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Fair Clustering Ensemble With Equal
Cluster Capacity

Peng Zhou , Rongwen Li, Zhaolong Ling , Liang Du , and Xinwang Liu

Abstract—Clustering ensemble has been widely studied in data
mining and machine learning. However, the existing clustering
ensemble methods do not pay attention to fairness, which is impor-
tant in real-world applications, especially in applications involving
humans. To address this issue, this paper proposes a novel fair
clustering ensemble method, which takes multiple base clustering
results as inputs and learns a fair consensus clustering result. When
designing the algorithm, we observe that one of the widely used defi-
nitions of fairness may cause a cluster imbalance problem. To tackle
this problem, we give a new definition of fairness that can simulta-
neously characterize fairness and cluster capacity equality. Based
on this new definition, we design an extremely simple yet effective
regularized term to achieve fairness and cluster capacity equality.
We plug this regularized term into our clustering ensemble frame-
work, finally leading to our new fair clustering ensemble method.
The extensive experiments show that, compared with the state-
of-the-art clustering ensemble methods, our method can not only
achieve a comparable or even better clustering performance, but
also obtain a much fairer and better capacity equality result, which
well demonstrates the effectiveness and superiority of our method.

Index Terms—Clustering ensemble, clustering with equal
capacity, fairness.

I. INTRODUCTION

C LUSTERING is a fundamental unsupervised machine
learning task and has been widely used in real-world appli-

cations such as social networks [1] and crime analysis [2]. Since
clustering is an unsupervised task, most clustering methods may
suffer from stableness and robustness problems [3]. To address
these issues, clustering ensemble is proposed [4]. Clustering
ensemble aims to integrate multiple weak base clustering results
into a consensus one to achieve a more robust or stable clustering
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result. In recent years, due to its robustness and stableness,
clustering ensemble methods have been widely studied [5], [6],
[7], [8], [9], [10].

As introduced above, since clustering is often used in real-
world applications involving humans such as social networks
and crime analysis, we should guarantee that the clustering result
is fair enough to help humans to make decisions. Mainstream
fairness has two forms: group-level fairness which focuses on the
fairness of some specific groups, and individual-level fairness
which focuses on the fairness of every individual [11]. In this
paper, we focus on group-level fairness. In some real-world
applications, some specific groups should be protected, such
as females, which are called protected groups. The clustering
with group-level fairness wishes that there are no clusters that
have a disproportionately small number of instances in some
specific protected groups [12], [13]. Although the conventional
clustering ensemble methods can improve the clustering perfor-
mance to some extent, none of them consider the fairness of the
consensus result, and thus may obtain unfair consensus results if
the base clustering results are unfair. Notice that there exist some
fair clustering methods, such as fair k-means [14], fair spectral
clustering [15], and fair deep clustering [16]. Fair clustering
ensemble has some essential differences from fair clustering.
Firstly, the conventional fair clustering methods are designed
for some particular clustering methods such as k-means and
spectral clustering, but fair clustering ensemble does not care
how to generate the base results, and only takes the base results
(which are often unfair) as inputs and obtain a fair consensus
result. Therefore, the fair clustering ensemble is a more general
post-processing framework that can follow any fair or unfair
clustering methods. Secondly, the fair clustering ensemble does
not need to access the original features or attributes of data,
which can protect the privacy of the data [6].

To address the fairness problem in clustering ensemble, in this
paper, we propose a novel group-level fair clustering ensemble
method. Our method is based on a widely-used definition of
group-level fairness [17], which makes the partition not biased
towards or against some specific groups in the population.
However, we observe that this definition of fairness ignores
the capacity of each cluster, and may cause some extremely
large or small clusters. For example, the results will be very
fair if we put most or all instances into one cluster, according
to their definition. Fig. 1 shows a simple example of clustering
of humans. In this example, we have 20 people (10 males and
10 females) who are denoted as triangles and squares and we
wish to partition them into two clusters. We have two protected
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Fig. 1. A simple example to show the fairness and cluster capacity equality.
There are two protected groups, i.e., males and females. The triangles denote the
males and the squares denote the females. (a) and (b) show two clustering results.
Each result divides the individuals into two clusters, where one is denoted by
the yellow color and the other is denoted by the blue color. The result in (a) is
fair but imbalanced and the result in (b) is fair and has an equal cluster capacity.

groups, i.e., male and female, where the triangles denote the
males and the squares denote the females. Fig. 1(a) shows a
clustering result, where the yellow color denotes one cluster
and the blue color denotes the other cluster. According to the
fairness definition in [17], this result is perfectly fair. However,
the result is imbalanced because most people are divided into
the yellow cluster. Fig. 1(b) shows another clustering result,
which is also fair but has an equal cluster capacity. If we do not
consider the cluster capacity explicitly, although conventional
fair clustering methods have some objectives w.r.t. fairness and
accuracy, they may still put most or all instances into one cluster.
We take a Reverse MNIST [18] data set in our experiments as an
example. Considering a state-of-the-art fair clustering method
SFD [19], it achieves good fairness, i.e., 0.709 on Bal and 0.979
on MNCE (Bal and MNCE are metrics for fairness, and the
larger the fairer). However, we observe that SFD puts most data
into one cluster, which obtains low values on the cluster capacity
equality metrics, i.e., 0.029 on CCE and 0.558 on NE (CCE and
NE are metrics for cluster capacity equality, and the larger the
better). More experimental details are shown in Section IV-D. It
shows that although SFD can achieve good fairness since it does
not consider the cluster capacity explicitly, it may cause results
with inequality cluster capacity.

