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Fair feature selection for classiication decision tasks has recently garnered signiicant attention from researchers. However,

existing fair feature selection algorithms fall short of providing a full explanation of the causal relationship between features

and sensitive attributes, potentially impacting the accuracy of fair feature identiication. To address this issue, we propose a

Fair Causal Feature Selection algorithm, called FairCFS. Speciically, FairCFS constructs a localized causal graph that identiies

the Markov blankets of class and sensitive variables, to block the transmission of sensitive information for selecting fair

causal features. Extensive experiments on seven public real-world datasets validate that FairCFS has comparable accuracy

compared to eight state-of-the-art feature selection algorithms, while presenting more superior fairness.

CCS Concepts: · Computing methodologies→ Causal reasoning and diagnostics.

Additional Key Words and Phrases: Causal Fairness, Fair Feature Selection, Markov Blanket

1 INTRODUCTION

Fairness in trustworthy decision-making has become a critical focus [9]. It ensures that models refrain from

discriminating against or demonstrating unfair preferences towards speciic individuals or groups grounded in

sensitive attributes such as race, gender, or age in various ields such as credit assessment [5], judicature [38],

medicine [33]. People can now beneit from the convenience of decision-support algorithms and do not worry

about the discrimination of speciic groups and public awareness [28]. However, despite researchers’ exploration

of fair feature selection algorithms [8] to study a more convenient approach to address discrimination in

model building and data understanding [15], the investigation into causal relationships among features has

been insuiciently addressed in decision-making tasks [4, 13]. Causal mechanisms aid in comprehending the

underlying interactions between features, ofering interpretable insights for developing trustworthy model.

Among the existing fair feature selection algorithms, one method involves incorporating fairness metrics into

the training process to select suitable features, leveraging traditional feature selection algorithms [4]. This method

adopts a forward feature selection strategy based on the conventional wrapper feature selection method [19], and

utilizes a combined metric of accuracy and fairness during the model evaluation stage for selecting fair features.

While statistically-driven feature selection methods have proven utility in improving both predictive accuracy

and fairness, they fall short in elucidating the causal relationships between features and sensitive variables.

Therefore, this paper explores the potential relationships between variables from a causal perspective, making the
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Fig. 1. The diference in admissible features leads to diferent judgments on whether a feature is fair or not. (a)

When �1 is specified as an admissible feature, �2 is dependent on the sensitive variable � , and then �2 is an unfair feature.

(b) But when �3 is specified as an acceptable feature, �2 is independent of the sensitive variable � , and then �2 becomes a

fair feature.

search for fair features more efective and interpretable. Therefore, this paper explores the potential relationships

between variables from a causal perspective, making the search for fair features more efective and interpretable.

Other researchers have proposed a fairness feature selection method that adheres to the deinition of causal

fairness [13]. Since the intervention fairness is too restrictive, this method identiies the fairness features by

artiicially specifying admissible features [36]. However, while this method partially addresses the issue of the

statistic-based fair feature selection algorithm’s inability to explain the causal relationship between features, it

poses challenges due to the lack of clear criteria for specifying admissible features. Diferent choices of admissible

features can result in nominally fair features that may be considered unfair, and the feature selection results

are unreliable, as shown in Figure 1. This challenge arises because the admissible feature-based method can

only elucidate the causal relationship between a feature and the sensitive variable under speciic conditions,

leaving the causal relationship under diferent conditions unexplained. Moreover, the fair features identiied by

this method may not necessarily be relevant to the class variable, resulting in decreased accuracy of the trained

classiication model. In conclusion, this method can not fully elucidate the causal relationship between features

and sensitive variables by artiicially specifying admissible features. Consequently, there remains a possibility of

sensitive information being transmitted to the decision-making model, rendering the results unreliable.

Unlike traditional feature selection, causal feature selection explains the complete causal relationship among

features, including the class variable [44]. Causal feature selection aims to identify the Markov Blanket (MB) of a

class variable, and the MB of a variable includes its parents (direct causes), children (direct impacts), and spouses

(other direct causes of direct efects) in a faithful Bayesian network (BN) [1]. Given the MB of the target variable,

it means that we can directly look at the causal relationship between the target variable and other variables from

a causal perspective. By inding the variables that are independent or dependent on MB, the reasons for making

the corresponding prediction decision can be explained in the classiication prediction task, and the optimal

feature subset can be given. In the study of fairness tasks, Simpson’s paradox shows that it is important to ind

the root cause of the real impact, and inding the causal relationship between things from the perspective of

cause and efect provides a good idea for improving the fairness of prediction tasks.

