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Abstract— A clustering ensemble provides an elegant frame-
work to learn a consensus result from multiple prespecified
clustering partitions. Though conventional clustering ensemble
methods achieve promising performance in various applications,
we observe that they may usually be misled by some unreliable
instances due to the absence of labels. To tackle this issue, we pro-
pose a novel active clustering ensemble method, which selects
the uncertain or unreliable data for querying the annotations in
the process of the ensemble. To fulfill this idea, we seamlessly
integrate the active clustering ensemble method into a self-paced
learning framework, leading to a novel self-paced active cluster-
ing ensemble (SPACE) method. The proposed SPACE can jointly
select unreliable data to label via automatically evaluating their
difficulty and applying easy data to ensemble the clusterings.
In this way, these two tasks can be boosted by each other,
with the aim to achieve better clustering performance. The
experimental results on benchmark datasets demonstrate the
significant effectiveness of our method. The codes of this article
are released in http://Doctor-Nobody.github.io/codes/space.zip.

Index Terms— Active learning, clustering ensemble, self-paced
learning.

I. INTRODUCTION

CLUSTERING ensemble provides an elegant framework
for integrating multiple weak base clusterings to obtain

a consensus and stable result [1]. Many clustering ensemble
methods have been proposed in recent decades [2], [3], [4], [5]
and applied to various applications. For example, Liu et al. [3]
developed an ensemble method to handle incomplete data;
Li et al. [4] combined multiple clustering results by analyzing
the stability of each instance; and Bai et al. [5] ensem-
bled multiple k-means results to tackle the nonlinear data.
By integrating multiple weak clustering results, clustering
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ensemble can alleviate the robustness and stability problems
in single-clustering methods to some extent.

Despite demonstrating promising clustering performance in
various applications, the above-mentioned ensemble methods
may be usually misled by some unreliable data due to the
absence of labels. Since in clustering ensemble tasks, we often
do not access the original features and the labels of data, these
ensemble methods are often based on the majority voting of
the base results. However, due to the limitation of the base
clustering method, e.g., k-means can hardly handle nonsphere-
shape data, it happens that the majority of base clustering
may be unreliable and often make mistakes, and thus, it may
mislead the ensemble methods. Fig. 1 shows an example of
the two-moon data. We run k-means on the two-moon data
four times with different initializations to obtain four base
clustering results. Notice that the instances x1 and x2 (shown
in the dotted line circle in Fig. 1) are put in the same cluster in
all four base results. Since conventional clustering ensemble
methods are based on the majority voting and do not access the
original feature and the labels of data, they often mistakenly
believe that x1 and x2 should be in the same cluster. To address
this issue, some semisupervised clustering ensemble methods
are proposed, such as [6], [7], and [8]. These methods used
the pregiven must-link (i.e., the two instances belong to the
same cluster) and cannot-link (i.e., the two instances belong to
different clusters) pairwise constraints to guide the ensemble.
However, in real-world applications, the performance of these
semisupervised methods highly depends on the selection of
the supervised information. Unfortunately, how to choose the
supervised information itself is still a tough task.

To tackle this problem, in this article, we propose a novel
active clustering ensemble method. We observe that self-paced
learning can learn the difficulty of each instance and use
easy ones for training, whereas active learning often selects
the difficult ones for querying the annotations. As a result,
we can automatically select data for querying the human
annotations and apply these annotations to guide the ensemble
by utilizing this complementarity of self-paced learning and
active learning. To do so, we propose to seamlessly integrate
the active clustering ensemble into a self-paced learning frame-
work, leading to a novel self-paced active clustering ensemble
(SPACE) method. In this method, we use self-paced learning
to automatically learn the difficulty of the data and use the easy
data for ensemble learning, and meanwhile, select the difficult
data for querying to label and apply the human annotations as
constraint information to guide the clustering ensemble.

To this end, we carefully design a unified objective function
to integrate the clustering ensemble, self-paced learning, and
active learning seamlessly. To optimize the introduced objec-
tive function, we propose an effective iterative algorithm that
involves two steps: S-step for selecting queries and E-step
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Fig. 1. Four base results of k-means on two-moon data. (a) First base result
of k-means (c = 2). (b) Second base result of k-means (c = 2). (c) Third
base result of k-means (c = 3). (d) Fourth base result of k-means (c = 3).

for ensemble. In the S-step, we automatically estimate the
difficulty of each data and select difficult ones for querying;
in the E-step, we ensemble multiple base partitions to preserve
the human annotations. Although the subproblems in both
steps contain some complex constraints and regularized terms,
we can find the closed-form solution for each subproblem.
Note that due to the carefully designed objective function,
SPACE can directly obtain the clustering result without any
uncertain postprocedure. Thus, together with a reasonable ini-
tialization, it can always provide the clustering result without
uncertainness and randomness. Furthermore, we theoretically
analyze the setting of the parameters and hyperparameters to
make the model easy to use. At last, the extensive experiments
on benchmark datasets demonstrate the effectiveness and supe-
riority of the proposed algorithm. Notice that compared with
our previous self-paced clustering ensemble work [9], there
are three significant differences: 1) [9] is an unsupervised
clustering ensemble. However, the proposed work focuses on
the active clustering ensemble setting. To the best of our
knowledge, the active clustering ensemble without accessing
the original features of data is new and quite underexplored.
Compared with the unsupervised setting or even semisuper-
vised setting, it can leverage a few human annotations to
obtain much better performance. 2) Reference [9] only uses
the easy data for ensemble whereas ignoring the difficult data
like many other conventional self-paced learning methods. The
proposed SPACE extends self-paced learning to the active
learning setting. It can fully use both the easy data and
difficult data, i.e., it uses easy data for ensemble learning
and queries difficult data for annotations and then applies the
annotations of difficult data to guide the ensemble learning.
3) To fully use the limited number of annotations, we propose
a schema for propagating both the must-link and cannot-link
constraints. By the propagation methods, despite the limited
number of annotations, the proposed SPACE can leverage as
much information of annotations as possible.

The main contributions are summarized as follows.

1) We propose a novel SPACE framework. Different from
conventional unsupervised or semisupervised clustering
ensemble methods, our framework can automatically
select important data for annotation and ensemble the
data by propagating both the must-link and cannot-
link constraints. In this way, the proposed framework

can effectively adopt a few annotations to improve the
clustering ensemble.

2) We develop an effective algorithm to optimize the objec-
tive function. The optimization can be divided into two
explainable iterative steps. Moreover, the optimization
will not introduce any uncertainness and randomness.
We also provide some guidance on the setting of param-
eters and hyperparameters, which makes it easy to use.

3) We compare our method with state-of-the-art unsuper-
vised and semisupervised clustering ensemble methods
in experiments, and the results show that our algo-
rithm can significantly outperform the unsupervised and
semisupervised methods, which demonstrates its effec-
tiveness and superiority.

