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Interpretable Subspace Clustering
Zheng Zhang, Peng Zhou, Senior Member, IEEE, Aiting Yao, Liang Du, Xinwang Liu, Senior Member, IEEE

Abstract—Subspace clustering is one of the most popular
clustering methods due to its effectiveness. Although subspace
clustering methods have been demonstrated to achieve promising
performance, they still lack interpretability, especially when
handling high-dimensional complicated data. To bridge this gap,
this paper focuses on the interpretability of subspace clustering
and proposes a novel interpretable subspace clustering method.
Our goal is to answer two key questions about the interpretability
in subspace clustering: (1) when handling an individual sample,
which features should work for this sample? (2) Which cluster
or subspace will the features that work put this sample into? To
answer these two questions, we design two new interpretability
regularized terms and plug them into the subspace clustering. In
this way, we show that interpretability can be used to improve
the clustering performance in turn. Extensive experiments on
benchmark data sets demonstrate the effectiveness of our method
in terms of clustering performance and interpretability.

Index Terms—Machine learning, interpretability, subspace
clustering

I. INTRODUCTION

CLUSTERING is a fundamental unsupervised task in
machine learning. It aims to partition the data samples

into several clusters, where the data in the same cluster are
close to each other, and the data in different clusters are far
apart from each other. Since clustering does not need human
annotations, it has been widely used in many machine learning
applications, such as recommendation systems [1], [2], data
mining [3], [4], and image segmentation [5], [6].

In recent decades, many clustering methods have been
proposed, such as k-means based methods [7], [8], [9], [10],
graph based methods [11], [12], [13], [14], [15], density based
methods [16], [17], and subspace based methods [18], [19].
Among them, subspace clustering can discover the intrinsic
subspace structure of non-linear complicated data, and thus
has attracted much attention [18], [19], [20], [4], [21], [22].
For example, Sparse Subspace Clustering (SSC) [23] pointed
out that each sample can be represented by a few number of
samples from the same subspace, thereby proposing a sparse
subspace clustering methodology. LRR [19] achieved robust
subspace clustering by seeking the low-rank representation
that can recover underlying subspace structures and detect
outliers under various data corruption scenarios. LPP [24]
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proposed a projection-based subspace clustering method that
learned a mapping matrix to transform the original input space
into a lower-dimensional subspace. These methods learn the
relationships among data samples and partition the data into
several subspaces based on these relations, obtaining the final
clustering results from the subspaces. Although the subspace
clustering methods have demonstrated promising performance,
they may lack interpretability, especially when handling high-
dimensional complicated data. In high-dimensional data, the
relations between samples are complicated and difficult to
recognize. The reason why two samples of this complicated
high-dimensional data belong to the same subspace is not
obvious, and existing subspace clustering methods fail to
provide an explanation.
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Fig. 1: Explanation of differences among subspace clustering,
feature selection-based clustering, and our method. Each col-
umn (i.e., X1, X2, X3) denotes a sample, and each row (
f1, · · · , f5) represents a feature. (a) shows the features used
in conventional subspace clustering methods. Conventional
subspace clustering uses all features for clustering. (b) shows
the features used in feature selection based methods. These
methods use the same features for all samples for clustering.
(c) shows the features used in our method. For different
samples, we use different features for clustering, which can
explain why we make such a prediction on an individual.

To explain the subspace clustering or to tell the reason why
two samples belong to the same subspace, in this paper, we
dive into the interpretable subspace clustering task. Given a
data set, especially the complicated high-dimensional data,
our interpretable method should answer the following two
key questions: 1) when handling an individual sample, which
features should work for this sample? 2) Which cluster or
subspace will the features that work put this sample into? If
we can answer these two questions, we can tell why the two
samples are put into the same cluster.

Therefore, the key point of our interpretable subspace clus-
tering is the features. One natural idea is to apply the feature
selection methods [25], [26], [27], [28], [29], [30]. However,
our task is different from feature selection. Conventional
feature selection methods try to select several informative
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features for all data, which means no matter which sample
is handled, the features that work are exactly the same [31],
[32]. Therefore, it still fails to answer Question 1, because if
the features that work for all data are the same, we cannot
tell why we put some samples into one cluster but put other
samples into another cluster. Fig. 1 shows an example of
feature selection and our task. In Fig. 1, a column denotes a
sample and a row denotes a feature. The yellow block means
the feature of the data that is used in clustering. Fig. 1(a)
shows the features used in traditional subspace clustering, i.e.,
all features of all data are used. It is uninterpretable because it
cannot tell why a sample belongs to a cluster. Fig. 1(b) shows
the features used in clustering with feature selection. We can
see that, for all data, it uses the same features. It can tell
which features are important for clustering, but it still cannot
tell why we put a sample into a cluster but put another sample
into another cluster. Fig. 1(c) shows the features used in our
method. It can be seen that, for different samples, the features
that work are also different, which can answer Question 1 that
for each individual, which features should work. Notice that,
to answer Question 1, one of the most recent techniques is
the local feature selection, which tries to select features for
each individual instead of for all data [33], [34]. However,
local feature selection can only answer Question 1 but fails
to answer Question 2. To answer Question 2, we should dive
into the subspaces and try to capture the relations between the
feature and subspace for an individual sample.

To this end, in this paper, we propose a novel Interpretable
Subspace Clustering (ISC) method. The basic idea is that
during the subspace clustering, we also learn an indicator
matrix to show which features should be used for each
sample. Notice that for each individual, only a few features
work. Therefore, the indicator matrix in our method should
be sparse for each sample. To this end, we use a sparse
regularized term to control the sparsity for each sample. With
this regularized term, we can answer Question 1. To answer
Question 2, we carefully design another novel regularized term
to characterize the relations between features and subspaces.
Thanks to this regularized term, we can easily tell, given an
individual, which subspace the selected features will put the
data into. Intuitively, if we know an algorithm better, we can
improve it more easily. To show whether the interpretability
can improve or guide the subspace clustering, we plug these
two regularized terms into the subspace clustering framework,
leading to the objective function of our interpretable subspace
clustering method. Then, we provide an iterative optimization
method to solve the introduced objective function. At last,
extensive experiments are conducted to show the effectiveness
and interpretability of the proposed method.

The main contributions of this paper are summarized as
follows:

• We propose a novel interpretable subspace clustering
method that can answer the two key questions about
the interpretability. To the best of our knowledge, this
is the first work to achieve interpretability in subspace
clustering.

• We design a novel regularized term to capture the rela-
tions between features and subspaces, which makes the

decisions interpretable. Although the motivation of the
regularized term is interpretability, we show that it can
also guide the subspace clustering in turn.

• Extensive experiments demonstrate that our method has
comparable or even better clustering performance com-
pared to state-of-the-art subspace clustering methods, but
has better interpretability.

II. RELATED WORK

In this section, we introduce related work on subspace
clustering and interpretable clustering. In the following, we
use bold uppercase and lowercase characters to denote a matrix
and a vector, respectively. For an arbitrary matrix A, we denote
its (i, j)-th element as Aij , the k-th column vector and k-th
row vector of A is A:,k and Ak,:, respectively.

A. Subspace Clustering

Over the past few decades, subspace clustering has wit-
nessed significant advancements [23], [19], [20], [35], [18],
[22], [4]. Sparse Subspace Clustering (SSC) [23] stands as one
of the most important self-representation methods, which aims
to learn a coefficient matrix S ∈ RN×N by selecting the fewest
possible samples to represent each data point. Specifically,
given a data matrix X ∈ Rd×N with N samples and d features,
the SSC’s objective function is formulated as follows:

min
S

∥S∥1 + λ∥X−XS∥2F (1)

s.t. ST1 = 1, diag(S) = 0.

where diag(S) indicates the diagonal vector of the matrix S,
and 1 denotes the vector whose elements are all 1’s. The first
term is to control the sparsity of S, which means we only
need a few samples (not all samples) to reconstruct each data.
The second term is the reconstruction term, which reconstructs
each data point with the coefficients in S. The first constraint
makes sure that the reconstruction coefficients of each sample
sum to 1. The second constraint is to avoid the trivial solution
that each sample is reconstructed by itself.