Considering that the existing fair feature selection algorithms cannot fully explain the causal relationship

between features and sensitive variables, and cannot efectively prevent the transmission of sensitive information,

the main contributions of this paper are as follows:
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• We introduce a fair causal feature selection problem that adheres to causal fairness. Additionally, we

theoretically analyze the challenges of obtaining the fair causal feature set in this problem.

• We propose a fair causal feature selection algorithm called FairCFS, which uses the MB of sensitive variables

to block the path from features to sensitive variables, to identify a feature subset within the class variable’s

MB for ensuring fairness.

• We conduct experiments on seven real-world datasets to show that FairCFS has comparable accuracy

but achieves higher fairness than six causal feature selection algorithms and two fair feature selection

algorithms.

The remaining sections of this paper are structured as follows: Section 2 reviews relevant work. Section 3

presents the fundamental deinitions. In Section 4, we introduce the concept of fair causal feature selection and

ofer a theoretical analysis of the problem’s maximum solution. Section 5 introduces the FairCFS algorithm,

provides algorithmic correctness proofs, and ofers detailed analysis. Section 6 presents the experimental results

and corresponding analysis. Finally, we summarize the paper and outline potential avenues for future research in

Section 7.

2 RELATED WORK

This paper aims to enhance the fairness of feature selection by incorporating considerations of causal relationships

between features and constructing machine learning models that are more interpretable and socially acceptable.

Thus, this section introduces the work related to the causal feature selection algorithm in section 2.1 and the

related work of the fairness algorithm in section 2.2.

2.1 Causal feature selection

An emerging method for causal feature selection involves the identiication of the MB associated with class

attributes as a subset of features [1]. As illustrated in the introduction, class variables exhibit statistical indepen-

dence from all other features when conditioned on MB. Consequently, MB explicitly identiies class attributes and

establishes a local causal relationship between class attributes and features, a feature absent in traditional feature

selection methods. Currently, causal feature selection methods are predominantly categorized as synchronous

and divide-and-conquer methods [1, 16].

The synchronous algorithm represents the initial approach in the development of causal feature selection

algorithms. The Growth-Shrink (GS) [27] algorithm is the irst correct synchronous algorithm. In its operation, it

explores all candidate MB variables during the growth phase and subsequently prunes false-positive MB variables

during the shrinkage phase. Subsequent advancements by Tsamardinos and Aliferis led to the enhancement of the

GS algorithm through the introduction of incremental association MB (IAMB) [40]. Following the introduction of

IAMB, several variants emerged, including inter-IAMB [40], fast-IAMB [43], and FBED [6]. While the synchronous

algorithm has proven efective, it is essential to note that the number of required data samples grows exponentially

with the MB size of the target variable.

To reduce the amount of data required, the researchers proposed a divide-and-conquer algorithm. Representative

algorithms are MinMax MB (MMMB) [39], HITONMB [2], Parent and Child-Based MB algorithm (PCMB) [34],

Parent and Child-based MB Iterative Search algorithm (IPCMB) [12], etc. These algorithms are based on the

GLL framework, which irst inds the parent and child node PC of the target variable and then looks for the

spouse node of the target variable from the PC node of the PC node. However, the spouse obviously cannot

be obtained from the PC of the variables in the combination of the target parents and some children (only one

parent), so there is no need to discover the PC of these variables [21]. Therefore, a new causal feature selection

framework, called CFS [21], with efective mate discovery is proposed to improve the eiciency of causal feature
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selection. The practice is to identify children with multiple parent nodes in the target variable’s PC, then perform

PC discovery only on these children to reduce the number of variables required for PC discovery.

In general, while existing causal feature selection algorithms can efectively explain causal relationships

between variables, they do not consider algorithmic fairness, and the selected MB feature sets may lead to

discrimination.

