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Clustering Ensemble Based on Fuzzy Matrix
Self-Enhancement

Xia Ji , Jiawei Sun , Jianhua Peng, Yue Pang, and Peng Zhou , Senior Member, IEEE

Abstract—Fuzzy clustering ensemble techniques have been
proven to yield more accurate and robust clustering results, with the
mainstream methods relying on the fuzzy co-association (FCA) ma-
trix. However, the inherent issues of low-value density and uniform
dispersion in the FCA matrix significantly affect the performance
of fuzzy clustering ensembles, an aspect that has been overlooked.
To address this issue, we propose a novel framework for fuzzy clus-
tering ensemble based on fuzzy matrix self-enhancement (FMSE).
Specifically, we initially employ singular value decomposition to
extract the principal components of the FCA matrix, thereby alle-
viating its low-value density. Second, on the basis of the criterion
of fuzzy entropy, we measure the fuzziness of samples, design a
metric for the fuzzy representativeness of samples, and incorporate
it into a fusion-weighted structure for the reconstruction of the FCA
matrix, mitigating uniform dispersion. Subsequently, on the basis
of the self-enhanced fuzzy matrix model, we utilize a prototype
diffusion approach to identify core samples and gradually allocate
remaining samples to obtain a consensus clustering solution. Ex-
tensive comparative experiments on benchmark datasets against
state-of-the-art clustering ensemble methods demonstrate the ef-
fectiveness and superiority of the proposed approach.

Index Terms—Clustering ensemble, fuzzy clustering, fuzzy co-
association matrix.

I. INTRODUCTION

C LUSTERING analysis is a pivotal and challenging tech-
nique in the fields of data mining and machine learning and

aims to partition similar data objects into groups or clusters to
unveil inherent patterns and structures within the data. Despite
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the widespread practical applications of numerous clustering
algorithms [1], [2], [3], [4], [5], a solitary clustering method
often falls short when confronted with complex and diverse
datasets. Furthermore, these methods typically require raw data
features as parameters for application. In contrast, clustering
ensemble eliminates the need for direct access to raw data
features. By combining multiple base clustering results, it can
generate clustering outcomes that are more robust and accurate
than those achieved by individual base clustering methods [6].
Consequently, clustering ensemble has become a focal point in
unsupervised learning research and has proven effective across
various clustering tasks, such as image segmentation [7], noise
reduction [8], and time series analysis [9], making it a powerful
way of enhancing clustering performance in scenarios where
single clustering methods may encounter limitations.

Clustering ensemble research began with the introduction of
CSPA, HGPA, and MCLA by Strehl and Ghosh in 2002 [10].
Many clustering ensemble methods have been proposed in recent
years. These methods are based on ensemble strategies at the
base clustering level and can be broadly categorized into three
types: pairwise similarity-based methods [11], [12], [13], [14],
[15], graph partitioning-based approaches [6], [16], [17], [18],
[19], and optimization-based methods [20], [21], [22], [23],
[24]. With respect to the nature of clustering (crisp or fuzzy)
at the base level, clustering ensemble is further divided into
crisp clustering ensemble and fuzzy clustering ensemble. In
crisp clustering ensemble, data objects are assigned to unique
clusters within the base clustering. Fuzzy clustering ensemble
allows data objects in the base clustering to be distributed among
multiple clusters with varying membership degrees, where mem-
bership values range from [0, 1]. Crisp clustering ensemble
may result in some information loss because of the inherent
ambiguity in the cluster affiliation of data objects in real data
distributions. Fuzzy clustering ensemble can handle inherent
fuzziness and uncertainty in the data better than crisp clustering
ensemble can. In clustering ensemble, the quality and diversity
of base clustering are important factors for enhancing the final
clustering quality [25], [26], [27]. Fuzzy base clustering effi-
ciently preserves diverse information, which is a crucial element
for the overall improvement of ensemble performance. Hence,
introducing fuzzy clustering as a base clustering component in
clustering ensemble is appropriate.

In 2008, Punera and Ghosh [10] introduced sCSPA, sHBGF,
and sMCLA, which initiated the research on fuzzy clustering
ensemble. Following this, numerous fuzzy clustering ensemble
algorithms have been proposed. In [28], Su et al. proposed
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Fig. 1. Visualization of CA and FCA matrices on seeds dataset.

three link-based pairwise fuzzy similarity matrices and applied
hierarchical clustering algorithms with complete linkage and
average linkage on these matrices to derive consensus clustering
results. In [15], Li et al. proposed a self co-association prototype
propagation (SCPP) algorithm. This algorithm utilizes the diag-
onal elements of the FCA matrix to evaluate the local density of
samples, identifying a set of prototype samples, and completing
clustering by assigning the remaining samples based on sample
similarity.

A thorough examination of current research in fuzzy clus-
tering ensemble indicates that the majority of existing methods
draw inspiration from the concept of the co-association (CA)
matrix commonly employed in crisp clustering ensemble. These
methods first construct an FCA matrix and then apply graph
partitioning or hierarchical clustering methods on the basis of
the FCA matrix to derive the final clustering results. The FCA
matrix records the frequency with which multiple base clustering
results assign two samples to the same partition, enabling it to
quantify the fuzzy relationships between samples. Therefore,
the FCA matrix can be regarded as the adjacency matrix of a
similarity graph or matrix for data objects. However, the FCA
matrix itself exhibits two characteristics that can impact the final
performance of fuzzy clustering ensemble.
� Low-value density: Typically, higher CA values provide

more reliable information about the fuzzy relationship
between two samples, whereas lower CA values may in-
troduce unreliable information or even noise. However,
the FCA matrix contains numerous low-value elements.
Unlike in the CA matrix, where zero values provide exact
information, these low-value elements in the FCA matrix
may contain noise and unreliable information, significantly
impacting subsequent clustering outcomes.

