‖A− (I+D−

1
2WD−

1
2 )/2‖2F. (9)

Notice that (9) is a non-constraint optimization problem and
it can be solved by the standard Quasi-Newton method. In
our implementation, we use L-BFGS algorithm [42]. To apply
the Quasi-Newton method, we need the partial derivative of
J1 w.r.t. A. Denoting B =

∑v
m=1 XF(m)TG(m)T and C =

(I+D−
1
2WD−

1
2 )/2, according to the chain rule of derivative,

we have

∂J1
∂A

= 2v

k−1∑
r=0

(
Ak−r−1XXTAkTAr

)T

− 2

k−1∑
r=0

(
ArBAk−r−1)T +Λ1 + μ(A−C). (10)

The detailed derivation can be found in Appendix, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2023.3264970.

2) Optimize W: When optimizing W, by denoting E =
A− I

2 and F =
∑v

m=1 αmG(m)G(m)T , we rewrite the objec-
tive function as follows:

min
W
J2 = λ‖W − F‖2F −

1

2
tr(ΛT

1 D
− 1

2WD−
1
2 )

+ tr(ΛT
2 W) +

μ

8
tr(D−

1
2WTD−1WD−

1
2 )

− μ

2
tr
(
ETD−

1
2WD−

1
2

)
+

μ

2
‖W −V‖2F ,

s.t. ∀i, j : 0 ≤Wij ≤ 1. (11)

(11) can also be solved by L-BFGS algorithm. However, when
computing the partial derivative of J2 w.r.t. W, we should
be careful of D which is also relative with W. Taking Dii =∑n

j=1 Wij into (11) and performing the chain rule, we have

∂J2
∂W

= 2λ(W − F)− 1

2
D−

1
2 (Λ1 + μE)D−

1
2

+
1

4
diag

(
D−

3
2

(
(Λ1 + μE)T D−

1
2W

+ (Λ1 + μE)D−
1
2WT

))
1T

+Λ2 +
μ

4
D−1WD−1 + μ(W −V)

− μ

8
diag

(
D−2

(
WTD−1W +WD−1WT

))
1T , (12)

where 1 is a vector whose elements are all 1 s, and diag(M)
is the diagonal vector of matrix M. The detailed derivation can
also be found in Appendix, available in the online supplemental
material.

3) Optimize G(m): When optimizing G(m), we reformulate
the objective function as:

min
G(m)

∥∥∥AkX−G(m)F(m)
∥∥∥2
F
− 2λαmtr(WTG(m)G(m)T )

+ λα2
mtr(G(m)G(m)TG(m)G(m)T )

+ λαm

∑
p �=m

αptr(G
(m)G(m)TG(p)G(p)T ),

s.t. G(m) ∈ {0, 1}n×cm , ∀i :
cm∑
j=1

G
(m)
ij = 1. (13)

Notice that there is only one 1 in each row of G(m). Therefore,
we can optimizeG(m) row by row. In more detail, when optimiz-
ing the i-th row, we define g1, . . . ,gcm where gj ∈ {0, 1}1×cm
and only the j-th element in gj is 1 and other elements are 0 s.
Then, we set the i-th row as g1, . . . ,gcm respectively and find
the one which leads to the minimum of the objective function,
and set the i-th row of G(m) as it.

4) Optimize F(m): When optimizing F(m), we can rewrite
the objective function as:

min
F(m)

∥∥∥AkX−G(m)F(m)
∥∥∥2
F
. (14)
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By setting its partial derivative w.r.t. F(m) to zero, we can obtain
its closed-form solution:

F(m) =
(
G(m)TG(m)

)−1
G(m)TAkX. (15)

Notice that G(m)TG(m) is a diagonal matrix whose inverse can
be computed in O(n) time.