2.2 Fair machine learning

Fair machine learning algorithms represent a dedicated research domain to address inequity and bias within

machine learning models [35]. The signiicance of fairness in upholding human rights, ethical standards, and

social justice has gained increasing prominence. Ensuring fair decision-making for diverse groups is essential

for bolstering the credibility of technology and fostering the sustainable development of society. Many recent

papers have proposed ways to enhance fairness in machine learning algorithms, and these methods are generally

divided into three types: pre-processing, in-processing, and post-processing [35].

Pre-processing mainly consists of changing the training data before entering the machine learning algorithm.

Early preprocessing methods such as Kamiran and Calders [18] and Luong [25] suggest changing the labels or

reweighting certain instances before training to make the classiication fairer. In general, samples closer to the

boundaries of the decision are prone to change labels because they are most likely to be distinguished. Recent

methods suggest modifying the data feature representation so that subsequent classiiers are fairer [7].

The in-processing method mainly modiies the machine learning algorithm to consider fairness during train-

ing [45]. For example, Zafar [45] et al. and Woodworth [42] et al. suggest adding constraints to a classiication

model that needs to satisfy an indicator of equilibrium odds or other inluences [45]. Bechavod and Ligett [3]

recommend incorporating penalties into an objective function that enforces the satisfaction of the metrics

for FPR and FNR. Zemel [46] et al. combine fair representation learning with process models by applying a

logistic regression-based multi-objective loss function, and Louizos [24] et al. apply this idea using variational

autoencoders.

The post-processing method mainly modiies the output score of the classiier to make the decision fairer [9].

For example, Hardt [17] et al. propose a technique for transforming certain decisions of classiiers to enhance

equilibrium odds or chances. Corbett-Davies [9] et al. and Menon and Williamson [29] recommend choosing

separate thresholds for each group to maximize accuracy and minimize demographic parity. Dwork [11] et al.

propose a decoupling technique to learn diferent classiiers for each group, and they also combine transfer

learning techniques with programs that learn from out-of-group samples.

In the ield of Graph Neural Networks (GNN), Zhang et al. proposed a novel deep model, FPGNN (Fair Path

Graph Neural Network) [48], to mitigate the impact of sensitive information leakage in GNN models. This

model employs an expandable random walk approach(i.e. fair path), to identify higher-order nodes signiicantly

inluencing node fairness. However, this mechanism may lead to neglecting sensitive attributes related to nodes

with low degrees and an imbalanced impact of sensitive attributes associated with highly connected nodes on

their neighboring nodes. To address these limitations, they introduced the SRGNN (Structure Rebalancing Graph

Neural Network) [47] algorithm. SRGNN takes into account both lower-order and higher-order nodes in the

GNN model, considering their respective inluences on fair representations in decision-making processes.

In summary, while existing fairness algorithms have proposed many fair practices, there is still a lack of

appropriate approaches to explain the causal relationships between features. Based on the above work, in this

paper, we attempt to combine the fairness algorithm with the causal feature selection algorithm, and propose a

machine learning algorithm that is both interpretable and fair.
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3 DEFINITIONS

In this section, we delve into algorithmic fairness and explore the deinitions and theorems of causality. Before

delving into the deinition of causal fairness, it is essential to provide some context by introducing the causal

diagram.

3.1 Causal diagram

In this subsection, we provide essential background knowledge related to causal discovery. This paper employs

a causal graph model based on Bayesian networks to represent causal relationships between variables, a well-

established approach for comprehending causality. Let � (� ) denote the joint probability distribution across the

set of all variables � , and � = (� , �) represents a directed acyclic graph (DAG) consisting of nodes � and edges

�, often referred to as a causal graph. Each edge signiies a direct dependency between two variables within

the DAG. Within the DAG framework, the notation �� → �� indicates that �� serves as the parent of �� , and

conversely, �� is the child of �� , indicating that �� exerts an inluence on �� .

Definition 1. (BayesianNetwork) [31] A triplet< � ,�, � (� ) > is called a Bayesian network if< � ,�, � (� ) >

satisies the Markov condition: Given the parents of a variable, each variable in� is independent of all non-descendants

of the variable.