After obtaining the coefficient matrix S by optimizing
Eq.(1), the subspaces are partitioned from S. Specifically, they
construct the sparse similarity matrix S̃ = (S + ST )/2, and
then run spectral clustering on S̃ to obtain several clusters
where each cluster represents a subspace.

Following this framework, many variants of subspace clus-
tering have been proposed. For example, low-rank-based ap-
proaches were developed to more effectively uncover the in-
trinsic structure of subspaces [19], [20], [36]. Greedy Subspace
Clustering (GSC) [22] employed a greedy search strategy
to identify nearest subspace neighbors, thereby recovering
underlying subspace structures. Orthogonal Matching Pursuit
(OMP) [35] addressed the computational overhead of tra-
ditional SSC through iterative orthogonal projection. Zhou
et al. [4] proposed a projected subspace clustering method
that jointly optimizes local subspace structures and global
structures. Most recently, some works tried to extend the
subspace clustering to deep learning, leading to the deep
subspace clustering. For example, Cai et al. [37] proposed
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a novel deep subspace clustering method out of the self-
expressive framework, which applied an iterative refining
method to learn the subspace, and the refined subspace bases
helped the representation learning in turn. Furthermore, Cai et
al. [38] designed a deep clustering method in a generative way.
The method learned a Wasserstein embedding for clustering
by minimizing the Wasserstein distance between the prior and
marginal distribution in the embedding space instead of the
original data space, which conventional methods often do.
In [39], Yu et al. proposed a new deep subspace clustering
method with contrastive learning and applied it to multi-view
clustering. It applied the Cauchy-Schwarz divergence to char-
acterize the interaction of the representation and clustering,
which improved the encoder’s feature extraction capacity.

Although these existing methods have achieved promising
performance, they lack interpretability as introduced before.
This is the main motivation of our interpretable subspace
clustering.

B. Interpretable Clustering and Local Feature Selection
Existing interpretable clustering techniques can be roughly

categorized into four types: decision tree based, rule based,
prototype based, and feature selection based interpretable
clustering methods.

The core idea of decision tree based methods is to construct
a decision tree using pseudo-labels (generated by clustering
algorithms like k-means or spectral clustering) and the original
data points, aiming to minimize clustering error and reduce
tree complexity simultaneously [40], [41], [42], [43], [44],
[45]. Moshkovitz et al. [40], [41] were the first to propose
a top-down decision tree algorithm specifically designed for
k-means clustering. Then, Fleissner et al. [44] argued that
the aforementioned methods failed to address nonlinear data
problems. Then, they proposed a novel decision tree based
clustering approach operating in kernel space. Rule based
clustering methods aim to discover a set of if -then rules from
data for clustering purposes. The interpretability of a clustering
algorithm’s decision process can be achieved by identifying
and representing the rule set that characterizes each cluster
[46], [47], [48], [49]. For example, Saisubramanian et al. [46]
proposed a method that predefined a set of feature points
of interest as rule conditions, requiring samples within each
cluster to maximally satisfy these prescribed rules. The pro-
portion of rule-satisfying samples within each cluster served
as an interpretability metric. Wang et al. [47] designed a rapid
fuzzy rule clustering method based on granular computing.
The core objective of prototype based interpretable clustering
is to discover representative exemplars that characterize each
cluster’s structure [50], [51], [52], [53]. For example, Davidson
et al. [50] developed an approximation algorithm that balanced
the number of selected exemplars against clustering perfor-
mance by simultaneously maximizing cluster diameters while
minimizing the number of exemplars. Pan et al. [51] proposed
a deep prototype-based interpretable clustering framework by
embedding the Centroid-Integration Unit (CIUnit) within the
autoencoder network.

Feature selection based approaches are another popular in-
terpretable clustering method. Notice that, conventional feature

selection approaches determine a global feature subset shared
across all samples by focusing only on the most relevant subset
for all data, such as [25], [26], [4], [28], [30]. However, since
the above methods select the same features for all samples
to cluster, it still lacks interpretability [33], [34]. To tackle
this issue, Armanfard et al. [33] first proposed a local feature
selection method for the classification task that allows each
sample to select its own features. After that, several local
feature selection methods have been proposed. For example,
INTERPRET3C [54] introduced sample-wise adaptive fea-
ture selection via a Gumbel-Softmax-based gating network
with sparsity-inducing regularization, enabling interpretable
clustering on the filtered features. The IDC [34] framework
introduced a dual-gating mechanism consisting of local feature
selection, optimized with sparsity-promoting and orthogonality
constraints.

In this paper, we also focus on the feature selection based
method. We design new interpretability regularized terms
based on the local feature selection for subspace clustering,
leading to interpretable subspace clustering.

III. METHOD

In this section, we introduce our ISC method in detail. Given
a data set X ∈ Rd×N containing N samples and d features,
we aim to partition the samples into C clusters.

Following the framework of subspace clustering Eq.(1),
we also apply a self-reconstructive approach, which recon-
structs X with a coefficient matrix S ∈ RN×N . However,
different from conventional subspace clustering methods, our
interpretable method tries to find out which features work for
each sample. To this end, we introduce a learnable sample-
feature indicator matrix W ∈ {0, 1}d×N . If the i-th feature of
the j-th sample works, Wij = 1 and Wij = 0 otherwise.

Equipped with W, in the self-reconstruction, we wish to use
samples with their worked features to reconstruct the original
data. Therefore, we adjust Eq.(1) as follows:

min
S,W

||S||1 + λ||X− (X⊙W)S||2F (2)

s.t. W ∈ {0, 1}d×N ,ST1 = 1,diag(S) = 0,

where ⊙ denotes the Hadamard product, i.e., the element-wise
product.
W is the key to our interpretability. As introduced before,

to realize the interpretability, we should learn W to answer
the following two questions:

• Q1. When handling an individual sample, which features
should work for this sample?

• Q2. Which cluster or subspace will the features that work
put this sample into?

In the following, we will introduce our formulation to
answer these two questions.

A. Q1: Which Features should Work for a Sample?

To answer Question 1, we need to enforce sparsity on W.
Notice that W ∈ {0, 1}d×N is discrete and thus difficult to
optimize. To this end, we relax W to W ∈ [0, 1]d×N .
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Fig. 2: An illustration of the comparison of the ℓ1 regularizer,
ℓ21 regularizer, and our grouped sparsity regularizer.

However, this relaxation cannot guarantee the sparsity of
W. To achieve sparsity, one of the simplest ways is to use
the ℓ1 norm on W, i.e., ∥W∥1. However, ℓ1 norm can only
enforce W to be sparse but cannot control where the zero-
elements appear. In our task, given any sample, we wish a few
features work. It means that, given any column in W, there
should be a few non-zero elements (indicating the worked
features) and a lot of zero elements (indicating the useless
features). Therefore, we do not want to create a column with
all-zeros, which means the given sample does not have any
worked features. To this end, we wish that in each column,
there should be some non-zero elements. The conventional ℓ1
norm cannot realize it.

In our task, we can regard each column of W as a group.
The group should have two properties: 1) There are no all-zero
groups. 2) Each group is sparse. To this end, inspired by [55],
we impose the following group sparsity regularized term on
W:

∥W∥G =

N∑
j=1

(
d∑

i=1

Wij

)2

. (3)

The outer summation is an ℓ2 norm on
∑d

i=1 Wij . As we
know, ℓ2 norm does not lead to sparse results, and thus each∑d

i=1 Wij will be non-zero. It means that, given any sample
(e.g., the j-th sample),

∑d
i=1 Wij > 0 indicates that there

should be some non-zero Wij and thus for each sample, there
should be some features that work.