Besides, in many real-world applications, clusters with equal
capacity are often required. For example, when a school divides
the students into several classes, there should be nearly the same
number of students in each class. Another example is the energy
load balance of wireless sensor networks. The inequal capacity
clusters may cause energy consumption and shorten the network
lifetime [20]. Clustering with equal capacity can also avoid
extremely large or small clusters that are often undesirable in
clustering tasks. Moreover, for the consideration of fairness,
equal capacity is often still helpful. Chen et al. provided an
example of resource allocation in [21] to show the effects of
equal capacity on fairness. In this example, there are three places
A, B, and C, where each place has almost the same population.
Places B and C are two dense urban centers close to each other,

Fig. 2. An example of hospital location for three places A, B, and C. Places
B and C are two dense urban centers close to each other, whose radius is both
small. Place A is a big suburb far away from B and C, whose radius is large.
We want to construct three hospitals for them. (a) shows the result of traditional
k-means, which is imbalanced and unfair. (b) shows the balanced and fair result.
In each result, the points with the same color form a cluster and own a hospital.

whose radius is both small. Place A is a big suburb far away
from B and C, whose radius is large. Now we hope to build
three hospitals in these places, and thus we need to partition the
people in these places into three clusters. If we use the k-means
clustering, since the radius of A is much larger than B and C and
k-means tries to minimize the overall distances between each
person and his/her cluster center, k-means is prone to divide
A into two clusters and merge B and C to the same cluster,
which is shown as Fig. 2(a). Then, we will build two hospitals in
place A and let the people in B and C share one hospital, which
seems unfair because the hospital in places B and C must serve
four times as many people as the hospitals in A (notice that the
population in A, B and C is almost the same). If we partition them
into equal capacity clusters, which means we build one hospital
in each of places A, B, and C, respectively, we can obtain a fairer
result. The result is shown in Fig. 2(b).

To address this equal capacity issue, we propose a new def-
inition of fairness considering the capacity of clusters. Based
on this definition, we propose an extremely simple yet effective
regularized term to simultaneously achieve fairness and equal
cluster capacity. Then, we plug this fairness and equal cluster
capacity regularized term into a clustering ensemble framework,
leading to our Fair Clustering Ensemble (FCE) method. At
last, we provide an effective iterative algorithm to optimize the
introduced objective function to obtain the final clustering result.
The experimental results on some benchmark data sets show
that our method can achieve a fairer and more capacity equal
clustering result than the state-of-the-art clustering ensemble
methods. It well demonstrates the effectiveness of our fair clus-
tering ensemble method.

It is worth clarifying that clustering may have different goals,
such as fairness, accuracy, and cluster capacity equality. These
goals may be consistent or at odds with each other. In this
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paper, we observe that fairness and cluster capacity equality
can be consistent with each other and we design a regularized
term, which can simultaneously improve fairness and cluster
capacity equality. However, the accuracy may be at odds with
others. Notice that, when measuring the accuracy, we often use
external indicators, which need ground truth labels. In practice,
the ground truth itself may be unfair or imbalanced, and thus
the accuracy may be at odds with the fairness or the cluster
capacity equality. If the applications involve humans which
needs fairness, and we also want to partition the data into some
groups with similar sizes, we can use the proposed method. If
accuracy is at odds with fairness, we should pay more attention
to fairness, or we may cause some bad social effects, such as
sexism or other discrimination. If the application does not need
fairness, and we just want to partition the data into some groups
with similar sizes, we can also use the proposed method, which
will be discussed in Section III-D. If we need neither fairness
nor cluster capacity equality, we can use the traditional methods
instead of the proposed one.

The main contributions of this paper are summarized as:
� To the best of our knowledge, this is the first work of

clustering ensemble considering both the fairness and equal
cluster capacity.

� We provide a new fairness definition by fully considering
the fairness and equal cluster capacity.

� We design a novel, simple, and effective regularized term
that can achieve fairness and equal cluster capacity si-
multaneously, and plug it into our clustering ensemble
framework to form a new fair clustering ensemble method.

� The experimental results demonstrate the effectiveness of
our method on fairness, equal cluster capacity, and accu-
racy.

II. RELATED WORK AND PRELIMINARIES

In this section, we briefly review some related works and
preliminaries about clustering ensemble, fair clustering, and
clustering with equal capacity.

A. Clustering Ensemble

Clustering ensemble was first proposed in [4], aiming to
integrate multiple weak base clustering results to obtain a more
robust consensus clustering result. Given a data set with n
instances X = {x1, . . . ,xn}, we first generate m base cluster-
ing results C1, . . . , Cm, where the j-th base result Cj contains
c clusters πj

1, . . . , π
j
c and X =

⋃c
i=1 π

j
i . Clustering ensemble

aims to learn a consensus partition C∗ by ensembling the m base
clusterings C1, . . . , Cm.

One kind of mainstream clustering ensemble method is based
on the co-association (CA) matrix, which is the matrix contain-
ing the number of times two data appear in the same cluster in
multiple basic clusterings [22], [23], [24], [25], [26], [27]. For
example, Tao et al. learned the robust representation from the CA
matrix through the low-rank constraint to remove noises [26];
Jia et al. generated an enhanced CA matrix by propagating the
high-reliability information in the CA matrix to achieve better
clustering performance [27]. Because the CA matrix can also

be viewed as an adjacency matrix or a similarity matrix, there
are also many graph-based methods [28], [29], [30], [31], [32],
[33]. For example, Liu et al. applied spectral clustering on the
CA matrix and proved its theoretical equivalence with weighted
k-means clustering [31]; Zhou et al. proposed a graph-based
tri-level robust clustering ensemble method [32]; Zhou et al.
applied the self-paced learning to learn a more robust CA ma-
trix for ensemble [34]; Chen et al. refined multiple connection
matrices through substantial rank recovery and graph tensor
learning [33]; Zhou et al. proposed a clustering ensemble method
on a multiplex graph [35].

Although clustering ensemble methods based on the CA
matrix or graph have shown good performance, the high space
and time complexity hinders their applications on large-scale
data sets. Therefore, many methods attempt to ensemble base
clustering using other data structures [6], [36], [37], [38], [39],
[40], [41]. For example, Bai et al. developed an information
theory framework to maintain the consistency of basic cluster-
ing results [39]; Zhou et al. proposed an alignment method to
ensemble multiple k-means [42]; Huang et al. proposed a clus-
tering ensemble method based on sparse graph representation
and probabilistic trajectory analysis [40]; Li et al. developed a
clustering ensemble method based on sample stability [6]; Zhou
et al. proposed a partial clustering ensemble method that si-
multaneously filled in missing values and ensembled them [41];
Zheng et al. obtained a more reliable clustering indicator matrix
by weighting on clusters and performed non-negative matrix
factorization [43].