A BN encodes the joint probability over a set of variables � and decomposes � (� ) into the product of the

conditional probability distributions of the variables given their parents in � . Let ��(�� ) be the set of parents of

�� in � . Then, � (� ) can be written as:

� (�1,�2, ...,��+1) =

�+1∏

�=1

� (�� | ��(�� )) .

Definition 2. (Faithfulness) [37] A �� < � ,�, � > is faithful if all conditional dependencies between

features in � are captured by � .

Faithfulness indicates that in a BN, � , and � are independently conditioned on a set � in � if they are

d-separated by � in � .

Definition 3. (Markov Blanket) [31] In a faithful BN, each variable has only one MB consisting of its parents,

children, and spouses (the other parents of its children).

Given the MB of � ,��� , all other variables are conditionally independent of � , that is,

� ⊥⊥ � | ��� ,∀� ∈ � \��� \{� }.

Pearl introduced the concept of intervention, which involves altering the state of attributes to a speciic value

and observing the efects.

Definition 4. (Do-operator) [32] An intervention on an attribute � , denoted as � ← � , is efectively achieved

by assigning the value � to the variable � within a modiied causal graph� ′,� ′ is identical to� , except all incoming

edges to � have been eliminated.

The do-operator aligns with the graphical interpretation of an intervention. Speciically, an intervention

represented as �� (� ) = � equals conditioning on � = � when � lacks any ancestors within � .
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3.2 Causal fairness

This paper aligns with interventional fairness, a concept within the realm of causal fairness. Causal fairness

solves the challenges of statistical fairness, which primarily relies on correlation-based assessments. Predictive

algorithms often struggle to diferentiate between causal relationships and spurious correlations among attributes.

A well-known illustration of this is Simpson’s paradox [41]:

Example 1. In the 1973 Berkeley admissions event, the acceptance rate for male applicants was 44%, and the

acceptance rate for female applicants was 35%. While there may be a bias against women, when the data is broken

down by department, women’s acceptance rate is higher than that of men in each college. This is because most women

apply to colleges with strict admission requirements, the overall female acceptance is underestimated.

This example underscores the importance of delving into causal relationships between sensitive attributes and

decisions instead of relying solely on correlations to tackle equity concerns efectively [26]. In this paper, we

adopt the Interventional Fairness concept formulated by Babak [36] et al. This robust causal fairness concept

can be assessed using input datasets and accurately captures group-level fairness. It ensures that the sensitive

variables � does not inluence the output � when other variables are held constant at arbitrary values.

Definition 5. (K-fair) [36] Fix a set of attributes � ⊆ � − {�,�}. We say that an algorithm ℓ : Dom(X)→

Dom(O) is K-fair w.r.t. a sensitive attribute � if, for any context � = � and every outcome � = � , the following holds:

�� (� = � | �� (� = 0), �� (� = �)) = �� (� = � | �� (� = 1), �� (� = �)).

If the algorithm is K-fair for each set� , the algorithm is said to be intervening fairly. Moreover, in the intervened

igure � ′ (the incoming edge from � to � is removed), the sensitive attribute � is independent of � ′ under �

conditions, i.e., � and � ′ in igure � ′ are d separated under � conditions.

4 PROBLEM STATEMENT

With the deinition of K-fair, this section establishes a fair causal feature selection problem that guarantees

intervention fairness. Fair causal feature selection aims to ind a feature subset that, while satisfying the concept

of fairness, also possesses causal relationships that can be explained. We provide a theoretical analysis to explain

this problem.

4.1 Problem analysis

Consider dataset � , � = � ∪ � ∪ � , sensitive variables � , non-sensitive variables � = �1, �2, ..., �� , label variable

� . ��� , ��� are the collection of Markov blanket variables for � and � , containing parent-child and spouse

nodes for � and � , respectively. � ′ is the target variable obtained after training on the subset � ⊆ � . Now, we

propose a deinition of fair causal features:

Definition 6. (Fair Causal Features) Consider a set of features � as fair causal features if (1) the predictor of

the classiier model � ′ trained on � satisies K-fair, and (2) the features in � are interpretable with the class variable

� .

Here � ⊆ � . The objective of feature selection is to identify the fair subset � after recognizing the causal

relationships between features and both the class variable and sensitive variable, and this subset ensures that

training � ′ using these variables results in causal fairness.