The inner summation in Eq.(3) is an ℓ1 norm on Wij

(notice that Wij > 0 and thus we do not need the absolute
value operation on Wij). The ℓ1 norm can make sure that
in the j-th column, some Wij should be zeros, and thus the
non-zero elements indicate the features that work for the i-
th sample. It is worthy to clarify that this term is different
from some widely-used sparse regularized terms, such as
the ℓ1 regularizer ∥W∥1 =

∑d
i=1

∑N
j=1 |Wij | and the ℓ21

regularizer ∥W∥21 =
∑d

i=1

√∑N
j=1 W

2
ij . Fig. 2 shows a

simple comparison of these three regularizers. Fig. 2(a) shows
the result of the ℓ1 regularizer. It can impose sparsity on the
whole W matrix, but it cannot control where the zero elements
are. For example, for some instances, e.g. X3, there are no
selected features and for some instances, e.g. X5, all features
are selected. Fig. 2(b) shows the result of ℓ21 regularizer. It
imposes the ℓ1 norm on the row, which will lead to the ℓ2
norm of some rows being zero, and thus it can cause the row
sparsity. The row sparsity means that, for all instances, the
selected features are the same. Fig. 2(c) shows the sparsity

of ∥ · ∥G, where for each instance, there are several selected
features and non-selected features.

Therefore, the group sparsity regularized term ∥W∥G can
satisfy the above-mentioned two properties. Then, we plug it
into Eq.(2), leading to

min
S,W

||S||1 + λ||X− (X⊙W)S||2F + γ||W||G (4)

s.t. W ∈ [0, 1]d×N , ST1 = 1, diag(S) = 0.

B. Q2: Which Subspace will the Worked Features Put a
Sample Into?

To answer Question 2, we need to construct the relation
between W and the subspaces. Therefore, we should first
construct the subspaces.

In conventional subspace clustering, they obtain subspaces
from S, i.e., they run spectral clustering on the similarity
matrix S̃ = (S+ST )/2. In more detail, they first construct the
Laplacian L = D − S̃, where D is a diagonal matrix whose
diagonal element Dii =

∑N
j=1 S̃ij . Then, they obtain the C

eigenvectors of L corresponding to the smallest C eigenvalues
and run k-means on the eigenvectors to obtain the discrete
subspace indicator matrix Y ∈ {0, 1}N×C , where if the i-th
sample belongs to the j-th subspace, Yij = 1 and Yij = 0
otherwise. Obviously, Y can also be regarded as the cluster
indicator, and they use Y as the final clustering result.

Therefore, in our framework, we need to construct the
relation between W and Y. However, in the above-mentioned
spectral clustering procedure, they obtain Y in two separate
steps: eigenvalue decomposition on L and k-means on the
eigenvectors. Since we need to plug Y into our formulation,
we wish to obtain Y from S by a single term, i.e., we need
to obtain Y in one step.

To this end, we adjust the spectral clustering to the discrete
spectral clustering inspired by the ratio-cut [56]. In the ratio-
cut, we first regard S̃ as an adjacency matrix of a graph, and
try to partition the graph into C subgraphs {X 1,X 2, ...,XC}
by maximizing the intra-subgraph similarity and minimizing
the inter-subgraph similarity:

RatioCut(X 1,X 2, ...,XC) =

C∑
k=1

cut(X k, X̄ k)

|X k|
, (5)

where X̄ k is the complement of Xk. Here, cut(X k, X̄ k) =∑
Vi∈Xk

∑
Vj∈X̄k

S̃ij is a cut of the graph, i.e., the summation
of the edge weights between Xk and X̄k. Introducing the
diagonal matrix D where Dii =

∑N
j=1 S̃ij and a one-hot

indicator vector yk ∈ RN where the i-th element in yk is
1 only if the i-th vertice Vi belongs to X k, we can obtain:

cut(X k, X̄ k) =
∑

Vi∈Xk

Dii − cut(X k,X k) (6)

= yT
k Dyk − yT

k S̃yk

= yT
k Lyk,
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where L = D− S̃ is the Laplacian matrix. Take it into Eq.(5),
we have:

RatioCut(X 1,X 2, ...,XC) =

C∑
k=1

yT
k Lyk

yT
k yk

(7)

= tr(YTLY(YTY)−1)

Therefore, we can obtain Y from S by minimizing the term
tr(YTLY(YTY)−1).

Now, we have obtained the subspace Y and will construct
the relation between Y and W. To answer Question 2, we
should find out which features work for a given subspace.
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Fig. 3: A toy example of the WY = B with 4 samples
(X1, X2, X3, X4) and 5 features (f1, f2, f3, f4, f5) in 2 sub-
space (C1, C2). Matrix B shows the relevance between the
features and the subspace. For example, X1 and X3 belong
to the first subspace, and in X1 and X3, the worked features
are both f1 and f2. Therefore, features f1 and f2 are highly
related to subspace C1. Correspondingly, B11 and B21, which
shows the relevance of the features f1 and f2 to subspace C1

respectively, have a relatively large value.

To this end, we compute a matrix B = WY ∈ Rd×C .
Bij is the correlation of the i-th feature and j-th subspace.
Fig. 3 shows a toy example of 4 samples with 5 features in 2
subspaces. The larger Bij is, the more relative the i-th feature
and j-th subspace is. Bij = 0 means that the i-th feature
does not work for the j-th subspace. In this example, we can
see that the first two features relate to the first subspace, and
the last two features relate to the second subspace. The third
feature may also relate to the second subspace, but the relation
is not as strong as the last two features.

Therefore, we wish B has the following properties: 1) There
are no all-zero columns in B because for each subspace,
there must be some features that work. 2) Each column of
B is sparse because for each subspace, only a few features
work. Now we show that the sparsity of each column of B is
beneficial to the consistency of features and subspaces, i.e., the
samples in the same subspace will select the same or similar
features. Considering the i-th column of B, denoted as B.i,
we have B.i = WY.i, where Yi. denotes the i-th column of
matrix Y. Notice that Y.i is a 0-1 vector, where if the p-th
sample belongs to the i-th subspace, then the p-th element in
Y.i is 1 and otherwise is 0. Supposing that the i-th subspace
contains the samples Xi1 , · · · , Xim , we have

B.i = WY.i =


W1,i1 +W1,i2 + · · ·+W1,im

W2,i1 +W2,i2 + · · ·+W2,im

· · ·
Wd,i1 +Wd,i2 + · · ·+Wd,im

 . (8)

The sparsity of B.i makes that there are as many zeros in
W1,i1 +W1,i2 + · · ·+W1,im , · · · ,Wd,i1 +Wd,i2 + · · ·+Wd,im

as possible. Without loss of generality, considering a simple
example, we suppose that sample Xi1 selects the 1-st, 2-nd,
and 3-rd features, which means W1,i1 ,W2,i1 ,W3,i1 > 0, and
other Wj,i1 = 0 for j ̸= 1, 2, 3. Therefore, the 1-st, 2-nd, and
3-rd elements in B.i are greater than 0, and other elements are
zeros. Now, it is Xi2 ’s turn to select features. If Xi2 selects a
new feature, e.g. the 4-th feature, then W4,i2 > 0, which makes
the 4-th element of B.i be non-zero, and thus decreases the
number of zeros in B.i. If Xi2 selects the same features as Xi1 ,
i.e., the 1-st, 2-nd, or 3-rd features, since these elements in B.i

are already non-zeros, it will not decrease the number of zeros
in B.i. Therefore, to make B.i be as sparse as possible, Xi2

should select the same features as Xi1 . This analysis applies
to any other samples Xij ’s in the i-th subspace. Therefore,
the samples in the same subspace are prone to selecting
similar features, which shows the consistency of features and
subspaces.