Previous clustering ensemble methods focus on improving
clustering performance, whereas ignoring the fairness of the
result. In this paper, we develop a new fair clustering ensemble
method that can improve not only the clustering performance
but also the fairness.

B. Fair Clustering

In recent years, the fairness of clustering has attracted increas-
ingly more attention [44]. Chierichetti et al. provided the first
definition of cluster fairness and proposed a fair decomposition
method by first decomposing data into small subsets with fair
properties, and then running off-the-shelf clustering on these
subsets [12]. Then, Rösner et al. proposed a fair clustering
method that can handle more than two protected groups [45].
Backurs et al. proposed a linear-time fair decomposition algo-
rithm for clustering [19]. Kleindessner et al. extended spectral
clustering by recasting the fairness as a linear constraint [15].

There are several definitions for fairness in existing works.
One of the most widely used is proposed in [17], which is shown
as follows:

Definition 1. (Fairness) [17]: Let X ∈ Rn×d denote n in-
stances with d attributes, which are partitioned into c disjoint
clusters C = {π1, . . . , πc}. Given T disjoint protected groups
G1,G2, . . . ,GT , let ηi =

|Gi|
n and ηi(k) =

|πk∩Gi|
|πk | denote the pro-

portion of groupGi in the whole data and clusterπk, respectively.
The fairness of πk can be defined as:

fairness (πk) = min

(
ηi

ηi(k)
,
ηi(k)

ηi

)
, ∀i ∈ {1, . . . T}
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The fairness of the whole clustering result C is defined as:

fairness(C) = min
k∈{1,...c}

fairness(πk) (1)

Remark 1: fairness(C) ∈ [0, 1]. The larger fairness(C) is,
the fairer the clustering result is. Therefore, fairness(C) = 1
means the results are perfectly fair. Definition 1 shows that a
fair clustering result requires that the proportion of Gi in each
cluster (i.e., ηi(k)) should be close to the proportion of Gi in the
whole data (i.e., ηi).

Based on this definition, several non-deep fair clustering
methods and deep fair clustering methods have been proposed.
For non-deep fair clustering methods, Ziko et al. proposed a vari-
ational fair clustering framework by combining fairness terms
with three different clustering objectives [46]; Chen et al. defined
a notion of proportionally fair clustering where all possible
groups of reasonably large size are entitled to choose a center for
themselves [21]; Mohsen et al. proposed adding weights to all
sample points during the clustering process to achieve fairness
in clustering [47]; Li et al. proposed a reweighting method to
achieve the group-level fairness [48]; Ghadiri et al. presented a
fair k-means method to choose cluster centers providing similar
costs for different groups [49]; Jessica et al. used antidote data
in clustering to improve group level fairness [50].

For deep fair clustering methods, Wang et al. embedded this
fairness into deep clustering by learning a differentiated and
fair clustering allocation function [51]; Chhabra et al. provided
a robust deep fair clustering method by considering the fair-
ness attack [52]; Zeng et al. embedded fairness constraints
into deep clustering by maximizing and minimizing mutual
information [16].

Although these works have demonstrated promising perfor-
mance on fairness, they are designed for some specific clustering
methods, which are not general enough. Moreover, these meth-
ods need to access all the original features of data, which may
cause privacy leakage. To address these problems, this paper
focuses on the fair clustering ensemble, which is one of the
post-processings for fair clustering.

C. Clustering With Equal Capacity

To avoid extremely large or small clusters, or to handle the
data whose original distribution is balanced, sometimes we
hope that clusters should contain similar numbers of instances.
Therefore, some clustering algorithms with equal capacity have
been proposed, which can be roughly divided into two types:
hard-equality and soft-equality methods. Notice that, in previous
literature, clustering with equal capacity is often called “balance
clustering”. However, the term “balance” is also often used in
fairness clustering to refer the fairness. To avoid confusion,
in this paper, we use the term “clustering with equal capac-
ity” to refer to the “balance clustering” used in the previous
literature.

Hard-equality methods hope that the number of instances in
each cluster is strictly the same. To achieve this, Bradley et al.
and Malinen et al. considered imposing some constraints on the
k-means clustering so that they can strictly control the size of the
clusters in [53] and [54], respectively. Then, Costa et al. designed

the equal capacity constraint for the minimum sum-of-squares
clustering [55].

The soft-equality methods only apply the equal capacity con-
straint as a penalty to the clustering objective function to obtain
less strict results compared with the hard-equality methods.
For example, Banerjee et al. designed effective equal cluster
capacity regularization terms and plugged them into a clustering
method [56], [57]. Liu et al. designed a lasso-liked term to make
the clustering results of least square regression achieve equal
cluster capacity [20]. Liu et al. used the variance of cluster size as
a penalty for clustering and adopted a fast optimization process
to handle large-scale data sets [58]. Zhou et al. proposed new
k-means and spectral clustering methods with an equal capac-
ity regularized term and applied them to the feature selection
task [59], [60].

Clustering with equal cluster capacity can prevent discrimi-
nation against minority groups and thus is helpful to fair clus-
tering [21]. Therefore, we also plug this property into our fair
clustering ensemble framework.

III. CLUSTERING ENSEMBLE WITH FAIRNESS

Most clustering methods cannot guarantee the fairness of
the clustering result. To address this issue, clustering ensemble
can be used as a post-processing to obtain a fair consensus
clustering result from multiple unfair base clustering results,
leading to a fair clustering ensemble. The problem setting of the
fair clustering ensemble is as follows:

Problem Setting (Fair Clustering Ensemble): Given m base
clustering results C1, . . . , Cm of n instances, and T protected
groups G1, . . . ,GT , fair clustering ensemble aims to obtain a
consensus clustering result C∗ which is fair w.r.t. the protected
groups in G1, . . . ,GT .

Remark 2: The base clustering results C1, . . . , Cm can be
generated by any clustering methods which are no matter fair
or unfair methods. Since the fair clustering ensemble does not
require the fairness of the base clustering methods and base
results, it is a more general framework to achieve fairness
compared to the fair clustering methods.