Example 2. For example, a loan system that decides whether to approve an applicant’s loan application based on

their personal information. In this example, we can see that credit score, annual income, education level, and marital

status are potential fair features, while gender and age can afect the fairness of loan approval decisions. Following

the concept outlined in Deinition 6, when selecting fair causal features, gender is initially excluded as it is considered

ACM Trans. Knowl. Discov. Data.



Fair Feature Selection: A Causal Perspective • 7

a sensitive attribute. Other features such as credit score and annual income may be chosen as fair causal features

because they can predict an individual’s repayment capability without involving gender discrimination. Conversely,

age, as a feature that doesn’t adhere to causal fairness, is also excluded from consideration.

This paper aims to ind all fair causal features that can be used for classiier training without specifying

admissible features, with the sensitive feature � excluded from training. Therefore, we decide to search for

the maximum target subset in the set of the class variable’s MB and determine the conditional independence

between features and the sensitive variable based on the MB of the sensitive variable. According to Deinition 3,

irst discovering the MB of the class variable ensures that the selected features have predictive information for

the target variable � , improving prediction accuracy. Secondly, judging the conditional independence between

features and the sensitive variable under the condition of the MB of the sensitive variable can be provided by the

algorithm to identify the set of features that block the paths from fair features to the sensitive variable without

the need to specify admissible features manually. Below, we will deine the fair causal feature selection problem:

Definition 7. (Fair Causal Feature Selection Problem) Given a dataset � = {�, �,� }, identify the largest

subset � ⊆ ��� , where � has an explainable causal relationship with � while ensuring that the feature set � is

causally fair, where��� ⊆ � .

Based on the deinition of causal fairness (Deinition 5), we need to obtain the distribution after intervening

on the causal graph when we want to determine if a feature set meets the causal fairness criteria deined in

Deinition 6. However, in practical training, this can often be challenging to obtain. Building upon the assumption

proposed by Galhotra [13], we will introduce a method to assess the fairness criteria deined in Deinition 6 using

the assumed intervention distribution through classiier training. This approach separates the fairness of feature

selection from the training process. It allows us to theoretically analyze how to eliminate bias efects during the

feature selection process without considering actual intervention operations.

Classiier Training: A new variable � ′ (predictive variable) is generated by training a classiier on the selected

feature subset� . Here, �� (� ′ | � ) is derived from the observed distribution � (� ), which is equivalent to adding a

new node � ′ to the causal graph. � ′ is a child node of all features that can afect the classiier’s output.

Assumption 1. [13] The mechanism generating � ′ is the same as � (� ′ | � ∪� ), where � (·) is the observational

distribution.

In Fair Causal Feature Selection Problem, � = ∅. The problem satisies the assumption.

According to the deinition of causal fairness, whenever we intervene with the fair feature set, the predictive

algorithm’s output distribution remains unchanged when sensitive variable values change. Using the do-operation,

intervening with a feature is equivalent to removing its incoming edges and adjusting its value. Suppose all paths

from the sensitive variable to the predictive target � ′ through the algorithm-selected features are blocked after

intervention under the sensitive variable’s MB condition set. In that case, the features chosen by the algorithm

are considered fair.

Therefore, inding a solution to the Fair Causal Feature Selection Problem requires adequately explaining the

causal relationships between features and label. Since all paths from fair features to sensitive variables are blocked

under the condition set��� , the causal relationships of every path from fair features to sensitive variables are

identiied. Furthermore, since � ⊆ ��� , fair features are members of the MB of the class variable, establishing a

dependency relationship with the class variable. This means that the causal relationships of every path, from

fair features to the class variable, are also identiied. Based on Deinition 2, the variable’s MB is unique, and the

transmission of sensitive information is blocked. There will not be a situation where fair causal features are

identiied as unfair when the condition set changes.

We point out through the following Lemma 1 that the Fair Causal Feature Selection Problem can ind the

maximum solution with the most features by merging the sets that satisfy Fair Causal Features.
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Lemma 1. If two diferent sets of Fair Causal Features, �1, and �2, are solutions to the Fair Causal Feature

Selection Problem, then the new set after merging �1 and �2 is still a causally fair solution. The classiier trained on

�1 ∪ �2 is also causally fair.