We can see that these two properties of B are very similar
to the two properties of W introduced in Section III-A.
Therefore, we can also use the group sparsity regularized term
on B to constrain the relation between features and subspaces,
leading to our novel regularized term:

∥B∥G = ∥WY∥G. (9)

Taking Eqs.(7) and (9) into Eq.(4), we obtain our final
objective function:

min
S,W,Y

||S||1 + λ∥X− (X⊙W)S∥F (10)

+ β tr(YTLY(YTY)−1) + γ(∥W∥G + ∥WY∥G)
s.t. W ∈ [0, 1]d×N , ST1 = 1, diag(S) = 0,

Y ∈ {0, 1}N×C ,

C∑
j=1

Yij = 1.

To achieve the interpretability, in Eq.(10), we use ∥W∥G to
answer Question 1 and use ∥WY∥G to answer Question 2.

IV. OPTIMIZATION

In this section, we introduce how to optimize Eq.(10). We
first handle the group sparsity regularized term ∥W∥G:

∥W∥G =

N∑
j=1

(

d∑
i=1

Wij)
2 = tr(WT11TW). (11)

Similarly, for the term ∥WY∥G, we have

∥WY∥G = tr(YTWT11TWY) = tr(WT11TWYYT ),

and thus

∥W∥G + ∥WY∥G = tr(WT11TW(YYT + I)). (12)

We take it into Eq.(10) and apply the Alternating Direc-
tion Method of Multipliers (ADMM) method to optimize
it. In more detail, we introduce an auxiliary variable A =
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S − diag(S) and the Lagrange multipliers δ ∈ RN×1 and
∆ ∈ RN×N , and obtain the following Lagrange formula:

L = min
A,S,Y,W

∥S∥1 + λ∥X− (X⊙W)A∥2F+ (13)

β tr(YTLY(YTY)−1) + γ tr(WT11TW(YYT + I))
ρ

2
∥AT1− 1∥2F +

ρ

2
∥A− S+ diag(S)∥2F+

δT (AT1− 1) + tr(∆T (A− S+ diag(S))),

s.t. Y ∈ {0, 1}N×C ,

C∑
j=1

Yij = 1, W ∈ [0, 1]d×N ,

where ρ > 0 is an adaptive penalty parameter. Next, we update
the variables A, S, W, and Y iteratively.

A. Updating A

By removing terms unrelated to A, the objective function
can be simplified to an unconstrained optimization problem:

L =min
A

λ∥X− (X⊙W)A∥2F + β tr(YTLY(YTY)−1)

ρ

2
∥AT1− 1∥2F +

ρ

2
∥A− S+ diag(S)∥2F+

δT (AT1− 1) + tr(∆T (A− S+ diag(S))). (14)

Notice that L is related to A, and the following equivalence
holds:

tr(YTLY(YTY)−1) =
1

2

N∑
i,j=1

Aij∥Fi,: − Fj,:∥22, (15)

where F = Y(YTY)−1/2. By introducing matrix Q whose
(i, j)-th element is Qij = ∥Fi,: − Fj.:∥22, we can derive the
following formula:

tr(YTLY(YTY)−1) =
1

2
tr(ATQ) (16)

Taking it into Eq.(14), and setting the derivative of L with
respect to A to zero, we obtain:

(2λETE+ ρ11T + ρI)A (17)

= 2λETX+ ρ(11T + S)− βQ− 1δT −∆,

where E = X ⊙ W. If N < d, we can directly obtain the
solution of A as:

A =(2λETE+ ρ11T + ρI)−1· (18)

(2λETX+ ρ(11T + S)− βQ− 1δT −∆).

The time complexity of the inverse (2λETE+ρ11T+ρI)−1 is
O(N3) which is acceptable when N is small. However, when
N is large, especially when N > d, the time complexity is
too high. To tackle this problem, we derive an accelerated
method to compute Eq.(18). We denote J = I+ ϵETE where
ϵ = 2λ

ρ . It can be seen that (2λETE+ρ11T +ρI)−1 = 1
ρ (J+

11T )−1. Therefore, we compute (2λETE + ρ11T + ρI)−1

incrementally.
In more detail, we first compute the inverse of J. According

to the Woodbury Identity, we have:

J−1 = (I+ ϵETE)−1 = I−ET (ϵ−1I+EET )−1E. (19)

Notice that ϵ−1I+EET is a d-by-d matrix whose inverse can
be computed in O(d3) which is smaller than O(N3) if d < N .
Then, according to Sherman-Morrison Identity, we have:

(J+ 11T )−1 = J−1 − J−111TJ−1

1 + 1TJ−11
, (20)

Taking it into Eq.(18), we can obtain the solution of A when
N > d.

To sum up, if N > d, the time complexity of computing
A is O(dN2 + d2N + d3) = O(dN2). If N < d, the time
complexity of computing A is O(dN2 +N3) = O(dN2).

B. Updating S

By fixing other variables, we can obtain the closed-form
solution of S as:

Sij =

{
Rij sgn(Pij), if |Pij | > 1

ρ and i ̸= j

0, otherwise,
(21)

where Rij = |Aij+
∆ij

ρ |− 1
ρ and Pij = Aij+

∆ij

ρ . The sgn(·)
represents the sign function.

C. Updating W

We update W using a Quasi-Newton method. By taking the
derivative of the objective function Eq.(13) w.r.t W, we have:

∂L
∂W

=2X⊙
(
(X⊙W)SST

)
−

2X⊙
(
XST

)
+ 2γ

(
11TW

(
I+YYT

))
. (22)

Equipped with the partial derivative Eq.(22), we employ the
constrained L-BFGS-B to optimize W [57].

D. Updating Y

When updating Y, the objective function Eq.(13) can be
simplified to the following formulation:

min
Y

C∑
k=1

YT
:,kLY:,k

YT
:,kY:,k

+ γYT
:,kL̂Y:,k (23)

s.t. Y ∈ {0, 1}N×C ,

C∑
k=1

Y:,k = 1,

where L̂ = WT11TW. Notice that each row of Y contains
only one 1 and other elements are all zeros. Therefore, we can
solve Y row-by-row. In more detail, considering the i-th row
of Y, we try C possible result [1, 0, · · · , 0], [0, 1, 0, · · · , 0],
· · · , [0, · · · , 0, 1] and replace the i-th row of Y with the one
which leads to the smallest objective function. To accelerate
this process, we adopt the method proposed in [58], [59] for
efficient computation.

E. Updating Lagrange Multipliers

At last, we update the Lagrange multipliers δ, ∆ and step
size ρ as follows: 

δ = δ + ρ(A1− 1),

∆ = ∆+ ρ(A− S),

ρ = 2ρ.

(24)
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F. Algorithm and Discussion

Algorithm 1 summarizes the process of our ISC. We ini-
tialize the local feature selection matrix W with an all-ones
matrix. The k-nn method is used to construct an initial graph
S, and then the spectral clustering method is applied on S to
get the initial pseudo-labels Y.

Now we analyze the time complexity. When solving matrix
A with Eq.(17), the time complexity is O(dN2). The time
complexity of computing matrix S is O(N2). For updating
matrix W using the gradient descent method, the time com-
plexity of computing the gradient of W is O(dN2). The time
complexity of computing Y is O(CN2) [58]. The overall time
complexity of the entire algorithm is O(dN2 + CN2). Ac-
cording to [60], the mainstream subspace clustering methods,
especially the methods that use the ADMM algorithm, often
have similar time complexity. The complexity of our method
is comparable to the mainstream subspace clustering methods
[19], [20], [4]. Notice that the operation that costs O(dN2) in
our method is the matrix multiplication, which is often fast in
practice. The matrix multiplication can be easily parallelized
for further speedup. In the future, we will try to tackle this
problem to speed up the method.