5) Optimize V: By fixing other variables, we obtain the
objective function w.r.t. V as follows:

min
V

∥∥∥∥V −
(
W +

Λ2

μ

)∥∥∥∥2
F

,

s.t. V = VT . (16)

This is a projection problem and its closed-form solution is:

V =
(
W +WT

)
/2 +

(
Λ2 +ΛT

2

)
/(2μ). (17)

6) Optimize α: When optimizing α, we reformulate the ob-
jective function as the following convex quadratic programming:

min
α

αTHα+ fTα,

s.t. ∀m : 0 ≤ αm ≤ 1,

v∑
m=1

αm = 1, (18)

where Hmp = tr(G(m)G(m)TG(p)G(p)T ) and fm =
−2tr(WTG(m)G(m)T ). Eq(18) can be solved by any standard
quadratic programming method. In our implementation, we
solve it by quadprog function provided by Matlab.

7) Update Lagrange Multipliers: We update the Lagrange
multipliers as follows:⎧⎪⎨

⎪⎩
Λ1 ← Λ1 + μ

(
A− (I+D−

1
2WD−

1
2 )/2

)
,

Λ2 ← Λ2 + μ (W −V) ,

μ← 1.05 ∗ μ.
(19)

Algorithm 1 summarizes the whole process. After obtaining
the consensus graph adjacency matrix W, we can use it to
generate the final clustering result in many ways. For example,
we can run spectral clustering on W, or we can run K-means on

the final embedding data ( I+D−
1
2 WD−

1
2

2 )kX.

E. Discussion

Now we analyze the time complexity of Algorithm 1. Since
the order k in our method is set as 3, it can be regarded as a very
small constant. When updating A, we need to compute the gra-
dient by (10). In (10), we first compute Ak−r−1XXTAkTAr.
Denotes n as the number of instances and d as the num-
ber of features. If n > d, by using the associative property
of matrix multiplication, we spend O(n2 d) time to compute
Ak−r−1X and XTAkTAr. Then we spend O(n2 d) time to
multiply these two terms to obtain Ak−r−1XXTAkTAr. If
n < d, we can calculate XXT in O(n2 d) time in advance
(i.e., just need to compute it once), and in the following com-
putation, we just need O(n3) time for matrix multiplication,
which is faster than O(n2 d). When computing the second
term ArBAk−r−1, we take the definition of B into it and

Algorithm 1: Adaptive Consensus Multiple K-Means.
Input: Data matrix X, v times of running K-means,
hyper-parameter k and λ.

Output: Final consensus clustering result.
1: Initialize G(m), F(m), W, V, α, Λ1, Λ2, and μ as

introduced in Section Optimization.
2: while not converge do
3: Update A by solving (9).
4: Update W by solving (11).
5: for m = 1, . . . , v do
6: Update G(m) by solving (13) row by row.
7: Update F(m) by (15).
8: end for
9: Update V by (17).

10: Update α by solving (18).
11: Update Lagrange multipliers by (19).
12: end while
13: Obtain the final clustering result from W with K-means

or spectral clustering.

obtain Ar
∑v

m=1 XF(m)TG(m)TAk−r−1. Also by the asso-
ciative property of matrix multiplication, we compute it in
O(v(ndc+ n2c)) time, where v is the number of bases and c is
the number of clusters, which are both small in practice.

When updating W, we need to compute the gradient
by (12). In (12), we need to compute diag(D−3/2((Λ1 +
μE)TD−1/2W + (Λ1 + μE)D−1/2WT ). Since we just need
the diagonal vector of this matrix, it takesO(n2) time. Similarly,
it also takes O(n2) time to compute diag(D−2(WTD−1W +
WD−1WT )).

When optimizing G(m), we can compute AkX in O(n2 d)
time in advance and just compute it once. Then we update each
row of G(m) to decide the location of the unique 1. It takes
O(nc) time. Updating F(m) is the same as the conventional K-
means, which takesO(n) time. UpdatingV only involves matrix
addition without any matrix multiplication. When optimizingα,
we first spendO(nv2) to computeH. Then, we solve the convex
quadratic programming in O(v3) time.