� Uniform dispersion: The range of CA values is [0, 1], where
element values of 0 or 1 indicate a deterministic relation-
ship between samples. As the element value approaches
0.5, the fuzziness between samples increases. In contrast
to the high sparsity of the CA matrix, the FCA matrix has a
relatively uniform distribution of CA values. This finding

implies that most samples have high fuzziness, with their
membership spread evenly among various fuzzy clusters.
The resulting partition lacks a clear clustering tendency,
which is detrimental to the overall ensemble performance.

As illustrated in Fig. 1, we employed the K-means and fuzzy
C-means (FCM) algorithms on the real dataset ”seeds” to gener-
ate 100 crisp clustering results and 100 fuzzy clustering results
separately. Subsequently, we constructed the corresponding CA
matrix and the FCA matrix. The bar charts in Fig. 1 depict the
distribution of element values in the CA and FCA matrices on the
”seeds” dataset. The line charts illustrate variations in precision
and recall corresponding to different value ranges in the CA and
FCA matrices. The horizontal and vertical axes represent ele-
ments in the matrix within different ranges and their respective
proportions. The graph shows that higher CA values are corre-
lated with higher precision and lower recall, and vice versa. This
finding suggests that, in both the CA matrix and the FCA matrix,
lower CA values contain unreliable information. Furthermore,
a comparison of Figs. 1(a) and 1(b) shows that, unlike the CA
matrix constructed from crisp clustering results, which predom-
inantly contains zero elements (high sparsity), the FCA matrix
has uniform dispersion with numerous low-value elements. This
finding indicates that the membership distribution of most sam-
ples among various fuzzy clusters is relatively even, signifying
higher fuzziness. This phenomenon results in the emergence of
fuzzy cluster boundaries in the final consensus results, making
it difficult to differentiate between different clusters.

In this paper, we propose a clustering ensemble algorithm
based on fuzzy matrix self-enhancement (FMSE), aiming to
mitigate the adverse impact of the two characteristics of the
FCA matrix on clustering ensemble performance. Specifically,
to address the issue of low-value density in the FCA matrix, we
incorporate singular value decomposition (SVD) to extract the
principal components of the FCA matrix. SVD decomposes the
FCA matrix into singular values and their corresponding left and
right singular vectors. Singular values signify the importance
or variability of the data, while the left and right singular
vectors represent the distribution of data in the feature space.
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By selecting components with relatively large singular values
and their corresponding singular vectors, we can extract the
main features of the FCA matrix. Filtering out components
corresponding to small singular values, which are indicative of
noise data, facilitates denoising and redundancy removal in the
FCA matrix. To alleviate the issue of uniform dispersion in the
FCA matrix, we design the fuzzy representativeness indicator
(FRI) of the samples based on fuzzy entropy and reconstruct
the FCA matrix through representativeness weighting. Repre-
sentative weighting enables us to more effectively leverage the
uncertainty information in the fuzzy partition matrix, giving
emphasis to more representative samples and thereby reducing
the impact of unreliable data. By introducing SVD and rep-
resentative weighting to enhance the FCA matrix, we define a
novel fuzzy matrix model called the self-enhanced FCA (EFCA)
matrix, which aims to effectively describe the fuzzy relationship
of samples. Subsequently, on the basis of the EFCA matrix
model, we propose a fuzzy clustering ensemble algorithm based
on self co-association prototype diffusion. This algorithm uses
the EFCA matrix to gauge the local density of samples, applies
prototype clustering principles to identify core samples, and
allocates remaining samples based on the fuzzy relationship of
core samples to obtain consensus clustering results. Extensive
comparative experiments with 12 benchmark datasets against 12
state-of-the-art clustering ensemble algorithms, including four
crisp clustering ensemble and eight fuzzy clustering ensem-
ble algorithms, demonstrated the superiority of our proposed
method.

For clarity, the main contributions of this paper can be sum-
marized as follows:

1) Addressing the issues of low-density values and uniform
dispersion in the FCA matrix, we introduce SVD to extract
the principal components of the FCA matrix and design
a fuzzy entropy-driven indicator of sample representa-
tiveness. Consequently, we propose a novel self-enhanced
fuzzy matrix model called EFCA, which reasonably char-
acterizes the fuzzy correlations among samples, thus cap-
turing the essential features of the original data effectively.

2) On the basis of the EFCA matrix model, we present a
clustering ensemble algorithm named fuzzy matrix self-
enhancement (FMSE). This algorithm utilizes the self
co-association of samples to measure local density for
discovering prototype samples. It then employs the in-
formation from the EFCA matrix to gradually diffuse
marginal samples to the prototype sample set, achieving
efficient clustering for complex data structures.

3) Extensive comparative experiments conducted on multi-
ple benchmark datasets against state-of-the-art clustering
ensemble algorithms demonstrate the effectiveness, supe-
riority, and robustness of FMSE.

This paper is organized as follows: Section II presents the
formulaic background knowledge of the proposed methodology.
Section III describes the proposed fuzzy clustering ensemble
method in detail. Section IV demonstrates the effectiveness
and superiority of the proposed method through an analysis of
experimental results. Section V summarizes the key findings of
this paper.

TABLE I
SUMMARY OF NOTATIONS

II. PRELIMINARIES AND RELATED WORK

In this section, we first introduce the symbols used in this
paper and relevant foundational theories. Subsequently, we de-
scribe the fuzzy clustering ensemble problem and review some
representative works. The symbols used in this paper are pre-
sented in Table I.