Algorithm 1 Interpretable Subspace Clusterting

Input: Data matrix X, number of clusters C.
Output: Clustering results Y and feature selection matrix W.

1: Construct the initial local feature selection matrix W and
similarity matrix S with k-nn. Run spectral clustering on
X to obtain the initial label matrix Y.

2: while not converge do
3: Update A by Eq.(18).
4: Update S by Eq.(21).
5: Update W with L-BFGS-B method.
6: Update Y by solving Eq.(23).
7: Update the lagrange mltipliers δ and ∆ by Eq.(24).
8: end while
9: Obtain the final clustering result Y and feature selection

matrix W.

V. EXPERIMENTS

In this section, we compare our method with several state-
of-the-art clustering methods on benchmark data sets.

A. Data Sets

We conduct experiments on 12 benchmark data sets, includ-
ing JAFFE [61], SONAR1, HEART1, ORL [62], PROSTATE2,
BASEHOOK2, LUNG2, NCI92, COIL203, TOX171[62],
MAGIC1 and AMAZON4. The basic information of these data
sets are summarized in Table I .

1https://archive.ics.uci.edu/dataset/
2https://jundongl.github.io/scikit-feature/datasets.html
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html/
4https://archive.ics.uci.edu/dataset/331/sentiment+labelled+sentences

TABLE I: Description of the data sets.

# Instance # Features # Clusters
JAFFE 213 676 10
HEART 303 13 2

ORL 400 1024 40
PROSTATE 102 5966 2

BASEHOOK 1993 4862 2
LUNG 203 3312 4

COIL20 1440 1024 20
NCI9 60 9712 9

SONAR 208 60 2
TOX171 171 5748 4
MAGIC 19020 10 2

AMAZON 1000 607 2

B. Experimental Setup

To evaluate the clustering performance comprehensively, we
compare our ISC with the following three kinds of methods:

(1) Subspace Clustering Methods

• KSS [18], which is a K-subspaces method for subspace
clustering.

• TSC [36], which is a thresholding-based method for
subspace clustering.

• GSC [22], which is a greedy subspace clustering method
that recovers subspaces by a greedy algorithm.

• LRR [19], which is a low-rank representation-based
method for subspace clustering.

• LRR-SSC [20], which integrates low-rank and sparse
representation for subspace clustering.

• SSC-OMP [35], which applies an orthogonal matching
pursuit method to sparse subspace clustering.

• RWSC [4], which is a reweighted clustering approach that
jointly considers local and global structural information.

(2) Interpretable Clustering Methods

• IDC [34], which is a local feature selection based sample-
specific interpretable deep clustering method.

• EXKMEANS [40], which is an expanding explainable
k-means clustering method using a decision tree.

• SHALLOW [42], which constructs a shallow decision
tree to improve the interpretability of k-means.

(3) Feature Selection based Clustering Methods
Since our method is based on feature selection, we also

compare with some state-of-the-art feature selection based
clustering methods:

• BSFS [25], which is a balanced spectral feature selec-
tion method by selecting the discriminative features and
revealing the balanced structure of data.

• BLSFS [26], which is a bi-level balanced spectral feature
selection method that combines classification level and
feature level, using pseudo-labels.

• FSDK [27], which is a fast sparse discriminative k-
means for feature selection by combining least-squares
regression and discriminative k-means.

• GOD-cPSO [31], which is a synchronous feature se-
lection method that combines graph embedding with
collaborative particle swarm optimization to select the
most discriminative features.
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• SPDFS [32], which proposes an unsupervised feature
selection method with l2,0-norm constrained sparse pro-
jection.

Notice that, although the above-mentioned feature selection
methods [25], [26], [27], [31], [32] are applied to select
features in their original literatures, since they are embedded
methods, which also learn the pseudo-labels of clustering to
guide the feature selection, for a fair comparison, we regard
their pseudo-labels Y as their clustering results, which is
similar to our method. Their Y’s are initialized using the
same spectral clustering method as ours. We compare the
Y obtained from our method to the Y’s obtained from the
feature selection methods BSFS, BLSFS, FSDK, GOD-cPSO,
and SPDFS.

To evaluate the clustering performance of the proposed
ISC, we report both Accuracy (ACC) and Normalized Mutual
Information (NMI) metrics, comparing against all baseline
methods. For subspace clustering methods that output sim-
ilarity matrices [18], [36], [22], [19], [20], [35], [4], we
consistently construct a k-nn graph (k = 5) followed by
spectral clustering for fair comparison.

In our method, we fix the hyperparameter β = 10−3 and
tune λ within the range [1, 108] and γ within [10−3, 102]
by grid search. For other compared methods, we tune the
parameters as suggested in their papers. For all methods on
all data sets, the number of clusters is set to the true number
of classes.

All experiments are conducted using MATLAB 2022b on a
PC computer with Windows 11, 3.61-GHz CPU, and 64 GB
of memory.

C. Experimental Results on Clustering Performance

We run experiments 10 times and report the average clus-
tering results and standard deviation w.r.t. ACC and NMI
in Tables II and III, respectively. From Tables II and III,
we find that although our method focuses on enhancing the
interpretability of subspace clustering, it can also outperform
other subspace clustering methods, interpretable methods, and
feature selection-based clustering methods on most data sets.
When compared with interpretable clustering methods and
feature selection methods, our method outperformed all the
competing methods on all data sets in terms of ACC and NMI.
The main reasons may be threefold as follows.

• In our interpretable clustering method, we explain the
clustering process during the clustering. In this way,
the explanation (i.e., W) can guide the clustering in
turn. However, SHALLOW [42] and EXKMEANS [41]
are post-hoc interpretable clustering methods, which can
hardly directly improve clustering performance with in-
terpretability. Although IDC [34] is also a local feature
selection based interpretable clustering model, it ignores
the relations between the features and clusters, i.e., it
does not constrain the consistency of the selected features
in the same cluster. The inconsistency of features in the
same cluster may misguide the clustering.

• Our method introduces a learnable local feature selection
matrix W based on conventional subspace clustering.

This weighting matrix amplifies the influence of sig-
nificant feature values while suppressing redundant or
irrelevant features in the clustering process, which is
helpful for clustering.

• We impose a group sparsity regularized term ∥WY∥G
on the selected features for each cluster. Although this
term is used for interpretability, since this term also
involves the clustering result Y, which can affect the
clustering result Y in turn. When minimizing ∥WY∥G,
it enforces feature consistency within clusters, i.e., the
features selected within each cluster remain highly simi-
lar, which can effectively reduce intra-cluster sample dis-
tances and reveal clearer clustering structure. Therefore,
even compared with other subspace clustering methods,
our methods can also often achieve better performance.

(a) The selected features of each sample in
each cluster.

(b) The selected fea-
tures of each cluster.

Fig. 4: Interpretability results on the COIL20 data set. Each
row in the figure represents a cluster, and each image repre-
sents one sample in a cluster. (a) shows the selected features
for each sample by green dots. (b) shows the selected features
for each cluster by red dots.

D. Experimental Results on Interpretability

To demonstrate the interpretability of our proposed method,
we design experiments to answer the two questions raised
in the Introduction section: 1) when handling an individual
sample, which features should work for this sample? 2) Which
subspace or cluster will the features that work put this sample
into?