Remark 3: The inputs of the fair clustering ensemble are the
multiple base results C1, . . . , Cm together with several protected
groups G1, . . . ,GT . It does not need to access any original
features of data, and thus it can protect the privacy of data
compared to fair clustering methods. Notice that to obtain the
base results C1, . . . , Cm need the original features, for example,
we run k-means on the original features to obtain the base
results. However, the clustering ensemble does not care about
this process and does not care about how to obtain the base
results, either. Considering some popular scenarios of clustering
ensemble, which are the distributed computing scenario or the
federated learning scenario, the local clients can run off-the-shelf
clustering methods on their private data locally to generate the
base results. Then, the local clients upload their base results
to the cloud server without their private data, and the cloud
server runs the clustering ensemble method on these base results
without accessing the private data. In these scenarios, clustering
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ensemble can indeed generate a consensus result which protects
the privacy of data.

A. Fairness Regularize

In this paper, we use Definition 1 to measure the fairness of the
clustering result. However, we observe that although Definition 1
can well characterize the fairness, it may cause another problem
of equal cluster capacity.

Considering an extreme case if we put all instances into one
cluster in C, according to Definition 1, we have fairness(C) =
1, which means it easily achieves the perfect fairness. Therefore,
if we directly use Definition 1 as the objective, we may obtain an
inequal capacity clustering result. However, according to many
previous works [54], [55], [60], [61], [62], in many real-world
applications, we wish that the numbers of data in each cluster are
about the same, and should not have the extremely large or small
clusters. Hence, besides fairness, the equal cluster capacity also
needs to be considered sometimes in practice.

To measure the equality of cluster capacity, we also need
a metric of it just like fairness. Similar to Definition 1, we
provide the following definition of cluster capacity equality of
a clustering result C = {π1, . . . , πc}:

Definition 2. (Cluster Capacity Equality): Let |πk| indicates
the number of samples in cluster πk. The Cluster Capacity
Equality (CCE) of C can be defined as:

CCE (C) = min

( |πi|
|πj |

)
, ∀i, j ∈ {1, . . . , c}. (2)

Remark 4: CCE(C) ∈ [0, 1]. The larger CCE(C) is, the
more equal the cluster capacity is. It is easy to verify that when
|πi| = |πj | = n

c , it is the most equal result.
With this definition of cluster capacity equality, we can pro-

vide a new metric to simultaneously measure the fairness and
cluster capacity equality of a clustering result C = {π1, . . . , πc}.
Suppose we have T protected groups G1, . . . ,GT . Then we give
the following definition of fairness_CCE:

Definition 3: (fairness_CCE) Let γi(k) =
|πk∩Gi|
|Gi| be the pro-

portion of cluster πk in the group Gi. The fairnesss_CCE of πk

can be defined as:

fairnesss_CCE (πk) = min
i∈{1,...T }

(
cγi(k),

1

cγi(k)

)
.

The fairness_CCE of a clustering result C is defined as:

fairness_CCE(C) = min
k∈{1,...c}

fairness_CCE(πk)

Remark 5: fairness_balance(C) ∈ (0, 1]. The larger
fairness_balance(C) is, the fairer and more cluster capacity
equal the clustering result C is.

Remark 6: Definition 3 is following the classical definition
of fairness, i.e., Definition 1. Strictly speaking, they are more
like fairness metrics. If we want to define what is “fair” and
what is “unfair” explicitly, we should give a threshold δ. If
fairness_CCE ≥ δ, we can tell that the result is fair.

Remark 7: Here we show why fairness_CCE(C) can be
used to measure the fairness and cluster capacity equality. It
is easy to verify that the closer cγi(k) is to 1, the larger

fairness_CCE(πk) is. Take a closer look at cγi(k):

cγi(k) =
c|πk ∩ Gi|

|Gi| (3)

If cγi(k) is close to 1, which means c|πk∩Gi|
|Gi| ≈ 1, and further we

obtain

|πk ∩ Gi| ≈ |Gi|
c

(4)

Summing the left-hand side and right-hand side of (4) w.r.t. i,
we have

T∑
i=1

|πk ∩ Gi| ≈
T∑

i=1

|Gi|
c

⇒ |πk| ≈ n

c
. (5)

Equation (5) shows that the results have more equal cluster
capacity according to Definition 2.

Then, dividing (4) by (5), we have

|πk ∩ Gi|
|πk| ≈ |Gi|

n
(6)

Notice that |πk∩Gi|
|πk | is exact ηi(k) in Definition 1 and |Gi|

n is ηi
in Definition 1. Therefore, according to Definition 1, the results
are fair. To sum up, the larger fairness_balance is, the better
the fairness and cluster capacity equal of the clustering result is.

Based on the above discussion, we find that (4) is the key
to simultaneously achieving fairness (i.e., (6)) and equal cluster
capacity (i.e., (5)). Let us take a closer look at (4). Equation (4)
means that we should divide group Gi averagely to each cluster.
Based on this idea, we can design a simple regularized term to
simultaneously achieve fairness and cluster capacity equality as
follows.

We first construct a one-hot matrix G ∈ {0, 1}n×T for all
instances from G1, . . . ,GT , where n is the number of instances
and T is the number of protected groups. If the i-th instance
belongs to the j-th protected group, Gij = 1, and Gij = 0
otherwise.

Then, given a clustering result with c clusters, we can con-
struct a one-hot result matrix Y ∈ {0, 1}n×c, where if the i-th
instance belongs to the j-th cluster, then Yij = 1 and Yij = 0
otherwise. GivenG andY, we can constructA = GTY. Notice
that the (i, j)-th element in A, which is denoted as Aij , is
Aij = |πj ∩ Gi|.

Now, consider the i-th protected group. According to (4),
we wish Gi be divided equally into each cluster, which means
Ai1, Ai2, . . . , Aic should be close to each other. Notice that, the
summation of Ai1, Ai2, . . . , Aic, which is

∑c
j=1 Aij = |Gi|, is

a constant. Now consider the following optimization problem:

min
Ai1,...,Aic

c∑
j=1

A2
ij ,

s.t.

c∑
j=1

Aij = |Gi|. (7)
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It is easy to verify that the optima of (7) is Ai1 = Ai2 = · · · =
Aic =

|Gi|
c , which means we divide Gi equally into each clus-

ter. Similarly, for any other protected groups Gk, we can also
minimize

∑c
j=1 A

2
kj to achieve fairness and cluster balance.