A. Singular Value Decomposition

SVD [29] is a commonly used technique for matrix decompo-
sition and dimensionality reduction and has widespread appli-
cations in fields such as data analysis, signal processing, image
compression, and recommendation systems. SVD decomposes
a matrix into the product of three matrices, each containing
essential information from the original matrix, making it useful
for feature extraction and data compression.

Definition 1: For a matrix A of size m× n, its singular value
decomposition can be expressed as:

A = UΣV T (1)

where U is an m×m orthogonal matrix, satisfying U · UT =
UT · U = Im, Im is the m-dimensional identity matrix.
Σ is an m× n diagonal matrix, with non-negative and de-

creasing elements on the diagonal, satisfying σ1 ≥ . . . ≥ σr >
0, where r is the rank of A, i.e., the number of singular values.V is
ann× northogonal matrix, satisfyingV · V T = V T · V = Im.
The product UΣV T is the SVD of matrix A, σi is the singular
value of matrix A, and the column vectors of U and V are
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the left singular vectors and right singular vectors, respectively,
corresponding to the singular values in Σ.

Singular values in SVD represent the importance or vari-
ability of data, while left and right singular vectors depict the
distribution of data in the feature space. The main features of
the FCA matrix can be extracted by selecting components with
larger singular values and their corresponding singular vectors.
Filtering components corresponding to smaller singular values,
which are associated with noise data, can achieve denoising and
eliminate redundancy.

B. Fuzzy Entropy

Fuzzy entropy is a metric used to quantify the uncertainty
or degree of disorder in fuzzy sets, extending the concept of
Shannon entropy [30] to fuzzy sets. It has wide applications in
areas such as fuzzy logic, fuzzy clustering, and fuzzy decision-
making, providing valuable insights into the uncertainty asso-
ciated with fuzzy data for use in fuzzy inference and decision-
making.

Definition 2: For a fuzzy set A, the fuzzy entropy H(A) is
defined as:

H(A) = −
∑
x∈A

μA(x) log2 μA(x) (2)

where μA(x) is the membership function of the element x in the
fuzzy set, and it satisfy the following two constraints:
� Regularity:

∑
x∈A μA(x) = 1

� Non-negativity: 0 ≤ μA(x) ≤ 1
Fuzzy entropy measures the uncertainty of elements in a

fuzzy set. Higher fuzzy entropy indicates a more dispersed or
uncertain distribution of membership degrees within the fuzzy
set. Conversely, lower fuzzy entropy suggests a more concen-
trated or certain distribution of membership degrees among the
elements of the fuzzy set. The distinct contributions of different
samples to the clustering ensemble can be reflected better by
calculating the fuzzy entropy based on membership degrees
for each sample and incorporating it into a weighted structure
as a representative indicator. This approach emphasizes more
representative samples, reduces the impact of unreliable data,
and thereby improves the quality and reliability of the FCA
matrix.

C. Fuzzy Clustering Ensemble

Let X = {x1, x2, . . . , xN} denote a dataset containing N
data objects, where xi represents the ith data object, each
consisting of D features. The fuzzy partition result of a dataset
can be represented as a 2D matrix F of size N ×K, where N
is the number of data objects and K is the number of clusters of
partitioning. Matrix F (X) satisfies the following conditions:

∀i∀j, i ∈ 1, . . . , N, j ∈ 1, . . . ,K :

Fj(xi) ∈ [0, 1] and
K∑
j=1

F (xi) = 1 (3)

A set of fuzzy clustering sets consisting of M fuzzy partitions
can be denoted as follows:

Πf =
{
F 1, . . . , FM

}
=

{
F 1
∗,1, F

1
∗,2, . . . , F

1
∗,n1 , . . . , FM

∗,1, . . . , F
M
∗,nm

}
(4)

where the fuzzy partition Fm = {Cm
1 , . . . , Cm

nm} denotes the
n(m) fuzzy clusters in the mth fuzzy partition. For each xi ∈ X ,
Fm
j (xi) denotes the probability (known as membership) that

data objectxi in fuzzy partitionFm belongs to fuzzy clusterCm
j .

The research objective of fuzzy clustering ensemble is to
derive an ensemble clustering solution F ∗ based on a set of
fuzzy clustering results Πf . This process primarily involves two
crucial steps: generating multiple distinct fuzzy clustering and
integrating the results of these fuzzy clustering to produce the
final partition. During the generation phase, the base clustering
members should exhibit diversity so that the effectiveness of
the ensemble is enhanced, and each base clustering should have
a certain level of accuracy [31]. Generally, in fuzzy clustering
ensembles, base clustering is typically obtained using the FCM
algorithm by randomly selecting different numbers of clusters
and varying fuzzy exponents. In what follows, we introduce
some representative methods.

In [32], Popescu et al. introduced random projection fuzzy
C-means clustering (RPFCM), obtaining final clustering results
by applying the FCM to multiple fuzzy partition matrices. Avo-
gadri et al. [33] applied FCM to the rows of the CA matrix to
obtain ensemble clustering results, which is a method known
as EFCM. In [34], Ye et al. presented an enhanced version of
EFCM, EFCM-S, which applies spectral clustering to a set of
fuzzy clustering collections to derive final clustering results.
In [35], Dhiloon et al. introduced the fuzzy clustering algorithm
ITK, treating each row of fuzzy base clustering sets as features in
a new space. They calculated the distance between data objects
using KL divergence [36] and then applied a K-means-like
algorithm on the distance matrix to derive the final ensemble
clustering results. In [37], Zhou et al. proposed an active clus-
tering ensemble method based on self-paced learning, which
optimizes the ensemble model by selecting and labeling unreli-
able data to improve clustering performance. In [38], Mojarad et
al. introduced a novel fuzzy cluster similarity measure, applying
hierarchical clustering on the fuzzy cluster similarity matrix to
obtain clustering results.