To sum up, the time complexity is O(n2d+ vndc+ vn2c+
nv2 + v3). Since in practice, the number of bases and clusters v
and c are often small, the bottleneck is about O(n2 d). It is linear
with the number of dimensions. It is square with the number of
instances, which makes it hard to handle very large data sets.
However, it is comparable with other graph-based consensus
clustering methods, because the time complexity of graph-based
methods is often square with the number of instances. In the
future, we will continue to study how to further speed up this
method and reduce the time complexity.

Then, we try to explain why the refinement can improve the
clustering theoretically. We explain it from two aspects. First,
we analyze it from the perspective of the graph filter. As claimed
by previous literature [43], given a graph Laplacian matrix, its
low eigenvalues correspond to the large-scale structure (i.e.,
clusters) in the graph, and its high eigenvalues correspond to
the details but also the noises. Therefore, to obtain a clearer
clustering structure, we need a low-pass graph filter which can
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suppress the high eigenvalues and preserve the low eigenvalues.
Wai et al. give a definition of low-pass graph filter [44]. Given
a graph and its Laplacian matrix L, the eigenvalues of L are
0 = σ1 ≤ σ2 ≤ · · · ≤ σn ≤ 2. H : Rn×n → R

n×n is a trans-
form on the Laplacian matrix, and the eigenvalues of matrix
H(L) are h(σ1), h(σ2), . . . , h(σn), where h is the correspond-
ing transform of the eigenvalues. Then, according to [44], the
low-pass graph filter has the following definition.

Definition 1. [44]H(L) is a (K, η) low-pass graph filter if

η :=
max (|h(σK+1)|, |h(σK+2)|, . . . , |h(σn)|)

min (|h(σ1)|, |h(σ2)|, . . . , |h(σK)|) < 1 (20)

Here η is the low-pass coefficient. From Definition 1, given
a graph filter H(L), if there exists an integer 1 ≤ K < n and
a low-pass coefficient η < 1, then it is a low-pass graph filter.
Theorem 1 shows that the learned graph filter of our method
(I− L

2 )
k is a low-pass graph filter.

Theorem 1. For the learned graph filter of our method (I−
L
2 )

k, there exists an integer 1 ≤ K < n such that the low-pass
coefficient η is smaller than 1, and thus the learned graph filter
is a low-pass graph filter.

Proof. Given the learned graph filter (I− L
2 )

k, its transform
on eigenvalues ish(σi) = (1− σi

2 )
k. Then, we compute its low-

pass coefficient η:

η =
max(|h(σK+1)|, |h(σK+2)|, . . . , |h(σn)|)

min(|h(σ1)|, |h(σ2)|, . . . , |h(σK)|)

=
h(σK+1)

h(σK)

=
(1− σK+1

2 )k

(1− σK

2 )k

=

(
2− σK+1

2− σK

)k

, (21)

where the second equation holds because h(σi) is a monoton-
ically decreasing function of σi. Since σ1 = 0 and as long as
there exists a non-zero eigenvalue of L, there exsits a K such
that σK < σK+1, and thus η = ( 2−σK+1

2−σK
)k < 1. Therefore, our

learned graph filter (I− L
2 )

k is a low-pass graph filter. �
Since our learned graph filter is a low-pass graph filter, as

introduced before, it can suppress the high eigenvalues which
can alleviate the noises on the graph and thus highlight the low
eigenvalues which can reveal a clearer clustering structure.

Second, we analyze it from the perspective of spectral graph
theory. In the clustering scenario, the data matrix X can be
regarded as graph signals. X with a clear clustering structure
should follow the cluster and manifold assumption, i.e., the data
in the same cluster should be close to each other. According
to [39], [40], a smooth graph signal tends to follow the cluster
and manifold assumption.