To sum up, we obtain the following term to simultaneously
achieve fairness and cluster capacity equality:

min
A

T∑
k=1

c∑
j=1

A2
kj = min

A
‖A‖2F ⇔ min

Y
‖GTY‖2F . (8)

Given a one-hot protected group matrix G, we wish to learn a
cluster partition matrix Y. If Y satisfies (8), then the clustering
result can satisfy the fairness and cluster capacity equality. In the
following, we will plug this regularized term into a clustering
ensemble framework to obtain our fair clustering ensemble
method.

B. Objective Function

In clustering ensemble, we first construct multiple one-
hot clustering result matrix Y(1), . . . ,Y(m) ∈ {0, 1}n×c from
C1, . . . , Cm as introduced before. Then we try to ensemble
Y(1), . . . ,Y(m) to obtain a consensus result Y ∈ Rn×c.

Notice that we cannot directly average Y(1), . . . ,Y(m) to
obtain Y because the clusters in each base result are not aligned.
For example, the first cluster in Y(i) is not necessarily the
same as the first cluster in Y(j). To tackle this problem, we
can introduce a learnable rotation matrix R(i) ∈ Rc×c for each
base result, where R(i)TR(i) = I, to align the clusters in each
base result. Then, when we learn an appropriate rotation matrix
R(i), Y(i)R(i) can be seen as the aligned base result, which is
ready for the ensemble.

We first learn a consensus orthogonal embedding H ∈ Rn×c

from Y(i)R(i) by minimizing
∑m

i=1 α
2
i ‖H−Y(i)R(i)‖2F ,

where 0 ≤ αi ≤ 1 is the weight of the i-th base result. Larger
αi represents a more important base result. Notice that each
column of H is a representation of a cluster. In the conventional
clustering setting, each instance should belong to only one
cluster, and thus clusters should be far away from each other.
This is the reason why we wish H to be orthogonal as spectral
clustering did.

Since clustering aims to learn a hard partition of data instead of
an embedding, we need to obtain a 0/1 matrix Y by discretizing
H. To avoid using any post-processing methods, we design a
one-stage clustering ensemble method, which learns the 0/1
matrix Y directly without any post-processing. To this end,
inspired by the spectral rotation [63], we add a discretizing
term ‖Y −HR‖2F to the objective function, whereR ∈ Rc×c is
also a rotation matrix. Then, we obtain our clustering ensemble
objective function:

min
θ

m∑
i=1

α2
i ‖H−Y(i)R(i)‖2F + λ1‖Y −HR‖2F

s.t. HTH = I, RTR = I, R(i)TR(i) = I

Y ∈ {0, 1}n×c,

c∑
j=1

Yij = 1, 0 ≤ αi ≤ 1,

m∑
i=1

αi = 1,

(9)

where θ = {αi,H,R(i),R,Y} is the set of learnable parame-
ters in the objective function, and λ1 is a hyper-parameter. Since
the second term is only for discretization instead of ensemble,
we do not wish it to affect the ensemble too much. To this end,
we fix λ1 as a small constant 0.001.

Then, we plug our fairness regularized term (8) into (9),
leading to our final objective function:

min
θ

m∑
i=1

α2
i‖H−Y(i)R(i)‖2F +λ1

(‖Y−HR‖2F +λ2‖GTY‖2F
)
,

s.t. HTH = I, RTR = I, R(i)TR(i) = I

Y ∈ {0, 1}n×c,

c∑
j=1

Yij = 1, 0 ≤ αi ≤ 1,

m∑
i=1

αi = 1,

(10)

where λ2 is a trade-off hyper-parameter to balance the clustering
performance and fairness.

C. Optimization

We optimize one variable by fixing other variables.
1) Optimizing H: When fixing other variables, we can

rewrite the subproblem w.r.t. H as:

min
H

− tr(HTB)

s.t. HTH = I, (11)

whereB =
∑m

i=1 α
2
iY

(i)R(i) + λ1YRT . Equation (11) can be
solved by using the Singular Value Decomposition (SVD) on B.
Here the following Theorem gives a closed-form solution for the
problem in (11).

Theorem 1: Supposing the SVD of B is B = UΣVT where
U and V are orthogonal matrices and Σ is a diagonal matrix,
the closed-form solution of H in (11) is H = UVT .

Proof: Minimizing (11) is equivalent to maximizing
tr(HTB). We have that the SVD of B is B = UΣVT . Since
H is column orthogonal, its SVD is H = H ∗ I ∗ I. According
to Von Neumann’s trace inequality, we have

tr(HTB) ≤ tr(IΣ)

= tr(UTBV)

= tr((UVT )TB)

The equality holds when H = UVT . Therefore, the global
optima of (11) is H = UVT . �

2) Optimizing R(i): The subproblem w.r.t. R(i) is

min
R(i)

− tr(R(i)TC)

s.t. R(i)TR(i) = I, (12)
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Algorithm 1: Fair Clustering Ensemble.

Input: Multiple base clustering results C1, . . . , Cm,
protected groups G1, . . . ,GT , hyper-parameters λ1 and λ2.

Output: Final consensus clustering matrix Y
1: Construct base clustering result matrices

Y(1), . . . ,Y(m) and the one-hot protected attribute
matrix G.

2: Initialize R = I, R(i) = I, and αi =
1
m . Initialize H by

minimizing
∑m

i=1 ‖H−Y(i)R(i)‖2F .
3: while not converges do
4: Update Y by solving (14).
5: Update R by solving (13).
6: Update R(i) by solving (12).
7: Update H by solving (11).
8: Update αi by (16).
9: end while

where C = Y(i)TH. It can also be solved by Theorem 1, the
solution is the SVD of C.

3) Optimizing R: The subproblem w.r.t. R is

min
R

− tr(RTE),

s.t. RTR = I, (13)

whereE = HTY. The solution is also similar to the one of (11),
which is the SVD of E.

4) Optimizing Y: When optimizing Y, we have the follow-
ing formula

min
Y

‖Y −HR‖2F + λ2‖GTY‖2F

s.t. Y ∈ {0, 1}n×c,

c∑
j=1

Yij = 1. (14)

Notice that in each row of Y there is only one 1 and other
elements are zeros. Therefore, we can solve (14) row by
row. When solving the i-th row, we replace the i-th row by
[1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1] respectively, and
select the one that has the lowest objective function value as
the solution of the i-th row as [64] did.