In [39], Bedalli et al. proposed a heterogeneous fuzzy clus-
tering ensemble approach to increase the robustness of fuzzy
clustering results by applying several fuzzy clustering algo-
rithms to generate the base clustering and then applying an FCM
on the FCA matrix to obtain the final clusterings. Berikov et
al. [40] proposed a probability model-based fuzzy clustering
ensemble method, utilizing hierarchical clustering on an FCA
matrix to obtain the final ensemble clustering results. Bagherinia
et al. [25] clustered a set of fuzzy clustering results by using
FCM. They proposed a method that simultaneously considers
the quality and diversity of fuzzy clusters to select a subset of
fuzzy clustering results. Then, they applied hierarchical clus-
tering to the FCA matrix generated from the fuzzy clustering
subset to obtain the final clustering results. In [41], on the
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Fig. 2. The illustration of the proposed FMSE.

basis of the distinct contributions of different fuzzy clusters to
the ensemble, Bagherinia et al. introduced a reliability-driven
metric for measuring fuzzy cluster quality called RDCI, which
was incorporated into a weighted structure to obtain a weighted
FCA matrix. Finally, clustering results were generated based on
hierarchical clustering and bipartite graph partitioning, which
are two consensus functions.

Multiview clustering can be treated as a special ensemble clus-
tering using different views. Many multi-view clustering meth-
ods have been proposed to integrate multiple fuzzy partitions of
multiple views. In [42], Zhang et al. developed a novel multi-
view and multiexemplar fuzzy clustering approach (M2FC), and
demonstrated that M2FC has a theoretical guarantee of enhanced
clustering performance. In [43], Kang et al. utilized anchors and
bipartite graphs to establish the relationship between samples
and anchors, proposing a structured graph learning framework
for scalable subspace clustering. In [44], Lin et al. introduced a
novel multi-view attribute graph clustering (MAGC) framework,
which efficiently clusters multi-view attribute graph data into
distinct groups. In [45], the author proposed four multiview
fuzzy clustering frameworks for clustering single-view data with
missing values.

In recent years, the CA matrix has played a crucial role in
similarity matrix-based ensemble methods. Through the analysis
of the CA matrix, a deeper understanding of the relationships
among data samples and their consistency across multiple clus-
tering results can be obtained. However, due to the fact that fuzzy
clustering results differ from crisp clustering’s label vectors, they
can only be expressed as membership matrices based on clusters.
Therefore, we cannot obtain the FCA matrix by simply recording
the occurrences of a pair of data objects within the same fuzzy
cluster.

Definition 3: Given an ensemble Πf with M fuzzy base
clustering, the FCA matrix can be represented as follows:

FCA = [fcaij ]N×N (5)

fcaij =
1

M

M∑
m=1

n(m)∑
c=1

Fm
i,c · Fm

j,c (6)

Typically, the calculation expression for the FCA matrix is given
by FCA = 1

MΠf ×ΠT
f , where ΠT

f is the transpose of Πf .
Despite numerous clustering ensemble algorithms based on

the CA matrix, research on fuzzy clustering ensemble based on
the FCA matrix is still in its infancy. Moreover, the performance
of fuzzy clustering ensemble needs to be improved because of
the low-density and uniformly dispersed characteristics of the
FCA matrix.

III. PROPOSED APPROACH

This paper proposes a novel fuzzy clustering ensemble algo-
rithm based on self-enhanced fuzzy matrix, as illustrated in the
algorithm framework shown in Fig. 2.

The entire algorithm can be divided into three stages. In
Stage 1, a fuzzy clustering ensemble is generated by employ-
ing FCM clustering algorithms with different initializations,
and this ensemble serves as the input for the second stage.
Stage 2 constitutes the core of the algorithm, encompassing
four steps. First, an FCA matrix is constructed. Subsequently,
the obtained FCA matrix undergoes SVD to extract primary
features and reduce noise, as detailed in Section III-A. Then,
the representativeness of samples regarding the ensemble as
a whole is calculated, as indicated in Section III-B. Finally,
the EFCA matrix is constructed by weighting based on sample
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representativeness, as discussed in Section III-C. In Stage 3, the
local density of samples is measured by the diagonal elements
of the EFCA matrix. The core samples are discovered using
density peak clustering. Subsequently, the remaining samples
are assigned based on the information from the EFCA matrix,
gradually diffusing into the prototype sample set to obtain the
final clustering result, as described in Section III-D.

A. SVD Alleviates Low-Value Denseness

After obtaining the FCA matrix, we introduce SVD to denoise
the FCA matrix and extract key features, resulting in the DFCA
matrix, to alleviate the low-value density of the FCA matrix.

We start by performing SVD on the initial FCA matrix as
follows:

FCA = U · S · V T (7)

where U and V are the left and right singular vector matrices,
respectively, and S is the singular value matrix with diagonal
elementsσ, arranged in descending order σ1 ≥ σ2 ≥ · · · ≥ σN .