To show our method can improve the base results, we can
show that, with our learned graph W and its Laplacian matrix
L and the graph filter (I− L

2 )
k, the graph signals (I− L

2 )
kX

are smoother than the original graph signals X. To show this,
we need the metric of the smoothness of the graph signal. Here
we use the metric defined in [45], [46], that is, given a graph

TABLE I
DESCRIPTION OF THE DATA SETS

signal x ∈ R
n and the graph W and its Laplacian matrix L, the

smoothness of x is evaluated by

xTLx =
1

2

n∑
i,j=1

Wij(xi − xj)
2. (22)

The smaller xTLx is, the smoother the signal is. It means that,
if the i-th node and the j-th node are close in the graph, i.e.,
Wij is large, then smooth signal requires that the i-th and j-th
elements in the signal x (i.e., xi and xj) should be similar. It is
consistent with the cluster and manifold assumption. Given this
smoothness metric, we have the following Theorem:

Theorem 2. With the learned graph filter (I− L
2 )

k of our
method, the signals (I− L

2 )
kX are smoother than the original

signals X.
Proof. Here we consider the i-th signal X.i (i.e., the i-th

column of X), and the analysis of other signals is similar.
Given the metric defined before, we try to prove that ((I−
L
2 )

kX.i)
TL((I− L

2 )
kX.i) ≤ XT

.iLX.i.
Suppose the eigenvalue decomposition of L is L = UΣUT .

We have((
I− L

2

)k

X.i

)T

L

((
I− L

2

)k

X.i

)

= XT
.i

(
I− L

2

)k

L

(
I− L

2

)k

X.i

= XT
.iU

(
I− Σ

2

)k

UTUΣUTU

(
I− Σ

2

)k

UTX.i

=
(
UTX.i

)T (
I− Σ

2

)k

Σ

(
I− Σ

2

)k (
UTX.i

)
. (23)

Denoting s = UTX.i, we have ((I− L
2 )

kX.i)
TL((I−

L
2 )

kX.i) = sT (I− Σ
2 )

kΣ(I− Σ
2 )

ks, and similarly we also
have XT

.iLX.i = sTΣs. Supposing the eigenvalues in Σ are
σ1, . . . , σn, we have

sT
(
I− Σ

2

)k

Σ

(
I− Σ

2

)k

s− sTΣs

=

n∑
i=1

(1− σi

2
)2kσis

2
i −

n∑
i=1

σis
2
i

=
n∑

i=1

(
(1− σi

2
)2k − 1

)
σis

2
i ≤ 0, (24)
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TABLE II
ACC RESULTS ON ALL THE DATA SETS

where the last inequality holds because that the eigenvalues σis
of L satisfy 0 ≤ σi ≤ 2. It means that ((I− L

2 )
kX.i)

TL((I−
L
2 )

kX.i) ≤ XT
.iLX.i, and thus (I− L

2 )
kX are smoother than

the original signals X. �
According to Theorem 2, with the learned graph filter (I−

L
2 )

k, we can obtain a smoother embedding, and it leads to
a clearer clustering structure, which follows the cluster and
manifold assumption.

IV. EXPERIMENTS

In this section, we compare the proposed method with single
clustering and consensus clustering methods on benchmark data
sets.

A. Data Sets

We use 8 data sets, including 20NG [47], Lung [48], Orl-
raws [49], Pendigit [50], Tr11 [51], Tr12 [51], Tr31 [51],
Yale [52]. The detailed information is summarized in Table I.

B. Experimental Setup

In our method, we run K-means with different initializations
10 times to generate 10 base results (i.e., v = 10). We fix k = 3
and tune λ in the range {10−3, . . . , 103}. After obtaining the
consensus adjacency matrixW, we generate the final consensus
clustering results in two ways: 1) we run spectral clustering on

W, which is denoted as ACMK-SC; 2) we run K-means on the
final embedding ((I+D−

1
2WD−

1
2 )/2)kX, which is denoted

as ACMK-KM. To show the effectiveness of the proposed
method, we compare it with the following methods:
� KM-avg, which is the average result of the 10 base K-

means results.
� KM-best, which is the best result of the 10 base K-means

results.
� SC [53], which is the spectral clustering on the original

data X. In more detail, we construct k-nn graph with a
Gaussian kernel of X and run spectral clustering on such
a graph.