To show the answer to the two questions, we present
visualization results on the COIL20 data set. First, we show
the answer to Question 1. In Fig. 4(a), we show the selected
features for each sample. Here, we show samples from 5
classes in 5 rows, where each row shows 4 different samples in
such a cluster. For each sample, the selected 100 features (i.e.,
the selected pixels) are shown in green color. We can see that,
for different objects, we choose quite different features, which
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TABLE II: The average ACC results and standard deviation of our method and other methods. Red, green, and blue texts
indicate the best, the second-best results, and the third-best results, respectively.

Methods JAFFE HEART ORL PROSTATE BASEHOOK LUNG COIL20 NCI9 SONAR TOX171 MAGIC AMAZON

KSS [18]
0.7793

± 0.0000
0.6040

± 0.0099
0.4767

± 0.0000
0.6078

± 0.0000
0.7195

± 0.0000
0.5320

± 0.0000
0.9215

± 0.0000
0.5283

± 0.0137
0.5481

± 0.0000
0.4269

± 0.0000
0.6032

± 0.0000
0.5740

± 0.0000

TSC [36]
0.9812

± 0.0000
0.7393

± 0.0000
0.6900

± 0.0138
0.6078

± 0.0000
0.9463

± 0.0000
0.8768

± 0.0000
0.8444

± 0.0000
0.5350

± 0.0266
0.5625

± 0.0000
0.5390

± 0.0000
0.5869

± 0.0000
0.6420

± 0.0000

GSC [22]
0.9953

± 0.0000
0.7508

± 0.0052
0.6777

± 0.0199
0.5647

± 0.0186
0.5265

± 0.0011
0.7537

± 0.0000
0.8591

± 0.0117
0.3900

± 0.0394
0.5231

± 0.0426
0.4246

± 0.0276
0.6402

± 0.0000
0.6167

± 0.0326

LRR [19]
0.9465

± 0.0000
0.7525

± 0.0000
0.7545

± 0.0119
0.5784

± 0.0000
0.6232

± 0.0000
0.7877

± 0.0016
0.7149

± 0.0108
0.4217

± 0.0324
0.5529

± 0.0000
0.4807

± 0.0452
0.5815

± 0.0000
0.5520

± 0.0000

LRR-SSC [20]
0.9906

± 0.0000
0.7393

± 0.0000
0.7312

± 0.0165
0.6275

± 0.0000
0.9508

± 0.0000
0.8227

± 0.0000
0.7939

± 0.0015
0.5167

± 0.0484
0.6442

± 0.0000
0.5263

± 0.0000
0.6254

± 0.0000
0.6000

± 0.0000

SSC-OMP [35]
0.8423

± 0.0392
0.6139

± 0.0000
0.6570

± 0.0301
0.5882

± 0.0000
0.9649

± 0.0000
0.7409

± 0.0025
0.5119

± 0.0284
0.4650

± 0.0372
0.5192

± 0.0000
0.4152

± 0.0000
0.6502

± 0.0000
0.5040

± 0.0000

RWSC [4]
0.9374

± 0.0621
0.8251

± 0.0000
0.5942

± 0.0290
0.6196

± 0.0165
0.5227

± 0.0265
0.4921

± 0.0378
0.5185

± 0.0366
0.3783

± 0.0478
0.6875

± 0.0000
0.3632

± 0.0171
0.7096

± 0.0000
0.5170

± 0.0000

IDC [34]
0.7229
±0.1408

0.5413
± 0.0000

0.4383
± 0.0346

0.6176
± 0.0084

0.5937
± 0.0546

0.7286
± 0.0553

0.6308
± 0.0529

0.3617
± 0.0289

0.5336
± 0.0000

0.5087
± 0.0033

0.6484
± 0.0001

0.5310
± 0.0218

EXKMEANS [41]
0.8845

± 0.0785
0.6284

± 0.0478
0.5468

± 0.0230
0.5784

± 0.0000
0.5882

± 0.0185
0.6675

± 0.1143
0.5715

± 0.0563
0.3883

± 0.0509
0.5736

± 0.0255
0.4398

± 0.0526
0.6406

± 0.0108
0.5541

± 0.0376

SHALLOW [42]
0.9634

± 0.0079
0.6139

± 0.0000
0.5055

± 0.0216
0.5784

± 0.0000
0.5795

± 0.0000
0.7975
± 0.068

0.5665
± 0.0243

0.4100
± 0.0251

0.5385
± 0.0000

0.4094
± 0.0000

0.6245
± 0.0021

0.5768
± 0.0186

FSDK [27]
0.9812

± 0.0000
0.6172

± 0.0000
0.6825

± 0.0000
0.7157

± 0.0000
0.5048

± 0.0000
0.8670

± 0.0000
0.8486

± 0.0000
0.4833

± 0.0000
0.5337

± 0.0000
0.4795

± 0.0000
0.6039

± 0.0000
0.5120

± 0.0000

BSFS [25]
0.9765

± 0.0000
0.7393

± 0.0000
0.6425

± 0.0000
0.6176

± 0.0000
0.5876

± 0.0000
0.7488

± 0.0000
0.8132

± 0.0000
0.5333

± 0.0000
0.7163

± 0.0000
0.5497

± 0.0000
0.5830

± 0.0000
0.6310

± 0.0000

BSLFS [26]
0.9812

± 0.0000
0.5941

± 0.0000
0.1637

± 0.0300
0.6471

± 0.0000
0.5735

± 0.0000
0.8621

± 0.0000
0.8590

± 0.0000
0.2167

± 0.0000
0.8269

± 0.0000
0.2632

± 0.0000
0.6063

± 0.0000
0.5570

± 0.0000

GOD-cPSO [31]
1.0000

± 0.0000
0.6587

± 0.0469
0.6520

± 0.0076
0.5627

± 0.0095
0.5048

± 0.0002
0.8670

± 0.0286
0.8230

± 0.0057
0.4800

± 0.0233
0.5519

± 0.0527
0.4485

± 0.0347
0.5363

± 0.0015
0.5083

± 0.0007

SPDFS [32]
1.0000

± 0.0000
0.8083

± 0.0328
0.6167

± 0.0191
0.5794

± 0.0117
0.5681

± 0.0126
0.7438

± 0.0040
0.7588

± 0.0169
0.5150

± 0.0053
0.5438

± 0.0235
0.4959

± 0.0281
0.6188

± 0.0087
0.5496

± 0.0140

ISC (OURS)
1.0000

± 0.0000
0.8911

± 0.0000
0.7235

± 0.0236
0.7255

± 0.0000
0.9905

± 0.0000
0.8966

± 0.0000
0.9174

± 0.0000
0.6000

± 0.0000
0.9663

± 0.0000
0.6082

± 0.0000
0.6545

± 0.0000
0.6530

± 0.0000

TABLE III: The average NMI results and standard deviation of our method and other methods. Red, green, and blue texts
indicate the best, the second-best results, and the third-best results, respectively.