Proof. Let � ′1 and � ′2 denote the output variables of the classiier trained on �1 and �2. Let �
′ denote a

modiied causal graph where the incoming edges of � are removed. According to the deinition of causal fairness,

all paths from the sensitive feature � to � ′1 are blocked in � ′, i.e., �⊥⊥ � ′1 | �
′. Since � ′1 is a child of attributes in

�1, all paths from � to the parents of � ′1 are blocked, i.e., �⊥⊥ ��(�
′
1 ) | �

′. We obtain the same condition for �2.

Let � ′ denote the output variable of the classiier trained on �1 ∪ �2. We have:

�� [� ′ | �� (�) = �, ��� ]

= Σ�� (� ′ )=��� [�
′
= � | ��(� ′) = �, �� (�) = �, ��� ]�� [��(�

′) = � | �� (�) = �, ��� ]

= Σ�� (� ′ )=��� [�
′
= � | ��(� ′) = �,��� ]�� [��(�

′) = � | �� (�) = �, ��� ]

(�)

= Σ�� (� ′ )=��� [�
′
= � | ��(� ′) = �,��� ]��� ′ [��(�

′) = � | � = �, ��� ]

(��)

= Σ�� (� ′ )=��� [�
′
= � | ��(� ′) = �,��� ]��� ′ [��(�

′) = � | ��� ]

(i) Because performing a do-operation on � is equivalent to creating a new causal graph� ′, where the value of � is

set to � ,� ′ only has parent nodes�1∪�2, hence �� [��(�
′) = � | �� (�) = �, ��� ] = ��� ′ [��(�

′) = � | � = �, ��� ].

(ii) Since� ′ is trained over�1∪�2, ��(�
′) ⊆ �1∪�2, �⊥⊥ ��(�

′) | � ′, ��� ′[��(�
′) = � | S=s,��� ]=��� ′[��(�

′) =

� | ��� ].

■

In � ′, ��� ′ [��(�
′) = � | � = �, ��� ] = ��� ′ [��(�

′) = � | ��� ], �
′ satisies Deinition 5, therefore, �1 ∪ �2 is

causally fair.

According to the following Lemma 2, the Fair Causal Feature Selection Problem has a maximum solution. This

means that we need to ind a unique maximal set that satisies the requirements of causal fairness when selecting

a feature set. The proof for this is as follows:

Lemma 2. Fair Causal Feature Selection Problem has the maximum solution � .

Proof. Suppose the problem does not have a maximum solution. Let �1 ∪ �2 be two diferent maximal sets

of features that ensure causal fairness. Using Lemma 2, �1 ∪ �2 also ensures causal fairness. Since �1 ≠ �2,

|�1 ∪ �2 | > |�1 |, |�2 |. This is a contradiction, as �1 ∪ �2 are maximal sets. Therefore, the assumption that the

problem does not have a maximum solution is wrong. ■

We conclude that the Fair Causal Feature Selection Problem has a maximum solution, ensuring that the fair

causal feature set satisies causal fairness and possesses predictive information for � .

5 FAIR CAUSAL FEATURE SELECTION ALGORITHM

In this Section, we irst provide the FairCFS algorithm and gradually prove the theoretical correctness of FairCFS

in Section 5.1, and then we conduct an analysis of FairCFS through an example in Section 5.2.

5.1 Algorithm Implementation

The FairCFS algorithm utilizes existingMB discovery algorithms to ind theMBs of the class and sensitive variables

(the sensitive variable is known). Then, according to Lemma 1 and Lemma 2, through conditional independence

tests to assess the independence between features, it selects suitable features that meet the requirements for
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Algorithm 1 FairCFS algorithm

Input: � : Sensitive feature; � : Label

Output: [�1 ∪�2]: Fair causal features

1: /*Step 1: Discover Markov blankets of � and �*/

2: ��� ← �����(� );

3: ��� ← �����(�);

4: /*Step 2: Searching for features independent of � from {��� \��� }*/

5: for each � ∈ {��� \��� } do

6: if � ⊥⊥ � | ��� then

7: �1 ← �1 ∪ � ;

8: /*Step3: Searching for features independent of � from {��� ∩��� } */

9: for each � ∈ {��� ∩��� } do

10: if � ⊥⊥ � | � for some � ⊆ {��� \ � } then

11: �2 ← �2 ∪ � ;

12: return [�1 ∪�2];

causal fairness and have an explainable causal relationship with � . Below, we provide the FairCFS algorithm step

by step.