5) Optimizing αi: When optimizing αi, we have the follow-
ing subproblem

min
αi

m∑
i=1

α2
i ‖H−Y(i)R(i)‖2F

s.t. 0 ≤ αi ≤ 1,

m∑
i=1

αi = 1. (15)

According to Cauchy-Schwarz Inequality, we obtain the closed-
form solution of αi as:

αi =
‖H−Y(i)R(i)‖−2

F∑m
j=1 ‖H−Y(j)R(j)‖−2

F

. (16)

Algorithm 1 summarizes the process of our FCE. Notice that
when solving each subproblem, the objective function value

decreases monotonously, and the objective function has a lower
bound, which guarantees the convergence of Algorithm 1.

D. Discussions

Now we briefly analyze the time complexity of Algorithm 1.
When solving H, R(i), and R, we need the SVD of n-by-c,
c-by-c, and c-by-c matrices, respectively. The time complexity
of the SVDs are O(nc2), O(c3), and O(c3), respectively. Notice
that c is the number of clusters which is often small in real
applications. When solving one row of Y, we need some matrix
multiplications, whose time complexity is O(nc2). Therefore,
updating the whole Y needs O(n2c2) time. Updating αi costs
O(nc2) time. To sum up, the time complexity isO(n2c2). Notice
that the bottleneck is the matrix multiplication when solving Y
and it is often fast in practice [64]. We can also easily parallelize
the matrix multiplication for further speedup.

The main part of the method is the fairness regularized term
‖GTY‖2F , which is simple yet effective. Notice that this term
only needs the pseudo-labels Y and protected groups matrix G.
Therefore, this term can be plugged into many other machine
learning methods easily to improve fairness, such as k-means
and feature selection. This term is a kind of fairness regularized
term with universality.

Although the motivation of the regularized term ‖GTY‖2F
is to improve fairness, we observe that this term can also be
used for clustering with equal capacity. We just need to put all
instances into one protected group, which means that we let G
be an n-dimensional vector whose elements are all 1’s, and then
this term, i.e., ‖1TY‖2F , degenerates to an equal cluster capacity
regularized term. Therefore, the clustering ensemble with equal
cluster capacity is a special case of our proposed framework.

IV. EXPERIMENTS

In this section, we conduct experiments on some benchmark
data sets to show the effectiveness of the proposed method.

A. Data Sets

We conduct experiments on six widely-used data sets in
fair machine learning works, including D&S [65], HAR [66],
MNIST-USPS [18], Reverse MNIST [18], JAFFE [67],
Yale [68]. D&S is a human daily and sports activities data set
including 8 participants. HAR is a human action recognition data
set including 30 participants. In both D&S and HAR data sets,
the instances of each participant form a protected group. MNIST-
USPS is an image data set containing images of handwritten dig-
its from MNIST1 and USPS2 data. Following [18], we randomly
sample 2000 images from MNIST to form one protected group
and randomly sample 1800 images from USPS to form the other
protected group. Reverse MNIST is an image data set generated
from MNIST. Also following [18], we randomly sample 2000
images from MNIST to form one protected group and randomly
sample 2000 images and reverse them to form the other protected
group. JAFFE is a face image data set. Following [18], we put the

1http://yann.lecun.com/exdb/mnist
2https://www.kaggle.com/bistaumanga/usps-dataset
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TABLE I
DESCRIPTION OF THE DATA SETS

face images with the same expressions into a protected group.
Yale is also a face image data set. Following [18], the people
wearing glasses form a protected group and other people form
the other protected group. The detailed information of these data
sets is summarized in Table I,

B. Experimental Setup

To evaluate the performance of the proposed method, we
conduct two groups of experiments. In the first group of ex-
periments, following a similar experimental protocol in [69],
we run k-means 100 times with different initializations to obtain
100 base clustering results. We divide these 100 base results into
10 subsets. Then we run clustering ensemble methods on the 10
subsets and report the average results and standard deviation
on the 10 subsets. To evaluate the performance on the base
results with more diversity, we conduct the second group of
experiments, which is a comparison on different base clustering
algorithms. Specifically, in each subset, we ensemble 10 base
results including 3 k-means results, 3 spectral clustering results,
3 hierarchical clustering results, and 1 kernel k-means result.
Other setups are the same as the first group of experiments.

We compare our FCE with the following eleven mainstream
clustering ensemble methods:
� BCE [69], which is a probability framework for ensemble

to generate a stable consensus result.
� RCE [70], which minimizes Kullback Leibler (KL) di-

vergence between each base result and learns a robust
consensus result.

� LWGP [71], which applies a local weighting strategy to a
graph partition consensus clustering method.

� LWEA [71], which applies a local weighting strategy to
an agglomerative consensus clustering method.

� DREC [72], which is a clustering ensemble method based
on the dense representation.

� RSEC [26], which is a spectral-based robust clustering
ensemble method.

� TRCE [32], which is a tri-level robust clustering ensemble
method.

� ECPCS-MC [73], which is a clustering ensemble method
by propagating cluster-wise similarities with a meta-
cluster.

� ECPCS-HC [73], which is a clustering ensemble method
by propagating cluster-wise similarities with hierarchical
consensus function.

� CESHL [74], which is a consensus clustering method with
structured hypergraph learning.

� PFREFF [75], which is a parameter-free robust ensemble
framework for fuzzy clustering.

In addition, we also report KM, which is the average result of
all base clusterings. To show the effectiveness of our designed
fairness regularized term, we also conduct an ablation study
by comparing it with our degenerated version FCE-f, which
removes the fairness regularized term (i.e., (8)). In FCE, we use
rotation matrices R(i) to align the clusters in each base result.
Another straightforward way to align the clusters is to use the
Hungary algorithm. To show the effectiveness of our rotation
matrices, we also compare our FCE with a variant that first aligns
the clusters with Hungary algorithm and then does ensemble
with our designed fairness regularized term. We denote this
version as FCE-a.