II. RELATED WORK

We first introduce some notations of this article. Throughout
this article, we use boldface lowercase and uppercase letters to
denote vectors and matrices, respectively. The (i, j)th element
of a matrix M is denoted as Mi j and the i th element of a vector
v is denoted as vi . We use Mi. and M.i to denote the i th row
and i th column of M, respectively. Then, we will review some
related work about clustering ensemble, self-paced learning,
and active learning, respectively, in Sections II-A–II-C.

A. Clustering Ensemble

A clustering ensemble, also known as consensus clustering,
was first introduced by Strehl and Ghosh [10], which aimed to
integrate multiple weak clustering results to obtain a consensus
and robust one. Since it can alleviate the stability and robust-
ness problems, which single-clustering methods may suffer
from to some extent, it has attracted increasing attention in
recent years. Roughly speaking, a clustering ensemble can be
categorized into two classes based on whether it accesses the
original data features. In the works which access the original
data [11], [12], [13], when they ensembled multiple cluster-
ings, they often used the original data to guide the ensemble,
and thus, could further improve clustering performance.

However, in the second class, i.e., ones without accessing
the original features of data, the problem becomes more
challenging, because we just have the multiple clustering
results as inputs. Despite this, this kind of clustering ensemble
could be applied in more fields, such as in the scenario of
distributed data or attributes. Moreover, since this kind of
ensemble method does not take the original data as input, it can
protect the privacy of data to some extent. Therefore, it has
attracted more attention [10], [14], [15].

This article focuses on the class without accessing the
original data. We take multiple base partitions as inputs to
learn a consensus partition. To achieve this, many unsuper-
vised learning techniques have been extended to combine
base results. For example, Zhou and Tang [14] proposed a k-
means-based clustering ensemble method with the alignment
technique. Besides k-means, since spectral clustering was
also a widely studied clustering technique, it has also often
been extended in ensemble learning [16], [17], [18]. Some
methods took the quality and diversity of base clusterings into
consideration to guide the ensemble learning [19], [20]. Some
works ensembled multiple clustering results by graph-based
methods [21], [22].
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As introduced earlier, although these ensemble methods
can alleviate the robustness and stability problems to some
extent, since they are still unsupervised methods without
the guidance of the labels, they may still be misled by the
unreliable base results. To address this issue, some works use
the supervised information to guide the ensemble, leading to
the semisupervised clustering ensemble [6], [7], [8], [23], [24].
In these methods, they use the pairwise constraints as the
supervised information, i.e., if two instances belong to the
same cluster, there is a must-link constraint on the pairs; if
they belong to the different clusters, the constraint between
them is a cannot-link constraint. Based on these pairwise
constraints, these methods propagate the constraints in the
process of the ensemble. For example, Lai et al. [8] assigned
a weight on each cluster according to the pairwise constraints,
and then emsembled the multiple clustering results to obtain
a robust result; Yu et al. [24] applied constraint weighting and
ensemble member weighting to guide the ensemble. These
semisupervised methods often use the pregiven constraints
for learning, while ignoring how to select the informative
constraints.

In this article, we will make use of the complementarity of
self-paced learning and active learning to automatically select
the most uncertain pairs for annotation, which will further
improve the performance of the ensemble. Notice that there
exist some active clustering ensemble methods, such as [25]
and [26]. For example, Barr et al. [25] first computed the
pairwise distance of all data, then selected the instances for
annotation according to the rank of the distance, and last
ensembled the base clustering results with the annotation;
Shi et al. [26] designed a fast and effective active clustering
ensemble method by an active density peak clustering method,
which also needed the distance between all data. Therefore,
their methods need to access the original data to decide which
data should be queried. This is different from our setting,
which does not use the original data. As introduced earlier,
our setting is more applicable and also more challenging.

B. Self-Paced Learning
The key idea of self-paced learning is to automatically and

incrementally use data for learning, where easy data are used
first and difficult ones are then involved gradually [27]. Since
it is in line with the learning process of humans, it has been
widely used in various machine learning tasks [28], [29], [30],
[31], [32], [33]. For example, Bengio et al. [28] applied it to
tackle the local optimum problem in nonconvex optimization;
in [34] and [30], it is plugged in the multitask learning; Huang
et al. [33], [35] applied the self-paced learning to the multiview
learning; Shao et al. [36] adopted the self-paced learning to the
label distribution learning; and Soviany et al. [37] proposed the
curriculum self-paced learning method for the cross-domain
object detection.

More formally, given a dataset D =

{(x1, y1), (x2, y2), . . . , (xn, yn)} with n instances, where
xi ∈ Rd is the i th instance and yi is its label, we denote
h(xi , θ) as the decision function of a model and θ as the
model parameters. Then, in a machine learning model,
we need to minimize the loss L(h(xi , θ), yi ) between the
decision function and the true label. According to [38]
and [39], self-paced learning imposes a weight on the loss
of each instance to represent the difficulty of the instance

and introduces a regularization term on the weights. More
formally, we obtain the following objective function:

min
θ ,w

n∑
i=1

(wiL(h(xi , θ), yi )+�(λ,w)) (1)

where λ is an adaptive age parameter to control the learning
pace, which will grow in the process of learning, and �(λ,w)
is the regularization term on weights. The self-paced learning
optimizes (1) via alternating minimization. Solving w by fixing
θ is to assign the weight on each data; solving θ by fixing w
is to train the model with easy data. Intuitively, the easier
instance will have a larger weight wi . Moreover, with the
process of learning, more and more instances will become
easy and involved in learning. In this work, we will integrate
self-paced learning into an active learning framework for
clustering ensemble.

C. Active Learning
Active learning is a machine learning methodology to auto-

matically selects informative instances for annotation when
handling a large amount of unlabeled data [40], [41]. Its goal
is to train a classifier that has good generalization perfor-
mance with only the selected labeled instances. In this article,
we focus on the batch mode active learning, which selects a
batch of instances for annotation in each iteration [42], [43],
[44], [45], [46], [47], [48]. For example, Hoi et al. [42] applied
the Fisher information matrix to select a batch of informative
instances for annotation and used the annotated data to train a
classifier; different from [42] which adopted Fisher informa-
tion, Wang et al. [44] used the α-relative Pearson divergence
for batch selection; Yang et al. [49] proposed an uncertainty
sampling-based active learning method, which maximized the
diversity of selected data; and Liu et al. [50], [51] designed the
pairwise active learning, which considers both the uncertainty
and diversity, and applied it to the person reidentification task.

More formally, considering the dataset X as defined earlier,
we divide it into two sets: labeled set L and unlabeled set U
such that L ∪ U = X and L ∩ U = ∅. If xi ∈ L, its label
yi is revealed by a human labeler; otherwise, yi is unknown.
Batch mode active learning methods iteratively select a batch
of instances S ⊂ U with a given batch size k (a predefined
constant) for labeling until there is no budget.

In this article, since we focus on the clustering task,
we select a pair of instances (xp, xq) for querying whether
these two instances belong to the same cluster or not, instead
of directly labeling which class should xp or xq belong to.
In the clustering task, since the label space is often unknown,
our scheme to label two instances with must-link and cannot-
link relations is simpler and more practical.

III. SELF-PACED ACTIVE CLUSTERING ENSEMBLE

In this section, we introduce our SPACE method. First,
we show some notations and their descriptions in Table I.
Then, we provide the framework.