Step 1: In this step, we use the existing MB discovery algorithm, GetMB, to ind the MB of the class variable �

and the MB of the sensitive variable � . According to Deinition 3, all other variables are conditionally independent

of the � variable given��� . Similarly for � . To initially ensure the model’s accuracy after feature selection, in

the subsequent steps, we only evaluate whether the variables in the MB set of the class variable � satisfy the

deinition of causal fairness features. This is because, in theory, the MB of the class variable � has been proven to

be the optimal set for predicting classiications.

Step 2: For the features identiied in Step 1 as part of {��� \��� }, we individually assess their conditional

independence with the sensitive variable � . According to Lemma 3, if a feature is independent of � when

conditioned on ��� , it will block the transmission of sensitive information along all paths to the sensitive

variable. This ensures causal fairness and satisies our deinition of fair causal features. The proof is as follows:

Lemma 3. Consider a dataset � with sensitive � and a collection of features�1 and the MB of � , if�1⊥⊥ � | ��� ,

then�1 is causally fair.

Proof. Given �1⊥⊥ � | ��� for ��� , the feature � does not capture any information about the sensitive

variables. Hence, all paths from � to the target � ′ that pass through�1 are blocked. Mathematically, We have:

�� [� ′ | �� (�), ��� ] = Σ�1�� [�
′ | �1, �� (�), ��� ]�� [�1 | �� (�), ��� ]

(�)

= Σ�1�� [�
′ | �1, �� (�), ��� ]�� [�1 | ��� ]

(��)

= �� [� ′ | ��� ]

(i) Since�1⊥⊥ � | ��� , all paths from�1 to � are blocked. A classiier trained using�1 will not capture any

sensitive information about � , as sensitive information will not pass through �1. Additionally, performing a

do-operation on � is equivalent to removing the incoming edges from � to other nodes in the causal graph.

ACM Trans. Knowl. Discov. Data.
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(ii) Based on the assumption about the construction of � ′ (Assumption 1), the variable � ′ is only dependent on

the variables in�1 in all environments. Given�1, the variable �
′ is independent of � . Also, � nodes do not have

any incoming edges. Therefore, on applying the rule of do-calculus, since � ′ is independent of � in the modiied

graph where, incoming edges of � nodes that are ancestors of�1 are removed. Thus, �� [� ′ | �1, �� (�), ��� ] =

�� [� ′ | �1, ��� ]. ■

This indicates that any intervention on � will not afect the variable � ′, thus � ′ satisies Deinition 5. This

ensures that the selected features�1 are fair causal features.

Combining Lemma 3 with example 2 in the loan system tells us that if a feature set � is conditionally

independent of � given��� , then these features are causally fair. In our loan system example, this means that if

a feature, such as annual income, is independent of gender under the condition of considering the gender’s MB,

then this yearly income feature will not be used to discriminate or show bias against gender because its values

are not inluenced by gender.

Step 3: Even if a feature�2 is found in the second step 2 dependent on the sensitive variable S, it may still be

conditionally independent of S under the condition set Z, � ⊆ ��� . For example, if �2 is the spouse node of

the sensitive variable � , under the intervention of the sensitive variable � , the paths from the sensitive variable

through this feature to � are also blocked, preventing the transmission of sensitive information. Therefore, this

feature also complies with the deinition of fair causal features and can be added to the selected feature set. At

this point, we have found all feature sets�1 ∪�2 that satisfy the causal fairness criteria.

Lemma 4. Consider dataset � with sensitive � and the ��� of � and � , a collection of features �1 satisfying

�1⊥⊥ � | ��� and a collection of features�2 satisfying�2 ⊥̸⊥ � | ��� , but�2⊥⊥ � | � , for some � ⊆ ��� ,�2 is

causally fair.