For all methods and all data sets, we set the number of clusters
c as the true number of classes. We fix the hyper-parameter λ1

to 0.001 as introduced before. The hyper-parameter λ2 controls
the fairness and cluster capacity equality, and we tune it in
[10−5, 101]. For other methods, we tune the hyper-parameters
as their papers suggested. For example, in RSEC, following the
authors’ suggestion, we tune λ1 in the set {0.01, 0.1, 1} and λ2

in the set {0.1, 1}. In DREC, we set λ as 100.
We use ACCuracy (ACC) and Normalized Mutual Informa-

tion (NMI) to measure the clustering performance. We use Bal-
ance (Bal) [13] and Minimal Normalized Conditional Entropy
(MNCE) [16] to evaluate the fairness. In more detail, Bal is
defined as

Bal (C) = min
k

(
Nmin

k

Nmax
k

)
∈ [0, 1], (17)

where Nmin
k and Nmax

k denote the number of instances in the
smallest and the largest (in size) protected groups in cluster πk,
respectively. MNCE is defined as

MNCE =
mink

(
−∑

i
|Gi∩πk|
|πk| log |Gi∩πk|

|πk |
)

−∑
i
|Gi|
n log |Gi|

n

∈ [0, 1]. (18)

In addition, we also use our Definition 2, denoted as CCE, and
Normalized Entropy (NE) [61] to measure the cluster capacity
equality. NE is defined as

NE = − 1

log(c)

c∑
k=1

|πk|
n

log

( |πk|
n

)
∈ [0, 1]. (19)

In addition to the above indicators, we also report fairness_
CCE(f_CCE) in Definition 3.

All metrics are the larger the better.
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TABLE II
EXPERIMENTAL RESULTS ON MNIST-USPS AND REVERSE-MNIST DATA SETS

C. Experimental Results

We report the results of all clustering ensemble methods on
all k-means base results in Tables II, III, and IV. The best
results are denoted in bold and the second best results are
denoted underlined. From these Tables, we can find that our
FCE outperforms other compared methods on all data sets w.r.t.
fairness (i.e., Bal and MNCE) and cluster capacity equality (i.e.,
CCE and NE), demonstrating our method’s motivation. When
comparing w.r.t. the clustering performance, i.e., ACC and NMI,
although our method focuses on fairness and cluster capacity
equality, it is still comparable with other compared methods on
many data sets and even better than them on some data sets.

When compared with the degenerated version FCE-f, which
is without the designed fairness regularized term, FCE performs
better w.r.t. the fairness and the cluster capacity equality. It
demonstrates the effectiveness of our designed fairness regular-
ized term. In addition, when removing this fairness regularized
term, the ACC and NMI of FCE-f can outperform other com-
pared methods, which shows the effectiveness of our ensemble
strategy. Moreover, it is interesting to see that the clustering
performance of ACC and NMI sometimes is even better than
the original FCE. It shows that sometimes we can only achieve
a trade-off between accuracy, fairness, and cluster capacity
equality. Notice that when computing the ACC and NMI, we
need the ground truth of the data sets. However, the ground
truth of some data sets may be naturally imbalanced or unfair.
On these data sets, when improving the fairness and cluster

Fig. 3. The distribution of different protection groups in each cluster before
and after learning on the D&S data set.

capacity equality, we should sacrifice the clustering performance
to some extent. Notice that in our setting, we assume that the
base results have the same number of clusters. However, our
method can be extended to handle the base results with differ-
ent numbers of clusters. The detailed results are shown in the
Appendix.

To further show the fairness, we show some visualization
results in Fig. 3. Fig. 3 shows the number of instances of each
protected group Gj in each cluster πi in the D&S data set before
and after learning. Fig. 3(a) shows the result before learning.
The numbers of instances of one protected group in each cluster
have a great difference, which means the base results are unfair.
Fig. 3(b) shows the number of instances of each protected group
in each cluster after learning, which is much more fair than the
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TABLE III
EXPERIMENTAL RESULTS ON D&S AND HAR DATA SETS

TABLE IV
EXPERIMENTAL RESULTS ON JAFFE AND YALE DATA SETS
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TABLE V
EXPERIMENTAL RESULTS WITH DIFFERENT BASE CLUSTERING ALGORITHMS ON MNIST-USPS AND REVERSE-MNIST DATA SETS

results before learning. It well shows that our FCE can effectively
achieve fairness as a post-processing for the standard clustering
method.

The results on different base clustering algorithms are shown
in Tables V, VI, and VII. We can see that our method also
achieves better fairness and cluster capacity equality in this
setting.

When comparing with FCE-a, we observe that FCE often out-
performs FCE-a. The main reason is that the Hungary algorithm
may be a little inappropriate for our clustering ensemble task.
Hungary algorithm is a kind of methods for ”hard” alignment
or matching, which means there should be a bijection between
two objects. However, in the clustering ensemble, the ”hard”
matching for clusters may be unrealistic and there may even
not exist such a bijection, because each base result may be in
different semantic spaces. That is why the rotations method,
which is a ”soft” alignment method, outperforms the Hungary
algorithm. Notice that, on some data sets, FCE-a achieves com-
parable performance on fairness. That is because, in FCE-a,
we obtain the final clustering result also with our designed
fairness regularized term. This term enforces the results to be
fair despite that the aligned base results Y(i) may be not good
enough.

D. Comparison With Fair Clustering Methods

To show the effectiveness of our method on fairness, we also
compare it with some state-of-the-art fair clustering methods,
including:

� SpFC [15], which embeds the fairness constraints into the
Laplacian matrix of a graph for clustering.

� VFC [46], which is a universal variational fair clustering
framework.

� FFC [76], which is a three-stage fair clustering method
based on k-means algorithm.

� KFC [77], which is a flexible fair clustering method based
on k-center algorithm.

� SFD [19], which is a fast fair decomposition algorithm
based on fairlet subsets.

� CFC [52], which is a robust fair clustering framework via
consensus k-means.