A. Framework
Following [15], [52], [53], and [54], we first construct a

connective matrix S(i) ∈ Rn×n for a base partition, whose
(p, q)th element Spq = 1, if xp and xq belong to the same
cluster, and Spq = 0, otherwise. Then, we will ensemble
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TABLE I
NOTATIONS AND DESCRIPTIONS USED IN OUR METHOD

Fig. 2. Framework of SPACE. It contains two iterative steps: S-step and
E-step. In the S-step, we learn the self-paced weight matrix W with input
connective matrices S(1), . . . ,S(m) and consensus matrix S, and then select
easy pairs for self-paced learning and difficult pairs for annotation; in E-step,
we apply the easy pairs together with the labeled difficult pairs to learn the
consensus matrix S.

the m base connective matrices to learn a consensus matrix
S ∈ Rn×n . Note that our method just takes multiple base
partitions as inputs without accessing the original data features
x1, . . . , xn .

We seamlessly integrate the clustering ensemble and con-
straints active selection into a unified self-paced framework.
Our method can be basically divided into two iterative steps:
S-step for selecting pairs to label and E-step for ensemble.
Fig. 2 illustrates the whole framework of our method. In Sec-
tions III-B–III-D, we will introduce it in more detail.

B. Objective Function
A natural way to learn the consensus matrix S is to minimize

the disagreement between it and all connective matrices.
To this end, we can minimize the following objective function:

min
S,α

m∑
i=1

α2
i

∥∥S− S(i)
∥∥2

F

s.t.
m∑

i=1

αi = 1, ∀i : 0 ≤ αi ≤ 1

S = ST
∀p, q : 0 ≤ Spq ≤ 1

∀(xp, xq) ∈M : Spq = 1 ∀(xp, xq) ∈ C : Spq = 0 (2)
where αi is the weight of the i th clustering result. Intuitively,
if ∥S−S(i)∥2

F is large, i.e., the quality of S(i) is low, to minimize
(2), αi should be small. Since all connective matrices are
symmetric and their elements are either 0 or 1, we wish the
learned consensus matrix S also be symmetric and its elements
are in the range [0, 1]. M and C indicate the set of must-link

and cannot-link, respectively. In the beginning, the two sets are
empty, since we do not have any labeled information. Then,
in the process of learning, we actively select some pairs for
annotation. For any selected pair (xp, xq), if human labels that
xp and xq belong to the same cluster, then we add it to the
must-link set M, or otherwise, we add it to the cannot-link
set C. In Section III-C, we will introduce how to select such
pairs for annotation.

Note that S in (2) contains n × n variables to be learned,
and most of them are difficult to learn since the base results
S(1), . . . ,S(m) are unreliable. To tackle this problem, we plug
(2) into the self-paced learning framework. We first use easy
data or reliable data to learn the model and then involve more
and more difficult data in learning. To this end, we need to
determine the difficulty of each data pair first. Intuitively, given
a data pair xp and xq , if most S(i)’s agree with each other,
we believe that this is an easy pair. We use

∑m
i=1(Spq−S(i)pq)

2 to
represent such agreement, i.e., small

∑m
i=1(Spq− S(i)pq)

2 means
(xp, xq) is an easy pair. Based on this, we impose a weight
matrix W ∈ [0, 1]n×n on all the pairs, whose element Wpq
indicates the weight of the pair (xp, xq). The easy pair (xp, xq)
will have large Wpq . Following [39], we simply set �(λ,w) in
(1) as �(λ,w) = −λ∥W∥1 and obtain the following problem:

min
S,W,α

m∑
i=1

α2
i

∥∥W⊙
(
S− S(i)

)∥∥2
F − λ∥W∥1

s.t.
m∑

i=1

αi = 1 ∀i : 0 ≤ αi ≤ 1

S = ST
∀p, q : 0 ≤ Spq ≤ 1, 0 ≤ Wpq ≤ 1

∀(xp, xq) ∈M : Spq = 1 ∀(xp, xq) ∈ C : Spq = 0
(3)

where λ is an adaptive parameter and grows in the process
of optimization, and ⊙ is the Hadamard product, i.e., the
elementwise production of two matrices.

After obtaining S, conventional ensemble methods use some
postprocessing methods such as spectral clustering to generate
the final clustering result. In our method, we wish to obtain the
final clustering result in an end-to-end way, i.e., we directly
obtain the clustering result when learning S. A natural way
is to make sure that S contains just c connected components,
and the two data in the pairs in M are in the same con-
nected components and the two data in the pairs in C are
in the different connective components. Then, we just need
to put the instances in the same connected components into
a cluster.

To achieve this, we first make sure that S has c connective
components. We define the Laplacian matrix LS of S as LS =

D − S, where D is a diagonal matrix whose pth diagonal
element is Dpp =

∑
q Spq . If S is nonnegative and symmetric,

then according to [55], the rank of the Laplacian matrix of a
graph, which contains c connective components is n−c. Thus,
we impose the constraint rank(LS) = n − c on (3).

Then, we make sure that the connective components do
not violate the constraints. It is easy to make sure that the
must-link data are in the same connective component by
taking the transitive closure operation. We will introduce this
in more detail in Section III-C. However, if (xp, xq) ∈ C,
it is difficult to guarantee that xp and xq are in different
connective components. Notice that, even though Spq = 0,
it is also possible that xp and xq are in the same connective
component, because there may exist another instance xr such
that Spr > 0 and Srq > 0. Fortunately, Nie et al. [56]
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proposed the following theorem which can address this
problem.

Theorem 1: [56] Given a graph S and a cannot-link pair
(xp, xq) ∈ C any vector f ∈ Rn such that f p = 1 and fq = −1,
if fT LSf = 0, where LS is the Laplacain matrix of S, and then
xp and xq are in two different connective components.

According to Theorem 1, we can define an auxiliary matrix
F ∈ Rn×C where C = |C| is the number of constraints in C,
and for the i th constraint (name (xpi , xqi )) in C, Fpi i = 1 and
Fqi i = −1. Then, we add the constraint tr(FT LSF) = 0 on (3).

Since we wish S contains c connective components, many
elements in S should be exactly zeros because the nonzero
value in S means the corresponding two instances are con-
nected with an edge. However, in practice, it often happens
that S is not sparse, i.e., some elements in S are very small
but not zeros due to the numerical computing. To address this
issue, we add a sparse regularized term ∥S∥0 to learn a clearer
clustering structure. The final objective function is as follows:

min
S,W,α,F

m∑
i=1

α2
i

∥∥W⊙
(
S− S(i)

)∥∥2
F − λ∥W∥1 + γ ∥S∥0

s.t.
m∑

i=1

αi = 1 ∀i : 0 ≤ αi ≤ 1, rank(LS) = n − c

S = ST
∀p, q : 0 ≤ Spq ≤ 1, 0 ≤ Wpq ≤ 1

∀(xp, xq) ∈M : Spq = 1 ∀(xp, xq) ∈ C : Spq = 0

∀(xpi , xqi ) ∈ C : Fpi i = 1, Fqi i = −1, tr(FT LSF) = 0
(4)

where γ is a hyperparameter to control the sparsity of S. Note
that by optimizing (4), we can directly obtain the c clus-
ters without any uncertain discretization postprocessing like
spectral clustering and k-means. Different from the traditional
two-stage way, where the ensemble and postprocessing are
separated, our one-stage way can make them be boosted by
each other to achieve the optimal goal.