� CSPA [3], which is a cluster-based similarity partitioning
method for consensus clustering.

� HGPA [3], which is a hypergraph partitioning algorithm
for consensus clustering.

� MCLA [3], which is a meta-clustering algorithm for con-
sensus clustering.

� NMFC [54], which is a consensus clustering with nonneg-
ative matrix factorization.

� LWEA [55], which is a locally weighted consensus clus-
tering method with hierarchical agglomerative.

� LWGP [55], which is a locally weighted consensus clus-
tering method with graph partitioning.

� RSEC [29], which is a robust spectral consensus clustering
method.
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TABLE III
NMI RESULTS ON ALL THE DATA SETS

� DREC [56], which is a consensus clustering based on
dense representation.

� SPCE [10], which is a self-paced clustering ensemble
method.

� SCCBG [31], which is a self-paced consensus clustering
method with bipartite graph learning.

� TRCE [32], which is a tri-level robust consensus clustering
method.

� CESHL [33], which is a consensus clustering method with
structured hyper-graph learning.

Among the compared methods, KM-avg, KM-best, and SC
are single clustering methods, and the others are all consensus
clustering methods. We repeat experiments 10 times with differ-
ent 10 base results generated by K-means and report the mean
results and the standard deviation. For all compared methods
and our method, the number of clusters is set to the true number
of classes of each data set. The base clustering results used in
compared consensus clustering methods are the same as ours,
i.e., they also ensemble the initial {G(1), . . . ,G(10)}. We use
two popular metrics to measure the clustering performance:
Accuracy (ACC) and Normalized Mutual Information (NMI).

C. Experimental Results

Tables II and III show the ACC and NMI of all methods on
all data sets. The bold font means the result is significantly

different from others in the t-test (i.e., the p-value is smaller
than 0.05). From these tables, we find that the proposed method
performs significantly better than the average base K-means
results, which demonstrates that our consensus learning can
indeed improve the clustering performance. Even compared with
the best base results KM-best, ours also outperforms them at
most time. On most data sets, ACMK-SC performs better than
SC, which means the learned graph structure can reveal a clearer
clustering structure than the pre-defined one. When compared
with other state-of-the-art consensus clustering methods, ours
achieves a better result on most data sets. Notice that all these
compared consensus clustering methods except ours use fixed
base results. Our ACMK refines the base results and learns the
consensus result with the refined base ones, and thus it often
achieves better performance.

To further illustrate the effect of the graph filter, we show
the results with different orders of graph filter, i.e., we show the
results with k = {1, 2, 3, 4}. Tables IV and V show the results of
ACMK-KM and ACMK-SC, respectively. From Tables IV and
V, we find that ACMK often achieves good results when k = 3
or k = 4. If k is too small, the graph filter cannot effectively
capture the high-order relationship among instances. If k is too
large, it will lead to the over-smooth problem [57], [58].

Fig. 1 shows the visualization results of t-SNE [59] on Lung
data set. Fig. 1(a) is the t-SNE result of the original data X.
Figs. 1(b)–(e) are the t-SNE result of the embedding AkX
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TABLE IV
RESULTS OF ACMK-KM WITH DIFFERENT k

TABLE V
RESULTS OF ACMK-SC WITH DIFFERENT k

Fig. 1. T-SNE results on lung.

with k = 1, 2, 3, 4, respectively. We can see that the data in
Fig. 1(a) are entangled together, and with the graph filter, the
data are easily separated. It shows that the graph filter can lead
to a cluster-friendly embedding, which meets the cluster and
manifold assumption, i.e., the data in the same cluster should be

close to each other and the data in different clusters should be
far apart from each other.