Methods JAFFE HEART ORL PROSTATE BASEHOOK LUNG COIL20 NCI9 SONAR TOX171 MAGIC AMAZON

KSS [18]
0.8399

± 0.0000
0.0296

± 0.0000
0.6910

± 0.0066
0.0453

± 0.0000
0.1452

± 0.0000
0.3454

± 0.0000
0.9665

± 0.0000
0.5305

± 0.0086
0.0076

± 0.0000
0.1740

± 0.0000
0.0048

± 0.0000
0.0195

± 0.0000

TSC [36]
0.9731

± 0.0000
0.1739

± 0.0000
0.8109

± 0.0057
0.0380

± 0.0000
0.7042

± 0.0000
0.7000

± 0.0000
0.8981

± 0.0000
0.5241

± 0.0198
0.0098

± 0.0000
0.2559

± 0.0000
0.0099

± 0.0000
0.0655

± 0.0000

GSC [22]
0.9917

± 0.0000
0.1875

± 0.0093
0.8130

± 0.0058
0.0156

± 0.0147
0.0239

± 0.0011
0.5240

± 0.0000
0.9084

± 0.0111
0.3897

± 0.0411
0.0061

± 0.0193
0.1764

± 0.0018
0.0048

± 0.0000
0.0608

± 0.0183

LRR [19]
0.9651

± 0.0000
0.1890

± 0.0000
0.8650

± 0.0057
0.0191

± 0.0000
0.4440

± 0.0000
0.5643

± 0.0036
0.7836

± 0.0037
0.4349

± 0.0295
0.0086

± 0.0000
0.2105

± 0.0000
0.0085

± 0.0000
0.5520

± 0.0000

LRR-SSC [20]
0.9832

± 0.0000
0.1696

± 0.0000
0.8485

± 0.0086
0.0473

± 0.0000
0.7175

± 0.0000
0.5909

± 0.0000
0.8671

± 0.0000
0.5094

± 0.0353
0.0691

± 0.0000
0.2342

± 0.0000
0.0214

± 0.0000
0.0484

± 0.0000

SSC-OMP [35]
0.8383

± 0.0122
0.0358

± 0.0000
0.8150

± 0.0120
0.0226

± 0.0000
0.7812

± 0.0000
0.5046

± 0.0016
0.5877

± 0.0118
0.5040

± 0.0235
0.0132

± 0.0000
0.0991

± 0.0000
0.0029

± 0.0000
0.0008

± 0.0000

RWSC [4]
0.9582

± 0.0351
0.3386

± 0.0000
0.7632

± 0.0153
0.0441

± 0.0109
0.0080

± 0.0102
0.2647

± 0.0138
0.6832

± 0.0277
0.3096

± 0.0453
0.1011

± 0.0000
0.0607

± 0.0248
0.0795

± 0.0000
0.0172

± 0.0000

IDC [34]
0.8349

± 0.0945
0.0000

± 0.0000
0.6827

± 0.0229
0.0699

± 0.0068
0.0388

± 0.0468
0.2584

± 0.2703
0.7446

± 0.0245
0.3119

± 0.0426
0.0056

± 0.0177
0.2777

± 0.0726
0.0100

± 0.0000
0.0044

± 0.0059

EXKMEANS [40]
0.88445
± 0.0785

0.0695
± 0.0434

0.7357
± 0.0188

0.0183
± 0.0000

0.0252
± 0.0080

0.5576
± 0.0799

0.7344
± 0.0189

0.3912
± 0.0467

0.0179
± 0.0113

0.1551
± 0.0390

0.0279
± 0.0042

0.0446
± 0.0419

SHALLOW [42]
0.9500

± 0.0080
0.0603

± 0.0000
0.7014

± 0.0140
0.0185

± 0.0000
0.0196

± 0.0000
0.6328

± 0.0380
0.6854

± 0.0095
0.3886

± 0.0269
0.0068

± 0.0000
0.1262

± 0.0000
0.0167

± 0.0000
0.0887

± 0.0288

FSDK [27]
0.9731

± 0.0000
0.0458

± 0.0000
0.8251

± 0.0000
0.1430

± 0.0000
0.0035

± 0.0000
0.6994

± 0.0000
0.9414

± 0.0000
0.5489

± 0.0000
0.0268

± 0.0000
0.1393

± 0.0000
0.0076

± 0.0000
0.0005

± 0.0000

BSFS [25]
0.9615

± 0.0000
0.1739

± 0.0000
0.7732

± 0.0000
0.0403

± 0.0000
0.0223

± 0.0000
0.5007

± 0.0000
0.8754

± 0.0035
0.5094

± 0.0000
0.1831

± 0.0000
0.3206

± 0.0000
0.0219

± 0.0000
0.0501

± 0.0000

BSLFS [26]
0.9699

± 0.0000
0.0256

± 0.0000
0.2040

± 0.0441
0.0688

± 0.0000
0.0158

± 0.0000
0.5211

± 0.0000
0.8987

± 0.0000
0.0491

± 0.0000
0.3534

± 0.0000
0.0000

± 0.0000
0.0060

± 0.0000
0.0095

± 0.0000

GOD-cPSO [31]
1.0000

± 0.0000
0.1264

± 0.0549
0.8010

± 0.0068
0.0116

± 0.0041
0.0036

± 0.0002
0.7036

± 0.0636
0.9064

± 0.0074
0.5061

± 0.0201
0.0285

± 0.0151
0.2645

± 0.0606
0.0009

± 0.0004
0.0002

± 0.0000

SPDFS [32]
1.0000

± 0.0000
0.2996

± 0.0684
0.7866

± 0.0156
0.0197

± 0.0058
0.0212

± 0.0059
0.3122

± 0.0033
0.8296

± 0.0120
0.5368

± 0.0022
0.0160

± 0.0131
0.3314

± 0.0308
0.0133

± 0.0024
0.0082

± 0.0043

ISC (OURS)
1.0000

± 0.0000
0.5123

± 0.0000
0.8507

± 0.0128
0.1538

± 0.0000
0.9225

± 0.0000
0.7145

± 0.0000
0.9509

± 0.0000
0.6047

± 0.0000
0.8188

± 0.0000
0.3189

± 0.0000
0.0270

± 0.0000
0.0687

± 0.0000
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(a) Common feature regions selected across
different samples are shown by red rectan-
gles.

(b) The
selected
features of
this cluster.

Fig. 5: An example of selected features on the COIL20 dataset.
(a) Common feature regions selected across different samples
are shown by red rectangles. (b) The feature regions selected
for a cluster are shown in red rectangles.

means for different samples, the features that work should also
be different. Moreover, for each sample, our method tends to
select contour points in the images as discriminative features.
This is in line with human vision, because humans also often
recognize different objects by their contours.

To answer Question 2, from Fig. 4(a), we can see that, for
different samples in the same cluster (i.e., the images in the
same row), we often select similar features. These common
features are the features related to the cluster. To show it
more clearly, we show the selected features for a cluster in
Fig. 4(b). In more detail, we select features according to the
matrix WY. Intuitively, considering the j-th cluster, i.e., the
j-th column of WY, the larger the i-th element is, the more
important the i-th feature is to the j-th cluster. Based on this
observation, we plot the most important 100 features for each
cluster, and show the results in Fig. 4(b). The selected features
for each cluster are shown in red. We can see that, for images
whose contour information remains consistent among different
samples in one cluster (e.g., the first, second, and third rows
in Fig. 4(b)), the features selected for their corresponding
subspace are consistent with those of the individual samples
within that subspace. For images that have large variations
of contours among different samples in one cluster (e.g., the
fourth and fifth rows in Fig. 4(b)), our method tries to select
the common discriminative features. For example, we show
the cluster of the lucky cat in COIL 20 as a case study in
Fig. 5. Fig. 5(a) shows the features selected for each sample
in the cluster of lucky cat, and Fig. 5 (b) shows the selected
features for this cluster. We highlight the commonly selected
features among different samples with the red blocks in Fig.
5(a). These features are also selected for this cluster as shown
in Fig. 5(b).

Furthermore, Fig. 6 provides a comparative analysis against
current state-of-the-art interpretable clustering methods and
feature selection-based clustering methods. The number of
selected features is gradually increased from 20 to 200. We
find that our approach identifies more interpretable features
and focuses more effectively on discriminative regions of
the samples. Notice that the EXKMEANS [40], SHALLOW

[42], and IDC [34] methods select fewer than 200 features
due to inherent limitations of the algorithm itself. Unlike
feature selection methods that identify identical features for
all samples, our proposed method adaptively selects sample-
specific features, which is more helpful for interoperability.