Next, we need to calculate the information content carried by
different singular values in the matrix S

σ = diag(S) (8)

energy =
cumsum(σ2

i )∑N
i=1 σ

2
i

(9)

where cumsum(σ2
i ) represents the cumulative sum of squared

singular values, i.e.,

cumsum(σ2
i ) =

[
σ2
1 ,
(
σ2
1 + σ2

2

)
, . . . ,

(
σ2
1 + σ2

2 + · · ·+ σ2
N

)]
(10)

Then, on the basis of parameter α, we determine the number
k of principal components to retain

k = argmin (energy ≥ α) (11)

Finally, the matrices obtained from the SVD decomposition
are truncated to obtain the DFCA matrix, preserving the first k
principal components

DFCA = Uk · Sk · V T
k (12)

where Uk and Vk are the first k columns of matrices U and V ,
andSk is the diagonal matrix retaining the first k singular values.

B. Fuzzy Representativeness Estimation

To mitigate the impact of uniform dispersion, we utilize fuzzy
entropy to calculate the fuzziness of each sample. Consequently,
we estimate the representativeness of the samples and incor-
porate them into the weighted structure. Specifically, we first
calculate the fuzziness of each sample with respect to the fuzzy
clusters.

Definition 4: Given a data object xi in the set and a fuzzy
cluster Cm

j (where Cm
j ∈ Fm), the fuzziness of data object xi

relative to fuzzy cluster Cm
j is calculated as:

FE(xi, C
m
j ) = −

∑
xi∈X

Fm
j (xi) log2 F

m
j (xi) (13)

where,Fm
j (xi) represents the membership degree of data object

xi to the jth fuzzy cluster in the mth base partition.
In this context, we assume that the base clustering and clusters

in the fuzzy set are independent [46]. Therefore, the fuzziness
of data object xi relative to the entire set can be obtained by
summing the fuzziness of xi relative to fuzzy cluster Cm

j .
Definition 5: Given a fuzzy ensemble Πf with M base clus-

tering, the fuzziness of data object xi relative to the entire
ensemble Πf is defined as

FE(xi,Πf ) =
M∑

m=1

nm∑
j=1

FE(xi, C
m
j ) (14)

where, n(m) represents the number of fuzzy clusters in the mth
base clustering result.

After obtaining the fuzziness of each sample in the fuzzy en-
semble, we further introduce the concept of FRI, which measures
the representativeness of samples by considering the fuzziness
of samples relative to the ensemble.

Definition 6: Given a fuzzy ensemble Πf with M base clus-
tering, the fuzzy representativeness of data object xi relative to
the entire ensemble Πf (i.e., FRI) is defined as

FRI(xi,Πf ) = e−
FE(xi,Πf )

(M−1)·θ (15)

The parameter θ > 0 is used to adjust the influence of sample
fuzziness (FE) on the FRI. Section IV-D provides a more detailed
discussion on the values of the parameter θ on the datasets used
in this paper.

According to the above definition, because FEΠ(xi) ∈
[0,+∞) for any xi ∈ X , FRI(xi) ∈ (0, 1]. Clearly, a small
fuzziness of data object xi indicates that its FRI value is larger.
When the fuzziness of data object xi reaches its minimum value,
i.e., FEΠ(xi) = 0, its FRI will reach its maximum value, i.e.,
FRI(xi) = 1. As the fuzziness of a sample approaches infinity,
its FRI approaches zero.

C. Self-Enhanced Fuzzy Matrix

On the basis of the DFCA matrix from (12) and the FRI
obtained in Section III-B, we can compute the EFCA.

Definition 7: Given a set Πf containing M fuzzy clustering
results, the self-enhanced FCA matrix, based on sample repre-
sentativeness weighting, is defined as

EFCA = {efcaij}N×N (16)

efcaij =
FRIi ·DFCAij + FRIj ·DFCAji

2
(17)

where FRIi represents the representativeness of data object xi,
obtained through (15), and DFCAij represents the FCA value
between the ith and jth data objects in the matrix after extracting
the main features through SVD, obtained through (12).

The introduction of the FRI metric serves as a weighting factor
for sample allocation after denoising and extracting main com-
ponents from the FCA matrix. Intuitively, data objects with lower
fuzziness (higher FRI values) contribute to a more stable data
structure. Through the fusion of a weighted strategy, the EFCA
matrix not only alleviates the low-value density in the FCA
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Algorithm 1: Clustering Ensemble Based on Fuzzy Matrix
Self-Enhancement (FMSE):
INPUT: Fuzzy co-association matrix FCA, Final cluster
number K, Thresholds θ, α.

OUTPUT: Final clustering result F∗

1: Process:
2: Extract principal components of the FCA matrix

according to (12).
3: Compute the fuzziness of samples to the entire set

using (14).
4: Calculate the FRI of each sample in the set based

on (15).
5: Compute the EFCA matrix using (17).
6: Discover the set of prototype samples according to (20).
7: Assign the remaining samples using (25).
8: Merge redundant clusters until the cluster number equals

K to obtain the ensemble clustering result F∗.

matrix but also effectively addresses the issue of uniform distri-
bution, thereby enhancing the quality of ensemble clustering.

D. Consensus Functions

After obtaining the self-enhanced EFCA matrix model, we
measure the local density of samples using the diagonal elements
of the EFCA matrix. Subsequently, we identify a set of stable
core samples: those with high local density and a considerable
distance from samples with higher local density. On the basis of
the fuzzy relationships among samples described in the EFCA
matrix, we allocate the remaining samples to complete the
ensemble clustering task. We first measure the local density ρxi

of sample xi based on the self co-association value in the EFCA
matrix

ρxi = efcaii (18)

where efcaii represents the diagonal element of the EFCA
matrix.