C. Optimization
Now, we introduce how to optimize the objective function

(4). In our framework, since we need to actively select pairs to
label, or equivalently speaking, to determine M and C in (4),
we divide the whole optimization process into two iterative
steps: S-step for selecting pairs to label and E-step for the
ensemble. In the following, we will introduce these two steps,
respectively.

1) S-Step: In the S-step, we wish to select the most
uncertain or difficult pairs to label. Fortunately, in our self-
paced learning framework, the pair weight matrix W exactly
indicates the difficulty or uncertainty of all pairs. Therefore,
in this step, we optimize W while fixing the other variables,
and then select pairs for annotation according to W.

When other variables are fixed, we get the subproblem w.r.t.
W as follows:

min
W

m∑
i=1

α2
i

∥∥W⊙
(
S− S(i)

)∥∥2
F − λ∥W∥1

s.t. ∀p, q : 0 ≤ Wpq ≤ 1. (5)
Equation (5) can be decoupled into n × n independent

subproblems. Considering the (p, q)th element of W, we have
min

0≤Wpq≤1
Apq W 2

pq − λWpq (6)

where Apq =
∑m

i=1 α
2
i (S

(i)
pq − Spq)

2.

Setting the partial derivative of (6) w.r.t. Wpq to zero,
we obtain that Wpq = (λ/2Apq). Since Apq ≥ 0, Wpq ≥ 0.
If (λ/2Apq) > 1, we find that in the range [0, 1], Apq W 2

pq −

λWpq is a monotonically decreasing function, and thus, the
minimum is obtained when Wpq = 1. So, its closed-form
solution is

Wpq = min
(

λ

2Apq
, 1

)
. (7)

As introduced earlier, Apq can be regarded as one evaluation
of the difficulty of the pairs, i.e., easy pairs may have small
Apq . From (7), small Apq leads to large Wpq , and thus, easy
pairs (with large Wpq ) will contribute much to the model.
Moreover, Wpq monotonically increases with λ, which means
with the growth of λ, more and more pairs will have large
weight and, thus, will be involved in learning.

In conventional self-paced learning, they often pay more
attention to the pairs with large Wpq . However, in our frame-
work, we also consider the pairs with small weights. Note that
the smaller Wpq is, the more difficult the pair (xp, xq) is. So,
given a batch size k, we can choose the k pairs corresponding
to the smallest k unlabeled elements in W for annotation. Since
W is symmetric, we only consider Wpq with p > q. For the
pair (xp, xq), if it is labeled to belong to the same cluster,
we add it into the must-link set M, or otherwise, we add it
into the cannot-link set C.

Note that if n ≫ m, it often happens that many elements
on W have the same value. To address this issue, we need
to reorder the Wpq ’s which have the same value. In our
method, we consider the degree of the instances. As we know,
in a graph, if an instance has a larger degree, this instance
may be connected with more other instances, and thus, the
constraints about this instance may be easier to be propagated
on the graph. Therefore, for fully propagating the pairwise
constraints, we select the pairs whose two instances have
large degrees. More formally, we denote d(xp) =

∑n
i=1 Spi

as the degree of the pth instance, and then for a pair (xp, xq),
we define the function φ(xp, xq) as the degree score of this
pair

φ(xp, xq) = d(xp) ∗ d(xq) =

n∑
i, j=1

Spi Sq j . (8)

For the pairs who have the same values, we further reorder
them as the descending order of φ(·, ·).

After selecting the pairs for annotation, we will further
expand the pairwise constraints to propagate the must-link and
cannot-link constraints. Consider that the must-link relation
should be an equivalence relation, i.e., M should satisfy the
following properties.

Property 1: Reflexive—(xp, xp) ∈M.
Property 2: Symmetric—if (xp, xq) ∈M, then (xq , xp) ∈

M.
Property 3: Transitive—if (xp, xq) ∈ M and (xq , xr ) ∈

M, then (xp, xr ) ∈M.
Obviously, the cannot-link relation should satisfy the sym-

metric property.
Property 4: Symmetric—if (xp, xq) ∈ C, then (xq , xp) ∈ C.

In addition, the must-link and cannot-link relation also have a
transitive property.

Property 5: Transitive—if (xp, xq) ∈M and (xq , xr ) ∈ C,
then (xp, xr ) ∈ C.
At last, M and C should be self-consistent, i.e., as shown in
the following.
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Property 6: Self-consistent: if (xp, xq) ∈ M, then
(xp, xq) /∈ C, and vice versa.

To satisfy the above-mentioned properties, after adding
pairs into M and C, we apply the transitive closure operator
to expand M and C and learn the ensemble results in the
expanded M and C. In more detail, when expanding the must-
link set, we first add all (xp, xp) in M if they are not in
M originally. Then, for any (xp, xq) ∈ M, if (xq , xp) /∈
M, we add it into M. At last, we obtain the transitive
closure of M by a standard algorithm, such as the Warshall
Algorithm [57].

For expanding C more easily, we first partite the whole
instance set into several equivalence classes according to M,
such that if xp and xq has a must-link relation, then they
are in the same equivalence class. If xp does not have any
must-link relation with other instances, then xp itself forms
an equivalence class. After the equivalence class partition,
we expand C. For any (xp, xq) ∈ C, we add all pairs (xr , xs),
where xr ∼ xp and xs ∼ xq , and ∼ denotes that the two
instances are in the same equivalence class, into C. At last,
for any (xp, xq) ∈ C, if (xq , xp) /∈ C, we add it into C.

Algorithm 1 summarizes the process of expanding. Accord-
ing to the following theorem, the expanded M and C satisfy
the Properties 1–6.

Algorithm 1 Expanding M and C
Input: The initial must-link sets M and cannot-link set C.
Output: The expanded M and C

1: For any p, if (xp, xp) /∈M, add it into M.
2: For any p, q , if (xp, xq) ∈ M and (xq , xp) /∈ M, add
(xq , xp) into M.

3: Use Warshall Algorithm [57] algorithm to expand M.
4: Partite the instance set into several equivalence classes

according to M.
5: For any (xp, xq) ∈ C, xr ∼ xp, xs ∼ xq and (xr , xs) /∈ C,

add (xr , xs) into C.
6: For any p, q , if (xp, xq) ∈ C and (xq , xp) /∈ C, add (xq , xp)

into C.

Theorem 2: For any self-consistent initial must-link set M
and cannot-link set C, after expanding them by Algorithm 1,
the expanded sets M and C satisfy Properties 1–6.