For fair clustering methods, we also set the hyperparameters
according to the suggestions in their papers. Specifically, in
SpFC, we first compute the similarity matrix S ∈ Rn×n, whose

(p, q)-th element is Spq = e−
‖Xp.−Xq.‖22

2σ2 , where σ is a bandwidth
parameter and is set as 0.5. Then we construct the k-NN graph
from S with the number of neighbors k = 15. In VFC, we set
the clustering mode as k-means and search λ to find the best
trade-off between clustering performance and fairness in a range
[1, 10]. In FFC, the balance parameter δ is set as 0.2. For KFC,
we use the default parameter value of δ = 0.1. For SFD, we set
the parameters α = {1, 2} and β = 5. In CFC, it takes the same
base clustering results as ours as the inputs to construct the input
graph for further learning.

We show the results in Table VIII. The number in the paren-
theses denotes the rank of the method w.r.t. the evaluation metric.
We also report the average rank over all metrics of each method,
which is denoted as avg rank. Notice that FFC cannot run a
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TABLE VI
EXPERIMENTAL RESULTS WITH DIFFERENT BASE CLUSTERING ALGORITHMS ON D&S AND HAR DATA SETS

TABLE VII
EXPERIMENTAL RESULTS WITH DIFFERENT BASE CLUSTERING ALGORITHMS ON JAFFE AND YALE DATA SETS
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TABLE VIII
COMPARISON WITH FAIR CLUSTERING METHODS

result in acceptable time on the large data set D&S. SFD can
only handle data sets with two protected groups, and thus they
only have results on HAR, MNIST-USPS, and Reverse MNIST.
From Table V, we find that our method can outperform these fair
clustering methods on cluster capacity equality (i.e., CCE, and
NE) on all data sets. Regarding fairness, our method can also
often achieve comparable or better performance on many data
sets. Notice that KFC and SGD achieve a very high performance
w.r.t. Bal and MNCE on MNIST-USPS and Reverse MNIST,
respectively. However, we observe that they put most data into
one cluster. For example, on MNIST-USPS, the numbers of
data in each cluster of KFC are 3746, 7, 12, 6, 16, 6, and 7,
respectively. On Reverse MNIST, the numbers of data in each
cluster of SFD are 2242, 54, 244, 128, 282, 152, 184, 254,
210, and 250, respectively. This also demonstrates our moti-
vation to consider cluster capacity equality. When comparing
w.r.t. ACC and NMI, our FCE sometimes performs worse than
other methods. Notice that, these fair clustering methods need
the original features of data whereas ours only uses the base
clustering results from k-means without the original features.
Poor base clustering results may limit the performance of our
FCE. To see this, we also report the results of FCE_dbase,
which is our FCE with different base clustering algorithms as

introduced in Section IV-C. We can see that better base results
can improve the ACC and NMI of our FCE, and FCE_dbase can
even outperform other fair clustering methods on some data sets.
We also report the versions without the fairness regularized term
of FCE and FCE_dbase, denoted as FCE-f and FCE_dbase-f.
The results show that with the fairness regularized term, the
overall performance of our method can be further improved.

E. Efficiency Results

Fig. 4 shows the convergence curves of our method on all data
sets. It can be seen that our method can often converge very fast
(i.e., often converges within 10 iterations).

Fig. 5 shows the running time of our method compared with
other clustering ensemble methods on all data sets. Since some
methods are very time-consuming, we report the logarithm of the
time in seconds for better comparison. From Fig. 5, we can see
that our method is comparable with the mainstream clustering
ensemble methods. Ours is even faster than some state-of-the-art
methods, such as RSEC and CESHL. Despite this, since the
time complexity of our method is still square in the number of
instances, in the future, we will study how to further speed up
this method.
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Fig. 4. Convergence curves of FCE on all data sets.

Fig. 5. Running time of all methods on all data sets.

F. Trade-Off Between Accuracy, Fairness, and Cluster
Capacity Equality

In this subsection, we show the trade-off curves of clustering
accuracy (e.g. ACC), fairness (e.g. MNCE), and cluster capacity
equality (e.g. NE) by tuning the hyper-parameter λ2 . The
trade-off curves are shown in Fig. 6. We can see that, there
exists a trade-off between accuracy and fairness and cluster

capacity equality. Too high fairness or cluster capacity equality
may lead to a decrease in accuracy. Despite this, our method
can still obtain a good trade-off on most data sets, because the
inflection points often appear in the upper right. Moreover, from
the trade-off curves of fairness and cluster capacity equality,
we find that our regularized term can indeed improve fairness
and cluster capacity equality simultaneously, demonstrating the
effectiveness of the regularized term.

Authorized licensed use limited to: Anhui University. Downloaded on February 23,2025 at 08:13:19 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FAIR CLUSTERING ENSEMBLE WITH EQUAL CLUSTER CAPACITY 1743

Fig. 6. Tade-off curves between the accuracy, fairness, and the cluster capacity equality.

TABLE IX
EXPERIMENTAL RESULTS OF FCE AND FCE_UNKNOW_K ON ALL DATA SETS, WHERE FCE_UNKNOWN_K DENOTES THE VERSION THAT AUTOMATICALLY

DECIDING THE NUMBER OF CLUSTERS
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G. Selection of Number of Clusters

Like many other mainstream clustering methods and cluster-
ing ensemble methods, our method also assumes that the number
of clusters is known. If the number of clusters is unknown, we can
use some internal indices to guide the decision of the number of
clusters. In our method, we tried to use the Silhouette Coefficient
Index as the internal index to search the number of clusters. In
more detail, we concatenate the indicator matrices of the base
results as a representation of data to compute the Silhouette
Coefficient Index. Then, we run our algorithm to automatically
search for the optimal number of clusters by selecting the one
that maximizes the Silhouette Coefficient Index. The results
of this strategy are shown in Table IX, which is denoted as
FCE_unknown_k. We can see that, the results are very close to
the original version which uses the ground truth of the number
of clusters. It well demonstrates the effectiveness of our strategy
for deciding the number of clusters for FCE.

V. CONCLUSION

This paper proposed a new notion of fair clustering ensemble.
When observing the limitation of the traditional definition of
fairness to handle the cluster capacity, we designed a simple
yet effective regularized term to simultaneously achieve fairness
and cluster capacity equality. Then, we plugged this carefully
designed regularized term into a clustering ensemble frame-
work, leading to our novel Fair Clustering Ensemble method.
Extensive experiments on benchmark data sets by comparing
with state-of-the-art clustering ensemble methods shew our su-
periority in fairness and cluster capacity equality.
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