Next, we calculate the representativeness δ of samples with
local density ρ greater than its average value ρ̄ = 1

N

∑N
i=1 ρi

δi = min
j:ρj>ρi

(1− efcaij) (19)

By sorting samples from high to low representativeness, we
obtain the prototype sample set (i.e., the initial cluster set)

R = {R1, R2, . . . , Rk|1 ≤ k ≤ N} (20)

Finally, we allocate the remaining samples to the above pro-
totype sample set, causing the prototype sample set to gradually
diffuse. Before doing so, we need to calculate the distance
between the remaining samples and the prototype sample set
and assign each sample to the nearest set until all samples are
allocated. The proximity of sample xi to the prototype sample
set (Rs) is defined as

ps (xi,R) = max
b=1,2,...,k

sim (xi, Rs) (21)

where sim(xi, Rs) is the fuzzy similarity between sample xi

and prototype samples in the initial cluster Rs. In this paper, we
propose two fuzzy similarity measures, namely, average based
and voting based, which are defined as follows:

Average-based fuzzy similarity measure:

sima (xi, Rs) = max
xb∈Rs

efcaib (22)

Voting-based fuzzy similarity measure:

simv (xi, Rs) =

M∑
m=1

Iv (xi, Rs, F
m) (23)

Where:

Iv (xi, Rs, F
m)

=

{
1, maxh=1,2,...,k {v (xi, Rs, F

m)} = v (xi, Rs, F
m)

0, otherwise
(24)

v (xi, Rs, F
m) = max

xb∈Rs

nm∑
c=1

f b
i,c × f b

j,c (25)

With the assumption that xi is an unallocated sample, the
allocation process involves finding the cluster to which it should
be assigned, which is calculated as

j = argmax (ps (xi,R)) (26)

Then, the sample is assigned to the nearest cluster

Rs = Rs ∪ xi (27)

If the number of prototype sample sets after allocation exceeds
the required final number of clusters, then hierarchical clustering
is used with a single linkage measure to merge prototype sample
sets until the desired number of clusters is achieved.

On the basis of the two similarity metrics sima and simv

mentioned above, this paper proposes two fuzzy clustering
ensemble algorithms–FMSE-a and FMSE-v–to accomplish the
final fuzzy clustering integration process. The entire algorithmic
procedure is described in Algorithm 1.

IV. EXPERIMENTS

In this section, we conducted a series of comparative ex-
periments with 12 state-of-the-art clustering ensemble algo-
rithms, comprising eight fuzzy clustering ensemble algorithms
and four crisp clustering ensemble algorithms, as detailed in
Section IV-B. Additionally, we examined the influence of dif-
ferent ensemble sizes on algorithm performance and conducted
a sensitivity analysis of our method’s parameters, as outlined
in Sections IV-D and IV-E. Furthermore, in Sections IV-F
and IV-G, we explored the time performance of the algorithms
and discussed the necessity of the two proposed strategies
through an ablation study, respectively.

Due to space constraints, we present only the ACC and NMI
metric comparisons in the main manuscript. Please refer to
the supplementary materials for the ARI metric experimental
results. Additionally, the supplementary file includes an ablation
study of the FMSE-v algorithm across all three metrics.
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TABLE II
DESCRIPTION OF THE BENCHMARK DATA SETS

A. Experimental Set-Up

All experiments were conducted using MATLAB R2021b on
a Windows system with a 2.1GHz CPU and 24GB of memory.

Data sets: we utilized 12 benchmark datasets from the UCI
Machine Learning Repository 1 and the Bioinformatics Feature
Selection Database 2 to evaluate the performance of the proposed
method, whose details are presented in Table II. These datasets
are widely recognized as classical benchmarks for evaluating
clustering algorithm performance. Table II provides information
on the number of data samples (N), the number of data features
(D), and the number of clusters (K).

Base clustering: we conducted 100 and 200 runs of the K-
means and FCM clustering algorithms, respectively, to generate
base partitions for crisp and fuzzy clustering. To ensure the
diversity of the base clustering results, we followed the recom-
mendation in [46], [47], [48], where k should be greater than the
expected number of clusters. We set the number of clusters K for
each run of the K-means and FCM algorithms to be randomly
selected within the range [k,

√
n], where k is the true number

of clusters, and n is the number of samples. Additionally, to
further enhance the diversity of the fuzzy clustering pool, we
randomly selected the fuzzy exponent of the FCM algorithm
from the interval [1, 3]. To provide a fair comparison and reduce
the impact of the randomness in the base clustering results, we
ran our method multiple times (10 runs) on each dataset, and the
average performance was reported.

Evaluation metrics: we employed three widely used external
evaluation metrics to evaluate the ensemble clustering results:
accuracy (ACC) [49], normalized mutual information (NMI) [6],
and adjusted rand index (ARI) [50]. In the experimental analysis,
the reference clustering results were the true clustering labels of
the datasets. The values of ACC, NMI and ARI range from [0,1],
where higher values indicate better clustering performance.

B. Clustering Performance Comparison

In this section, we compare the proposed FMSE-a and
FMSE-v methods with 12 state-of-the-art clustering ensemble

1https://archive.ics.uci.edu/
2https://jundongl.github.io/scikit-feature/datasets.html

algorithms. The compared methods are four crisp clustering
ensemble algorithms (HGPA [6], PTA-CL [51], CESC [14],
CMSE [52]), and eight fuzzy clustering ensemble algorithms
(FHC-AL [28], FHC-CL [28], RPFCM [32], FCSPA [10],
RBEACE-AL [41], RBEACE-CL [41], SCPP-a [15], SCPP-
v [15]). Except for the RBEACE algorithm, for which the exper-
imental code was not provided by the original authors, all other
compared algorithm codes were supplied by the original authors.
The recommended parameter values from the original authors
were used for the parameters in the compared algorithms. The
fuzzy base clustering adopted by the proposed algorithm is
exactly the same as that used by the compared algorithms to
ensure the fairness of the experiments.