Besides, we show another example on the AMAZON data
set. AMAZON is a text data set, containing the reviews on
the AMAZON website. The data set has two classes: the
positive reviews and the negative reviews. The features of the
data set are the words. In Table IV, we show 5 reviews of
each cluster. In each review, we highlight the top one selected
word according to our feature indicator matrix W with red
color. From Table IV, we can see that the selected words, e.g.
”great”, ”waste”, and ”fails”, can well represent the attitude
of the reviews. Therefore, these selected words or features can
well explain why we put some reviews into a cluster.

E. Ablation Study

In this section, we conduct some ablation studies to show
the effects of our new proposed regularized terms ∥W∥G
and ∥WY∥G. In more detail, we compare our method with
three degenerated versions of ISC. The first is the one without
both the ∥W∥G and ∥WY∥G. The second one only removes
∥W∥G and the third one only removes ∥WY∥G. The results
are shown in Table V.

From Table V, we find that ∥WY∥G is more important
than ∥W∥G. This is because both ∥WY∥G and ∥W∥G
can achieve row-wise sparsity in W, but ∥WY∥G addi-
tionally enforces feature consistency within cluster, resulting
in superior performance compared to ∥W∥G. It is the term
∥WY∥G that constructs the relations between the selected
features and clusters and applies the interpretability (i.e., W)
to guide the clustering. Although the motivation of the term is
interpretability, it can also improve the clustering performance,
demonstrating that improving the clustering performance with
interpretability is feasible. ∥W∥G is to impose the group
sparsity on W, which is used to answer the first question
of interpretability. This term does not involve either the data
matrix X or the clustering result Y. It means that this term
is just for interpretability, but not for clustering. W does not
control the cluster structure directly, and if we remove it, the
clustering performance will be affected slightly as shown in
Table V.

F. Efficiency Results

Fig. 7 shows the convergence curves of ISC on COIL20,
JAFFE, NCI9, and ORL data sets. The results on other data
sets are similar. From Fig. 7, we find that ISC converges fast.
It often converges within ten iterations.

Fig. 8 shows the running time of ISC compared with other
clustering methods on all data sets. Since some methods are
very time-consuming, we report the logarithm of the time in
seconds for better comparison. From Fig. 8, we can see that
our method is comparable to the mainstream methods, and
even faster than some methods, such as IDC.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2026.3653776

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on January 21,2026 at 04:41:16 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

BSFS

FSDK

BLSFS

GOD-cPSO

SPDFS

EXKMEANS

SHALLOW

IDC

OURS

Fig. 6: Comparison of Interpretability with Different Methods. The green dots represent the features selected by different
methods for clustering.
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Fig. 7: Convergence curves on (a) COIL20, (b) JAFFE, (c)
NCI9, (d) ORL.

G. Parameter Study

In this section, we show the effects of the hyperparameters
λ and γ. Fig. 9 presents the ACC and NMI results on JAFFE,
NCI9, PROSTATE, and COIL20 data sets. The results on other
data sets are similar. The results demonstrate that both λ and γ
can achieve stable performance across wide parameter ranges,
indicating the method’s low sensitivity to parameter selection.
From the parameter sensitivity, we recommend selecting the
parameter γ from the range {1, 10, 100} and λ from the range
{106, 107, 108} for a new data set, which can often achieve a
relatively good performance.

VI. CONCLUSION

In this paper, we proposed a novel Interpretable Subspace
Clustering method. Compared to existing methods, ISC differs
in two key aspects. On one hand, unlike other subspace
clustering methods, which focus on improving clustering per-
formance by learning structural information from data, our
approach primarily focuses on enhancing the interpretability
of clustering and improving the clustering performance with
interpretability. On the other hand, in contrast to conventional
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(a) JAFFE.

0 8 16
Methods

-5

0

5

Lo
g 

of
 th

e 
tim

e 
(in

 S
ec

.)

KSS
GSC
LRR
LRRSSC
OMP
TSC
RWSC
SHALLOW
EXKMEANS
BLSFS
FSDK
BSFS
GOD-cPSO
SPDFS
IDC
OURS

(b) HEART.
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(c) ORL.
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(d) PROSTATE.
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(e) BASEHOOK.
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(f) LUNG.
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(g) COIL20.
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(h) NCI9.
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(i) SONAR.
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(j) TOX171.
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(k) MAGIC.
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(l) AMAZON.

Fig. 8: Running time of all methods on all data sets.

(a) COIL20. (b) JAFFE. (c) NCI9. (d) ORL.

(e) COIL20. (f) JAFFE. (g) NCI9. (h) ORL.

Fig. 9: Clustering results on COIL20, JAFFE, NCI9 and ORL with respect to different values of λ and γ. (a) ACC on COIL20.
(b) ACC on JAFFE. (c) ACC on NCI9. (d) ACC on ORL. (e) NMI on COIL20. (f) NMI on JAFFE. (g) NMI on NCI9. (h)
NMI on ORL.
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TABLE IV: An example of selected features on AMAZON data set. AMAZON data set is a text data set of reviews on
AMAZON website. The features of AMAZON are words. The data set has two classes: the positive reviews and the negative
reviews. We show 5 reviews in each cluster. In each review, we select the top one feature (i.e., the top one word) according
to our W, which is shown in red color.

POSITIVE NEGATIVE

This phone works great. It was a waste of my money.

Has been working great. don’t waste your money.

I would definitely recommend the Jabra BT250v for
those who are looking for comfort, clarity and a
great price!

Unfortunately the ability to actually know you are
receiving a call is a rather important feature and this
phone is pitiful in that respect.

The only good thing was that it fits comfortably on
small ears.

Unfortunately it’s easy to accidentally activate them
with the gentle-touch buttons if you accidentally
touch the phone to your face while listening.

I was very impressed with the price of the cases. This phone tries very hard to do everything but fails
at it’s very ability to be a phone.

TABLE V: Ablation Study.

Methods Metric JAFFE HEART ORL PROSTATE BASEHOOK LUNG COIL20 NCI9 SONAR TOX171 MAGIC AMAZON

W.O.

||W||G + ∥WY∥G

ACC

NMI

1.0000

1.0000

0.7162

0.1398

0.7075

0.8517

0.5686

0.0137

0.6016

0.0304

0.8670

0.6662

0.9201

0.9531

0.5500

0.5584

0.5712

0.0121

0.444

0.2185

0.5873

0.0255

0.5200

0.0048

W.O.

||W||G

ACC

NMI

1.0000

1.0000

0.8911

0.5123

0.7040

0.8416

0.7157

0.1411

0.9754

0.8471

0.8966

0.7145

0.9174

0.9509

0.6000

0.6047

0.9663

0.8188

0.5965

0.3474

0.6736

0.0395

0.6380

0.0557

W.O.

||WY||G

ACC

NMI

1.0000

1.0000

0.7162

0.1398

0.6983

0.8386

0.5098

0.0001

0.6011

0.0327

0.8818

0.6639

0.9201

0.9531

0.6000

0.6047

0.6346

0.0517

0.4845

0.2778

0.6615

0.0210

0.5280

0.0092

ISC
ACC

NMI

1.0000

1.0000

0.8911

0.5123

0.7235

0.8507

0.7255

0.1538

0.9905

0.9225

0.8966

0.7145

0.9174

0.9509

0.6000

0.6047

0.9663

0.8188

0.6082

0.3189

0.6545

0.0270

0.6530

0.0687

feature selection methods that uniformly select the same
discriminative features for all samples, our method adopts a
sample-specific feature selection strategy. By identifying and
presenting the most important features for each sample and
each subspace with our new proposed regularized terms, our
model achieved interpretable results. Furthermore, extensive
experiments on benchmark data sets by comparing with state-
of-the-art clustering methods shew our superiority in inter-
pretability and clustering performance.

Although our ISC can achieve better clustering performance
and interpretability, it has a relatively high computational
complexity. In the future, we will study the speedup strategy
to tackle the scalability issue.
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