Proof: See Appendix A. □
2) E-Step: After the S-step, we do the ensemble in the E-

step. In this step, we will optimize (4) while fixing W, M,
and C. Since (4) contains the rank function, which is difficult
to be optimized, we first relax it. According to the Ky Fan
theorem [58], to eliminate the rank constraint, we introduce
an orthogonal auxiliary matrix Y ∈ Rn×c, and rewrite it as

min
S,α,F,Y

m∑
i=1

α2
i

∥∥W⊙
(
S− S(i)

)∥∥2
F + γ ∥S∥0

+ 2ρ
(
tr

(
YT LSY

)
+ tr

(
FT LSF

))
s.t.

m∑
i=1

αi = 1 ∀i : 0 ≤ αi ≤ 1, YT Y = I

S = ST
∀p, q : 0 ≤ Spq ≤ 1

∀(xp, xq) ∈M : Spq = 1 ∀(xp, xq) ∈ C : Spq = 0
∀(xpi , xqi ) ∈ C : Fpi i = 1, Fqi i = −1 (9)

where ρ is a large enough parameter to make sure that the rank
of LS is n − c. Since (9) involves multiple variables, we will
use a block coordinate descent to optimize it.

Optimizing S. Although (9) contains complex constraints
and ℓ0-norm on S, which is nonconvex and discontinuous,
fortunately, according to the following theorem, it also has a
closed-form solution.

Theorem 3: The (p, q)th element of S has the following
closed-form solution:

Spq =


1, if (xp, xq) ∈M
0, if (xp, xq) ∈ C
1, if (xp, xq) /∈M ∪ C and Bpq ≥ 1
Bpq , if (xp, xq) /∈M ∪ C and τpq ≤ Bpq < 1
0, if (xp, xq) /∈M ∪ C and Bpq < τpq .

(10)
where Bpq = (

∑m
i=1 α

2
i S(i)pq − (ρ(∥Yp. − Yq.∥

2
2 +

∥Fp. − Fq.∥
2
2)/2W 2

pq)/
∑m

i=1 α
2
i ) and τpq =

((γ )1/2/(
∑m

i=1 α
2
i W 2

pq)
1/2).

Proof: See Appendix B. □
Optimizing F. When optimizing F, we find that it can be

decoupled into C independent subproblems according to the
C constraints in C. Considering the kth constraint (xpk , xqk ) in
C, the corresponding subproblem is that

min
F.k

FT
.kLSF.k, s.t. Fpk k = 1, Fqk k = −1. (11)

It seems that (11) can be solved by the label propagation
process [56], [59]. However, this method is inappropriate for
our problem. Notice that, in the label propagation process
methods, they need to construct a matrix Luu ∈ R(n−2)×(n−2),
which is a submatrix of LS by removing the pk th and qk th
rows and columns of LS , and then they need to compute the
inverse of Luu . However, in our problem, since the rank of
LS is c, which is often much smaller than n, Luu is often
noninvertible.

To address this issue, we propose a modified label propa-
gation method by taking a closer look at the current graph S.
We consider two cases. The first case is that xpk and xqk are
in different connective components in current S. We find all
instances in the connective component which xpk belongs to,
put them in a set P , and put all instances in the connective
component of xqk into a set Q. Then, for any xp ∈ P , we set
Fpk = 1 and for any xq ∈ Q, we set Fqk = −1. For all
remaining instances xr , we set Frk = 0. It is easy to verify that
FT
.kLSF.k = 0, and notice that since LS is positive semidefinite,

for any vector x, we have xT LSx ≥ 0. Therefore, this F.k is
the optima of this subproblem.

Now, consider the second case that xpk and xqk are in
the same connective component in current S. We put all
instances in such connective component into a set R =

{xp, xq , xk1 , . . . , xkr−2}, where r is the number of instances in
the set R. Then, we extract the submatrix of LS corresponding
to the instances in R, called LR ∈ Rr×r . We define a vector
f = (fl , fu)

T
∈ Rr , where fl = (1,−1)T . Then, we rearrange

LR as

LR =

[
Lll

R ∈ R2×2 Llu
R ∈ R2×(r−2)

LluT
R ∈ R(r−2)×2 Luu

R ∈ R(r−2)×(r−2)

]
.

Then, we have
L = fT LRf = fT

l Lll
Rfl + 2fT

l Llu
R fu + fT

u Luu
R fu . (12)

By setting (∂L/∂fu) = 0, we have
fu = −(Luu

R )
−1LluT

R fl . (13)
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Notice that since LR is a Laplacian matrix of a connective
graph, rank(LR) = r − 1 and Luu

R is invertible in most cases.
Then, for all instances inR, we set the corresponding elements
in F.k as the value in f and set all remaining elements in F.k
as 0. This is the optima of this subproblem.

Optimizing Y: When optimizing Y, we have
min

Y
tr

(
YT LSY

)
, s.t. YT Y = I. (14)

The closed-form solution of (14) can be obtained by the Ky
Fan theorem [58]. In more detail, the columns of Y are the c
eigenvectors of LS corresponding to its c smallest eigenvalues.

Optimizing α: When optimizing α, we have

min
α

m∑
i=1

α2
i

∥∥W⊙
(
S− S(i)

)∥∥2
F

s.t. 0 ≤ αi ≤ 1,
m∑

i=1

αi = 1. (15)

According to the Cauchy–Schwarz Inequality, we obtain its
closed-form solution

αi =

∥∥W⊙
(
S− S(i)

)∥∥−2
F∑m

j=1

∥∥W⊙
(
S− S(i)

)∥∥−2
F

. (16)

Note that
∥∥W⊙

(
S− S(i)

)∥∥2
F indicates the difference between

the i th clustering result and the consensus result, which can
be regarded as the quality of the i th clustering result. The
smaller it is, the better the i th clustering result is. Since αi ∝

1/∥W⊙ (S−S(i))∥2
F , αi indicates quality of the i th clustering

result. If the i th clustering result is better, then its weight αi
should be larger and the i th clustering result plays a more
important role in ensemble learning.

In this E-step, we can find the closed-form solution for
each subproblem, which monotonically decreases the objective
function. In addition, the objective function always has a lower
bound, and thus, the E-step can always converge. In fact,
it converges very fast in practice (often within 20 iterations
in our experiments).

D. Discussion
In this section, we first discuss the initialization of the

parameters and the selection strategy of the hyperparameter,
and then we provide the algorithm and its time complexity.

We initialize S = (1/m)
∑m

i=1 S(i) and construct LS = D−
S. Then, we obtain the initial Y by solving (14). We set ρ =
1 at first and adjust it automatically by observing the rank of
LS . In more detail, if the rank of LS is greater than n − c,
i.e., the rank regularization is not strong enough, we update
ρ ← 2ρ; if its rank is smaller than it, we update ρ ← ρ/2.
We initialize αi = 1/m.

Now, we consider the initialization of the self-paced param-
eter λ. Since λ directly influences W, we need to set λ based
on W. In (7), we have that if λ > 2Apq , then Wpq = 1,
which means we use the pair (xp, xq) completely. For (xp, xq),
supposing m pq base results agree that they should belong to
a cluster and the remainder m − m pq results agree that they
belong to different clusters, we can compute Apq as follows:

Apq =

m∑
i=1

α2
i

(
Spq − S(i)pq

)2
=

(
m pq/m −

(
m pq/m

)2
)/

m.