The average ACC and NMI scores along with their standard
deviations for the 14 clustering ensemble algorithms on the 12
datasets are presented in Tables III and IV. The highest index
value for each dataset is marked with double underscore bold,
the second-highest index value is marked with single underscore
bold, and âN/Aâ denotes that the algorithm encountered a mem-
ory shortage error during execution. The ranking information
corresponding to Tables III and IV is illustrated in Figs. 3 and 4.

From Table III, our FMSE method achieved the highest ACC
scores on the Seeds, Heart, Climate, Diabetes, WDBC, CMC,
Spambase, and SMK datasets. For datasets where the highest
value was not obtained (e.g., BCW and Waveform), our two
methods still secured the second and third positions. From
Fig. 3(a), FMSE-a and FMSE-v ranked first in 5 and 4 out
of 12 comparisons, respectively, while the third-ranked method
secured the first position only twice. Similarly, From Fig. 3(b), in
a total of 12 comparisons, FMSE-a and FMSE-v ranked third in
all 12 and 11 cases, respectively, while the third-ranking method
CMSE achieved a top three position in only three comparisons,
highlighting the significant advantage of FMSE methods in
terms of ACC.

With regard to the NMI metric, from Table IV, the FMSE
methods achieved the highest NMI scores on the Seeds,
Heart, Climate, Diabetes, WDBC, CMC, Spambase, and SMK
datasets. From Fig. 4(a), FMSE-a and FMSE-v ranked first in
8 and 1 out of 12 comparisons, respectively. From Fig. 4(b),
in a total of 12 comparisons, FMSE-a and FMSE-v achieved
top three positions in 11 and 9 cases, respectively, while the
third-ranking methods PTA-CL and HGPA secured a top three
position in only 3 comparisons. This finding indicates that our
FMSE generally outperform the comparison methods in terms
of NMI.

Furthermore, our algorithm demonstrates significant advan-
tages over fuzzy clustering ensemble algorithms based on the
FCA matrix (e.g., HC-a, HC-c, RBEACE-AL, RBEACE-CL,
SCPP-a, SCPP-v). On all 12 datasets, the proposed FMSE-a and
FMSE-v methods achieved either the first or second position
in all comparisons. This finding strongly supports the notion
that our EFCA matrix model can handle sample fuzziness more
effectively than the FCA matrix model can, leading to improved
clustering results.

Once again, in comparison with crisp clustering ensemble
methods, although the CMSE algorithm performed well on
the Ecoli and Waveform datasets and the PTA-CL algorithm
performed well on the LR dataset, our fuzzy algorithms FMSE-a

Authorized licensed use limited to: Anhui University. Downloaded on December 31,2024 at 06:18:37 UTC from IEEE Xplore.  Restrictions apply. 

https://archive.ics.uci.edu/
https://jundongl.github.io/scikit-feature/datasets.html


156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 1, JANUARY 2025

TABLE III
THE ACC RESULTED FROM DIFFERENT ALGORITHMS, PRESENTED AS “MEAN ± STANDARD DEVIATION”

TABLE IV
THE NMI RESULTED FROM DIFFERENT ALGORITHMS, PRESENTED AS “MEAN ± STANDARD DEVIATION”
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Fig. 3. Number of times that each method is ranked in the (a) first position and (b) top three with respect to Table III.

Fig. 4. Number of times that each method is ranked in the (a) first position and (b) top three with respect to Table IV.

Fig. 5. Average performances in terms of ACC of our methods and the base
clustering 100 runs.

and FMSE-v achieved better rankings on all other datasets.
For instance, on the Climate dataset, FMSE-a and FMSE-v
achieved ACC values of 0.8815 and 0.8837, respectively, while
the best-performing crisp clustering ensemble algorithm, CESC,
obtained a score of only 0.6472. This result clearly demonstrates
the superiority of our fuzzy clustering ensemble methods over
crisp clustering ensemble methods.

In conclusion, across the 12 datasets from diverse domains
and compared with 12 benchmark methods, the proposed FMSE
algorithm exhibits the best clustering performance, providing
strong evidence of its superiority.

C. Comparison Against Base Clustering

Clustering ensemble aims to integrate multiple base clustering
results into a more robust and accurate consensus clustering

Fig. 6. Clustering performances with respect to ACC with varying θ and α.

result. In this section, we compare the consensus clustering
results of the proposed FMSE-a and FMSE-v methods with the
fuzzy base clustering results. We ran the FMSE methods and
the FCM method 100 times on each dataset and calculated the
average ACC scores and their error values for the 100 runs. The
experimental results are shown in Fig. 5.

Fig. 5 shows that our method significantly improves the
ACC scores compared with base clustering on all datasets. For
instance, on the Climate dataset, the average ACC score of the
base clustering is 0.1987, indicating low clustering quality. How-
ever, after base clustering is integrated with our FMSE-a and
FMSE-v methods, the average ACC scores improved to 0.8820
and 0.8819, respectively. Similarly, on the WDBC dataset, the
ACC scores of the FMSE-a and FMSE-v methods increased
from 0.3371 to 0.8467 and 0.8448, respectively, demonstrating
a substantial advantage over base fuzzy clustering. The error
values calculated on each dataset also further indicate the ro-
bustness of our method.
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Fig. 7. Clustering performances of different algorithms by varying ensemble size with respect to ACC.