To show the effectiveness of the refinement quantitatively,
we compare the ACC of each base clustering result before and
after refinement. The NMI results are similar. Fig. 2 shows the
results. The blue bars represent the ACC results of 10 original
base clustering (i.e., directly obtained from the initial G(i)); and
the red bars represent the ACC of refined base clusterings (i.e.,
directly obtained from the learnedG(i)). From Fig. 2, we can see
that, on most data sets, our refinement can improve most base
results more or less. It demonstrates that our graph filter method
can indeed improve the performance of base clusterings, and
further with better base results it can obtain a better consensus
clustering result.

Fig. 3 shows the convergence curves of ACMK on Lung,
Orlraws, Tr31, and Yale data sets. The results on other data sets
are similar. It can be seen that ACMK can converge very fast,
i.e., it often converges within 20 iterations.

D. Ablation Study

For an ablation study, we compare with some degenerated ver-
sions of ACMK to show the effect of the consensus learning and
base result refining. To show the effect of consensus learning, we
compare with ACMK-GF without consensus learning. In more
detail, we run K-means directly on ((I+D−

1
2WD−

1
2 )/2)kX,

where W = G(m)G(m)T constructed directly from the base
results without the consensus learning. ACMK-GF reports the
average results among the 10 base results. To show the effective-
ness of the base result refining, we compare with ACMK-Fix,
which does not use the graph filter and directly applies spec-
tral clustering on W = 1

v

∑v
m=1 G

(m)G(m)T with fixed base
results G(m)s.

Since ACMK-GF is the K-means based method, we compare
it with KM-avg and ACMK-KM. Table VI shows the ACC and
NMI results. From Table VI, we can see that ACMK-GF is often
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Fig. 2. ACC results of each base result before and after refinement.

TABLE VI
ABLATION STUDY: COMPARISON OF KM-AVG, ACMK-GF, AND ACMK-KM

TABLE VII
ABLATION STUDY: COMPARISON OF SC, ACMK-FIX, AND ACMK-SC

Fig. 3. Convergence curves.

better than KM-avg, which means with the graph filter, we obtain
a more cluster-friendly embedding. ACMK-KM can further
improve ACMK-GF, which demonstrates the effectiveness of
consensus learning.

ACMK-Fix is a spectral clustering based method, and thus we
compare it with SC and ACMK-SC in Table VII. ACMK-Fix
often outperforms SC, which means the fixed graph constructed
via consensus learning is more appropriate than the pre-defined
graph used in SC. When compared with ACMK-SC, we find that
ACMK-SC often achieves better performance, which means by
refining the base results can further improve the performance of
consensus learning.

E. Parameter Study

In this subsection, we show the effect of the hyper-parameter
λ. In Fig. 4, we show the clustering results of ACMK-KM and
ACMK-SC with different values of λ on all data sets. It can be
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Fig. 4. Clustering results of ACMK-KM and ACMK-SC w.r.t. λ.

seen that the results are relatively insensitive to λ, and we often
achieve a good result when λ is in the range [10−2, 102].

V. CONCLUSION

In this paper, we provided another idea for consensus cluster-
ing to improve the clustering performance, i.e., we adaptively
improved the quality of each base result in the process of consen-
sus learning. To fulfill this idea, we proposed a novel adaptive
consensus multiple K-means. In this method, to adaptively
improve the quality of base results, we applied a learnable graph
filter to learn a smoother and more cluster-friendly embedding
for the original data and updated the base results by running K-
means on such embedding. Meanwhile, we ensembled multiple
base results to construct a consensus graph for the graph filter by
considering the consensus and diversity. The proposed method
integrated such two processes into a unified framework and
obtained the final consensus clustering result from the consensus

graph. The experimental results on benchmark data sets shew
the effectiveness and superiority of the proposed method by
comparing it with other state-of-the-art consensus clustering
methods.

Although the proposed method achieves promising perfor-
mance, since it performs a learnable graph filter, the time
complexity is with the square of the number of instances.
In the future, we will further study the scalable issue to de-
sign a lightweight learnable graph filter. Moreover, as pointed
out by one of the anonymous reviewers, one possible im-
provement of this work is that we can use a more powerful
polynomial graph filter A+A2 + · · ·+Ak to refine the base
clustering.
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