Define ψ = m pq/m, which indicates the ratio of the results
which agree that they belong to the same cluster. Therefore,
when ψ ≥ 0.5, larger ψ indicates the easier the pair.

Algorithm 2 SPACE Algorithm
Input: m base partition C1, . . . , Cm , number c of clusters,

threshold θ , batch size k and the number of iterations T .
Output: Final c clusters.

1: Construct m base connective matrices S1, . . . ,S(m).
2: Initialize the parameters as introduced in Section III-D.

Set M = ∅ and C = ∅.
3: for i ter = 1, 2, . . . , T do
4: //S-step:
5: Compute λ by Eq. (17), and then compute W by Eq.

(7).
6: Select the pairs corresponding to the k smallest ele-

ments in W to label and add them into M or C.
7: Expand M and C by Algorithm 1.
8: //E-step:
9: while not converge do

10: Compute S by Eq. (19).
11: Compute F by the modified label propagation

method.
12: Compute Y by solving Eq. (14).
13: Compute α by Eq. (16).
14: Adjust ρ as introduced in Section III-D.
15: end while
16: Update ψ = max(r − δ, 0.5).
17: end for
18: Obtain the final clusters from the c connective component

in S.

TABLE II
DESCRIPTION OF THE DATASETS

In SPACE, we initialize ψ = 0.9, and set λ as follows:
λ = 2(ψ − ψ2)/m. (17)

Taking it back to (7), we find that, for xp and xq , if more than
90% base results reach a consensus, then Wpq = 1, which
means the pair will be involved in learning completely. In the
subsequent iterations, we increase λ by decreasing ψ from
0.9 to 0.5 with a step size δ = 0.1.

Then, we discuss the selection of the hyperparameter γ .
Since the range of γ is [0,+∞), it is difficult to directly set
γ . To select an appropriate γ , we need to figure out how γ
influences the sparsity of S. As can be seen from (19), γ plays
a role as a threshold to determine whether Spq should be zero.
More specifically, Spq = 0 when

Bpq < τpq =

√
γ∑m

i=1 α
2
i W 2

pq
≈

√
γ∑m

i=1 α
2
i

≤

√
mγ

(
∑m

i=1 αi )2
=
√

mγ . (18)
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Fig. 3. Toy example results on the two-moon data. (a)–(j) Ten k-means base clustering results. (k) Clustering result of our SPACE method. (l) Selected data
for annotation in the first two batches of SPACE.

Fig. 4. Examples of selected pairs of SPACE in AR dataset. The first line
shows four pairs with must-link and the second line shows four pairs with
cannot-link.

The approximate equals sign is due to that at last almost all
pairs are used for learning, and thus, all Wpq ≈ 1. The no-
greater-than sign is due to the Cauchy–Schwarz inequality.
Denote θ = (mγ )1/2. θ can be regarded as a threshold, i.e.,
according to Theorem 3, Spq is nonzero when Spq > θ .
Therefore, to control the sparsity of S, we do not need to
directly set γ whose range is [0,+∞), but just set θ whose
range is [0, 1). Moreover, setting θ is more explainable. For
instance, if we want to keep Spq nonzero when Spq > 0.3,
we first set θ = 0.3, and compute γ = θ2/m = 0.09/m.

Algorithm 2 summarizes the SPACE method. Since we need
to store the m connective matrices, the space complexity is
O(mn2). In the S-step, the time complexity of computing
W is O(mn2) since we need to compute A first. The time
complexity of the transitive closure operator is O((kT )3). Note
that k is the batch size and often no more than 100 and T is
the number of batches for annotation and at most several tens.
So, k, T ≪ n in practice.

In E-step, computing S costs O(n2c + n2m) according to
Theorem 3. When optimizing F, in the worst case, we need
to calculate the k equation system of r − 2 variables, which
costs O((r − 2)2k) time. When learning Y, we need to find
the smallest c eigenvalues of LS , whose complexity is O(n2c).
It takes O(n2m) to obtain α. Therefore, the time complexity
is O((n2m + n2c + (r − 2)2k)T1T ), where T is the number
of outer iterations (lines 3–17), which is equal to the number
of batches, and T1 is the number of inner iterations (lines

9–15). The time complexity is comparable with the existing
connective matrix-based methods [15], [53], [54]. Despite this,
in the future, we will study how to further reduce the time
complexity.

IV. EXPERIMENTS

In this section, we conduct extensive experiments by com-
paring our SPACE with several state-of-the-art unsupervised
and semisupervised consensus clustering methods on bench-
mark datasets.

A. Toy Example

Before comparing with state-of-the-art methods on bench-
mark datasets, we use a toy example to show the effectiveness
of our method. Here, we use the two-moon data, as shown in
Fig. 3. We run k-means with different numbers of clusters ten
times and obtain the ten base results plotted in Fig. 3(a)–(j),
respectively. As can be seen, k-means does not perform well
on this nonlinear manifold data. Then, we apply SPACE to
ensemble the ten base results, with batch size k = 5 and
the number of batches T = 10. The result of our method is
shown in Fig. 3(k). Although k-means often fails on nonlinear
data, by ensembling multiple k-means results, our method can
handle these nonlinear manifold data.

Moreover, although in the experiments we use ten batches,
we find that after the second batch, our method can already
discover the two-moon cluster structure. We show the selected
data for annotation in Fig. 3(l). The red stars represent the data
selected in the first batch and the black squares represent the
ones selected in the second batch. We can see that these data
are ones of the most ambiguous data because they are in the
boundary of clusters in many base clustering results. After
obtaining the relationship of these difficult data, our method
can easily propagate this supervised information on all data
and obtain accurate clustering results.
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TABLE III
AVERAGE ACC AND STANDARD DEVIATION ON ALL DATASETS

B. Real Datasets
We conduct experiments on benchmark datasets, including

ALLAML [60], AR [61], Glioma [62], Lung [63], Tr41 [64],
Tdt [65] TOX [62], and WebACE [66]. The details of these
datasets are summarized in Table II.

C. Experimental Setup
Following the experimental setup of [15], to generate the

base clusterings, we run k-means 200 times with different
initializations to obtain 200 base results. Then, we divide the

200 base results into ten subsets, with 20 in each one. Next,
we ensemble the 20 base results in each subset and report the
average results over the ten subsets.

We compare SPACE with the following unsupervised clus-
tering ensemble methods.

1) Base: It is the average result of all base clustering.
2) Base-Best: It is the best result of all base results.
3) CSPA [10]: It constructs a relationship between

instances in the same cluster to obtain a measurement
of pairwise similarity for the ensemble.
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TABLE IV
AVERAGE NMI AND STANDARD DEVIATION ON ALL DATASETS

4) HGPA [10]: It ensembles base results with a constrained
minimum cut objective.

5) MCLA [10]: It transforms the clustering ensemble
problem into a cluster correspondence problem.

6) NMFC [52]: It applies the nonnegative matrix factor-
ization to integrate base results.