TABLE V
INPUT PARAMETERS OF THE PROPOSED METHOD

D. Parameter Analysis

Two main hyperparameters are involved in our FMSE algo-
rithm, as shown in Table V. The ranges for the hyperparameters
θ and α are (0,+∞) and [0, 1), respectively. In this section,
we further illustrate the impact of θ and α on the FMSE algo-
rithm and provide the parameter ranges for optimal algorithm
performance. The experimental results are presented in Fig. 6.

Fig. 6 illustrates the ACC performance of the FMSE algorithm
with varying values for the hyperparameters θ andα. Each result
represents the average value over 30 runs. The x-axis and y-axis

denote different values for the parameters θ and α, respectively,
while the z-axis represents the final performance evaluation
metric, ACC.

First, the graph shows that as θ changes from 0.3 to 6, the
corresponding ACC values exhibit no significant variations,
indicating the stability of the parameter θ. On the Seeds dataset,
the ACC achieved its highest value when α was in the range
[0.8, 0.9]. On datasets such as Heart, Ecoli, WDBC, and BCW,
the algorithm demonstrated optimal performance when α was
set to 0.9. Furthermore, on the Seeds, Ecoli, WDBC, and BCW
datasets, the algorithm performance improved whenα exceeded
0.7 than when α was in the range [0, 0.6]. With all aspects taken
into account, the range for α should be set to [0.7, 1], where the
FMSE algorithm can achieve optimal performance.

After multiple experiments, this study set the parameter values
for the compared algorithms as θ = 0.84 and α = 0.95. The
FMSE algorithm achieved the best performance under these
parameters. This paper presents the experimental results on eight
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Fig. 8. Running time (seconds) of the different ensemble clustering methods on all data sets.

datasets only because of space constraints. Similar parameter
analysis results were observed for the remaining datasets.

E. Influence of Ensemble Size

In this section, we evaluate the performance of the FMSE
method under different ensemble sizes M. The proposed method
is compared with the other 12 ensemble clustering algorithms.
For each ensemble size M, all algorithms were run 30 times
on each benchmark dataset, and their average performance was
recorded. In each run, M base clustering results were randomly
selected to participate in the ensemble. The experimental results
are depicted in Fig. 7, where the x-axis represents different
ensemble sizes M, the y-axis represents the final performance
metric ACC, and each curve represents a different method.

As illustrated in Fig. 7, both FMSE algorithms achieved
optimal performance on the Seeds, Heart, Climate, Diabetes, and
WDBC datasets. The CMSE method demonstrated favorable
performance on the Ecoli and Waveforms datasets, yet our
methods consistently outperformed CMSE on all other datasets
and maintained the second-best position on these two datasets.
Moreover, our methods exhibited overall robust performance,
showing minimal variations under perturbations caused by dif-
ferent ensemble sizes (as observed on WDBC and Waveforms,

where our algorithmâs performance steadily improved with the
increase in M). This finding indicates that our method possesses
good robustness. Remarkably, our algorithm outperformed most
of the methods, even with an ensemble size as small as 10, while
others used 50 base clustering as input.

F. Execution Time

In this section, we evaluated the average execution time of the
proposed FMSE and all fuzzy clustering ensemble algorithms
over 10 runs on all benchmark datasets, and the experimental
results are shown in Fig. 8. Overall, the time cost of FMSE
is at a moderate level, which is equivalent to the efficiency of
most clustering ensemble algorithms based on fuzzy matrix.
Even on the largest dataset LR, FMSE is consistently faster than
most fuzzy matrix-based methods (e.g. FCSPA, HC-a, HC-c).
Although our running speed is slower than SCPP, considering
that our method significantly outperforms SCPP in clustering
performance, a little sacrifice in running time is acceptable.

G. Ablation Study

In this section, we investigate the necessity of the two strate-
gies involved in the proposed FMSE algorithm when enhancing
the FCA matrix. First, we abandon the SVD strategy and name
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TABLE VI
ABLATION STUDY IN ACC, NMI AND ARI FOR THE PROPOSED FMSE-A

this degenerate version ”w/o SVD”. Second, we remove the
influence of FRI on the FCA matrix and name it ”w/o FRI”.

Table VI demonstrates the clustering performance of FMSE
after removing the above-mentioned two strategies. It can be
observed that FMSE with both strategies retained consistently
achieves the best experimental results across most benchmark
datasets. Specifically, for the degraded version without SVD
(w/o SVD(a)), it lags behind in 32 out of 36 comparisons with
FMSE-a, indicating the necessity of the SVD strategy for the pro-
posed algorithm. Similarly, for the degraded version without FRI
(w/o FRI(a)), it only achieves victory in 2 out of 36 comparisons,
demonstrating the essential role of the FRI strategy. Similar
observations can be made in the ablation study of FMSE-v
as well. In summary, both strategies involved in the proposed
algorithm are indispensable for improving the performance of
the FMSE algorithm.

V. CONCLUSION

The current fuzzy clustering ensemble methods are mostly
based on FCA matrices. However, the low-value density and
uniform dispersion of FCA matrix significantly affect clustering
performance. To address this issue, we introduce SVD to allevi-
ate the low-value density of FCA and simultaneously mitigate
its uniform dispersion through fuzzy representative-weighted
structures of the samples. On this basis, we employ a consensus
method using self co-association prototype diffusion to obtain
the final ensemble clustering result. Extensive experimental
comparisons validate the superiority of the proposed FMSE
algorithm.

This paper utilizes fuzzy matrix to capture the co-occurrence
pattern of pairs of samples while considering the fuzziness of the
samples. However, the complexity of the fuzzy matrix leads to
high computational costs for the clustering ensemble algorithm
based on it, making scalability to large datasets difficult. In the
future, we will focus on this scalability issue.
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