7) RCE [15]: It minimizes the Kullback-Leibler (KL)
divergence among each base result to learn a robust
consensus result.

8) MEC [54]: It is a robust multiview consensus clustering
method that uses low-rank and sparse decomposition to
ensemble base results.

9) LWEA [67]: It applies a local weighting strategy to an
agglomerative consensus clustering method.

10) LWGP [67]: It applies a local weighting strategy to a
graph partition consensus clustering method.

11) RSEC [68]: It is a spectral-based robust consensus
clustering method.

12) DREC [69]: It learns a dense embedding from base
results for the ensemble.

13) SPCE [9]: It is a self-paced clustering ensemble
method.

14) TRCE [70]: It is a trilevel robust clustering ensemble
method.
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Fig. 5. Clustering results of semisupervised methods on different numbers of selected pairs. (a) ACC on ALLAML. (b) NMI on ALLAML. (c) ACC on
AR. (d) NMI on AR. (e) ACC on Glioma. (f) NMI on Glioma. (g) ACC on Lung. (h) NMI on Lung. (i) ACC on Tr41. (j) NMI on Tr41. (k) ACC on Tdt.
(l) NMI on Tdt. (m) ACC on TOX. (n) NMI on TOX. (o) ACC on WebACE. (p) NMI on WebACE.

Fig. 6. Convergence curves on all datasets. (a) ALLAML. (b) AR. (c) TOX.
(d) Tdt.

15) CESHL [71]: It is a clustering ensemble method with
structured hypergraph learning.

Besides these, we also compare with the following semisuper-
vised clustering ensemble methods.

1) E2CP [72]: It is a semisupervised clustering ensemble
method to propagate the pairwise constraints.

2) RSEMICE [7]: It is a random subspace-based semisu-
pervised clustering ensemble method.

3) WECR [8]: It is a semisupervised clustering ensemble
method to learn the consensus result by assigning the
weight to each cluster.

4) SPACE-R: It is our method without active learning,
i.e., we randomly select pairwise constraints in S-step
without propagation, and thus, SPACE degenerates to a
semisupervised clustering ensemble method.

5) SPACE-R-P: It randomly selects the constraints and
then expands the constraints with propagation. The dif-
ference between SPACE and SPACE-R-P lies in how
they select the pairwise constraints.

In our method, the number of batches T is set to 10. Since
ALLAML and Glioma are small-size datasets, on these data,
we set the batch size k = 10, and on other datasets, we set
the batch size k = 50. For all the compared semisupervised
clustering ensemble methods, they use the same randomly
selected k × T link constraints. Notice that the total number
(i.e., k × T ) of constraints used in compared methods are
the same as ours for a fair comparison. As discussed in
Section III-D, we set γ = θ2/20, due to we ensemble 20 base
results, and tune θ in {0, 0.1, . . . , 0.9}. Following [73], we use
accuracy (ACC) and normalized mutual information (NMI) to
evaluate the clustering results.

D. Experimental Results
Tables III and IV show the average results and standard

deviation of our method and other compared unsupervised
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Fig. 7. Running time (seconds) of all methods. (a) ALLAML. (b) AR. (c) GLIOMA. (d) Lung. (e) Tr41. (f) Tdt. (g) TOX. (h) WebACE.

Fig. 8. Clustering results on different values of θ . (a) ACC on ALLAML.
(b) NMI on ALLAML. (c) ACC on Tdt. (d) NMI on Tdt.

and semisupervised methods. From Tables III and IV, we can
find that our proposed method can significantly outperform all
compared unsupervised and semisupervised methods, which
demonstrates the superiority of our self-paced active learning
framework. Notice that, on the largest data Tdt, RCE and MEC
suffer the out-of-memory error because of their high space
complexity. Due to the carefully selected pairwise constraints,
our method can even outperform the best base result (Base-
best). Since our method is an active learning method, which
uses supervised information (i.e., pairwise annotation), it can
easily outperform the unsupervised methods. Although other
semisupervised methods also use pairwise annotations, since
they do not consider how to select the supervised information,
their pairwise annotation is selected randomly. Different from
these methods, our method actively selects informative or
important pairs for annotation, which are more helpful for the
clustering ensemble task. That is why our method can also
outperform the semisupervised methods.

As an ablation study, we compare SPACE with SPACE-R
and SPACE-R-P. It can be seen that SPACE-R-P outperforms
SPACE-R on most datasets, which shows that the propagation
operation is useful most time. Notice that on some datasets,
e.g., AR and Tdt, the propagation seems to have no effect. It is
because, these datasets contain too many clusters, and if we
randomly select pairs, most pairs are cannot-link constraints
and can hardly be propagated by Algorithm 1. SPACE often
outperforms SPACE-R-P, which means the carefully selected
annotations are much more useful than randomly selected
annotations for the ensemble, which can demonstrate the
motivation of active learning.

Fig. 4 shows some examples of selected data in the AR
dataset. AR is a face image dataset, which contains the face
images of 120 people, and each people has seven images.
The first line in Fig. 4 shows some examples of must-link
pairs selected by our algorithm, and the second line shows
some examples of cannot-link pairs selected by SPACE. The
label under each image is the ID of the people in the dataset.
Although the two images of the selected must-link pairs belong
to the same person, they have very different facial expressions,
and thus, SPACE regards them as difficult data and selects
them for the query. In the selected cannot-link pairs, the two
persons in the pair are very alike, albeit different persons. The
examples show that the selected pairs are indeed the difficult
ones, which is consistent with our motivation.

To further demonstrate the effectiveness of the active learn-
ing process, we show the ACC and NMI with different
numbers of selected pairs in our method compared with
the semisupervised clustering ensemble methods in Fig. 5.
From Fig. 5, we can find that our method outperforms other
semisupervised methods at most times. Moreover, since our
method integrates active selection into the ensemble learning,
the selected constraints are suitable for our model, and thus,
the performance of SPACE is improved very fast with the
growth of the number of batches. For other compared meth-
ods, since they have no mechanism to select the informative
constraints, their performance is improved more slowly than
ours.

We conduct experiments to show the convergence curves of
E-step in our method. We show the results on the ALLAML,
AR, TOX, and Tdt datasets in Fig. 6. The results on other
datasets are similar. From Fig. 6, we find that it converges
very fast (often within 20 iterations), which demonstrates
the claim in Section IV-C. We also show the running time
of the proposed method and compared methods in Fig. 7.
There are some methods faster than ours. The reasons are
twofold. First, our method is a connective matrix based, or in
other words, graph-based method, which needs to construct
multiple connective matrices or multiple graphs and learn a
consensus matrix for an ensemble, whose time complexity
is square with the number of instances. Second, since our
method is an active clustering method, we need some time
for selecting key data for annotation. Despite this, compared
with other connective matrix-based or graph-based methods,
e.g., RCE, MEC, RSEC, and CESHL, our method is com-
parable with or even faster than theirs. Especially on the
largest dataset Tdt, our method is nearly six times faster than
RSEC.
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E. Hyperparameter Study

The only hyperparameter needed to be tuned manually in
our method is θ (0 ≤ θ < 1). Note that θ = 0 means we
remove the sparse regularized term ∥S∥0. We tune θ in the
range {0, 0.1, . . . , 0.9}. The detailed results on the ALLAML
and Tdt datasets can be found in Fig. 8. The results on
other datasets are similar. Experimental results show that the
performance of our method is stable across a wide range of
parameters, and θ can be set in the range [0.1, 0.4] to obtain
a good performance. This is in line with intuition. Since θ is
the truncation threshold that keeps Si j nonzero when Si j > θ ,
if θ is too large, the graph will be too sparse, so that the
number of the connective components may be far greater than
c. Moreover, we can find that when θ = 0 our method does
not perform well, which also demonstrates the necessity of
this regularized term.

V. CONCLUSION

In this article, we proposed a novel SPACE method, which
jointly selected data to query for labeling and ensembled the
clustering results. To select the data for annotation, we inte-
grated the clustering ensemble into a self-paced framework,
which can automatically find the difficult data for annotation
and use the easy data for the ensemble. Then, we provided
an iterative algorithm, i.e., jointly doing S-step and E-step,
to optimize the introduced objective function. At last, extensive
experimental results show that the proposed SPACE can out-
perform the state-of-the-art unsupervised and semisupervised
clustering ensemble algorithms.

Despite the strengths of the proposed method, there still
exist some limitations. The first one is the scalable issue.
Since it needs to construct m n × n connective matrices,
the time complexity is square with the number of instances.
In the future, we will study how to further speed up the
active clustering ensemble process. The second one is the
effectiveness of the selection. Although the proposed method
achieves good performance compared with other methods,
it still has space to improve. The proposed one selects data
for annotation by considering the uncertainty and transitivity,
and there are other selection criteria, such as representativity
and large margin, which may further improve the effectiveness
of selection.

APPENDIX A: PROOF OF THEOREM 2

Theorem 1: For any self-consistent initial must-link set M
and cannot-link set C, after expanding them by Algorithm 1,
the expanded sets M and C satisfy Properties 1–6.

Proof: For Property 1, after line 1 of Algorithm 1,
M satisfies the reflexive property. According to Theorem 1
in [57], after line 3 of Algorithm 1, M satisfies Property 3.
Note that in the following steps, we do not add any pairs into
M, and therefore, M expanded by the whole Algorithm 1
satisfies Property 3.

Now, we show that after Line 3 M satisfies Property
2. Due to line 2 of Algorithm 1, for any (xp, xq) in the
initial M, (xq , xp) is also in M. We just need to show
that for any pair (xp, xq) which is added into M by the
Warshall algorithm, (xq , xp) is also in M. According to [57,
Th. 1], if (xp, xq) is in the expanded M, then there exist
r1, . . . , rl , where (xp, xr1), (xr1 , xr2), . . . , (xrl−1 , xrl ), (xrl , xq)
are in the initial M. After line 2, we have
(xq , xrl ), (xrl , xrl−1), . . . , (xr2 , xr1), (xr1 , xp) are in M.

Then, according to [57, Th, 1] again, we have (xq , xp) is also
in M. Thus, Property 2 is satisfied.

Due to line 6 in Algorithm 1, C satisfies Property 4. After
line 4, considering (xp, xq) ∈M (i.e., xp ∼ xq ) and (xq , xr ) ∈
C, according to line 5, (xp, xr ) ∈ C, which means Property 5 is
satisfied.

At last, we prove Property 6. Since the initial M and C
are self-consistent, the instance set can be partitioned into
several equivalence classes according to the initial M, so that
there are no cannot-links in any equivalence classes. Lines 1–3
preserve the Properties 1–3 of the equivalence class, and thus,
in line 4, we can also successfully divide the instances into
several self-consistent equivalence classes. Note that in lines
5 and 6, we do not add any cannot-link relationship into one
equivalence class, i.e., we do not violate the self-consistent
property in lines 5 and 6. Therefore, the expanded M and C
also satisfy Property 6. □

APPENDIX B: PROOF OF THEOREM 3

Theorem 2: The (p, q)th element of S has the following
closed-form solution:

Spq =


1, if (xp, xq) ∈M
0, if (xp, xq) ∈ C
1, if (xp, xq) /∈M ∪ C and Bpq ≥ 1
Bpq , if (xp, xq) /∈M ∪ C and τpq ≤ Bpq < 1
0, if (xp, xq) /∈M ∪ C and Bpq < τpq .

(19)

where Bpq = (
∑m

i=1 α
2
i S(i)pq − (ρ(∥Yp. − Yq.∥

2
2 +

∥Fp. − Fq.∥
2
2)/2W 2

pq)/
∑m

i=1 α
2
i ) and τpq =

((γ )1/2/(
∑m

i=1 α
2
i W 2

pq)
1/2).

Proof: We first drop the constraint S = ST for
simplicity and then prove that the learned S satisfies the
symmetric constraint. Note that LS is relative with S,
and thus, we first handle the terms 2ρtr

(
YT LSY

)
and

2ρtr
(
FT LSF

)
as 2ρtr

(
YT LSY

)
= ρ

∑n
j,k=1 S jk∥Y j. −

Yk.∥
2
2 and 2ρtr

(
FT LSF

)
= ρ

∑n
j,k=1 S jk∥F j. − Fk.∥

2
2

Taking them back to the objective function, i.e., (9) in
this article, we can decompose it into n × n independent
subproblems. Since Spq is definite when (xp, xq) ∈ M ∪ C
according to the constraints, we just need to consider Spq
whose (xp, xq) belongs to neither M nor C. When handling
the ℓ0-norm, we introduce an auxiliary function f (x), whose
definition is f (x) = 1 if x ̸= 0, and f (x) = 0 otherwise.
Then, we can rewrite the objective function as follows:

min
0≤Spq≤1

(
Spq − Bpq

)2
+ τ 2

pq f (Spq) (20)

where Bpq = (
∑m

i=1 α
2
i S(i)pq − (ρ(∥Yp. − Yq.∥

2
2 +

∥Fp. − Fq.∥
2
2)/2W 2

pq)/
∑m

i=1 α
2
i ) and τpq =

((γ )1/2/(
∑m

i=1 α
2
i W 2

pq)
1/2).

The objective function of (20) is a quadratic function w.r.t.
Spq , and its closed-form solution is

Spq =

{ 1, if Bpq ≥ 1
Bpq , if τpq ≤ Bpq < 1
0, if Bpq < τpq .

(21)

Taking all Spq into consideration (including those in M and
C), we obtain (19).

To demonstrate the symmetry of S, we use mathematical
induction. In the first iteration, we initialize S = 1/m

∑m
i=1 S(i).

Since the input connective matrices are symmetric, S is
also symmetric. In the following iterations, if S in the last
iteration is symmetric, due to the solution of W, i.e., (7) in
this article, W is symmetric. Thus B and τ are symmetric.
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Moreover, according to Property 2 and Property 5, M and C
are symmetric. To sum up, in each iteration, S computed by
(19) satisfies the symmetric constraint. □
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