Proof. Given�2 ⊥̸⊥ � | ��� , but�2⊥⊥ � | � , for some � ⊆ ��� , according to Lemma 4, the feature�2 does

not capture any information about the sensitive variables under the condition � . Hence, all paths from � to the

target � ′ that pass through�2 are blocked. We have:

�� [� ′ | �� (�), � ] = Σ�2�� [�
′ | �,�� (�), � ]�� [� | �� (�), � ]

(�)

= Σ�2�� [�
′ | �,� ]�� [� | �� (�), � ]

(��)

= �� [� ′ | � ]

(i) Since all paths from �2 to � are blocked, a classiier trained using �2 will not capture any sensitive

information about � , and�2⊥⊥ � | � holds.

(ii) Based on the assumption about the construction of � ′ (Assumption 1), the variable � ′ is only dependent on

the features in�2 in all environments. Given�2, the variable �
′ is independent of � . Also, � nodes do not have

any incoming edges. Therefore, on applying the rule of do-calculus, since � ′ is independent of � in the modiied

graph where, incoming edges of � nodes that are ancestors of �2 are removed. Thus, �� [� ′ | �2, �� (�), � ] =

�� [� ′ | �2, � ].

Consequently,�2 is the set of fair causal features. ■

Through Theorem 1, we summarize the feature objectives chosen by the FairCFS algorithm to address the

problem of fair causal feature selection as follows:

Theorem 1. Consider dataset � with sensitive � , a set of features � with a target � . A set � ∈ ��� is safe to be

added along with � , where � ⊆ � without violating causal fairness if�⊥⊥ � | � for some � ⊆ ��� .
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Fig. 2. A local causal diagram constructed by FairCFS to select fair causal features. (1) The features �1 − �4 all have

a condition set that blocks all their paths to � , that is, these features are independent of � in the case of condition � , where

� ∈ ��� . These features are then selected as fair causal features; (2) Features �5 − �9 could not find the set of conditions

that blocked it to the sensitive variable S, that is, they are not fair causal features; (3) Although the �10 − �12 also satisfy

independent of � in the case of some condition � , they are not features in��� , and will not be selected.

Proof. Using Lemma 1, 3, and 4, we can observe that all the features � ∈ �1 ∪�2 such that�1⊥⊥ � | ��� ,

and�2 ⊥̸⊥ � | ��� , but�2⊥⊥ � | � , for some � ⊆ ��� , are safe to be added without worsening the fairness of

the dataset. ■

It is important to note that if we were to combine steps 2 and 3, we would not be able to determine features

like �4 as fair. According to step 2, features that demonstrate independence from the sensitive variable � under

the conditions of��� are considered causally fair. However, in this case, �4 cannot be considered fair as it is not

independent of � under the conditions of��� . Therefore, we require step 3 to identify features like �4.

5.2 Algorithm analysis

In this section, we will introduce the speciic objectives of the FairCFS algorithm for feature selection based on a

detailed example graph. Unlike existing fairness feature selection methods that rely on user-selected admissible

variables to ensure fairness but sufer from the problem of unclear criteria for specifying admissible features,

which leads to unreliable results and potentially irrelevant features, FairCFS takes a diferent approach. It does

not specify admissible variables but instead focuses on inding the condition set that blocks the transmission of

sensitive information by discovering the Markov blankets of both the sensitive and class variables. Additionally,

��� is the optimal feature subset for class variable classiication, and FairCFS ensures the accuracy of its

classiication model.

Figure 3 illustrates a local causal graph of the scenario example, including the class variable � , the sensitive

variable � , the variables in their respective MB, and others. Below, we will analyze the objectives of FairCFS in

selecting features and the situations where certain features are not chosen, using this example and the algorithm

process.

• After constructing the local causal graph, we can see that features �1, �2, and �3 in the diagram correspond

to the variables�1 in algorithm step 2. All paths from these variables to � are blocked by��� , preventing

sensitive information from being transmitted. According to Lemma 3, they do not contain information

related to the sensitive variable and can be used for training to ensure fairness. Using the �2 conditional
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independence test, we can conirm that these features are independent of � under the condition of��� ,

i.e.,�1⊥⊥ � | ��� .

• After selecting the features in�1, it is observed that �4 ⊥̸⊥ � | ��� , thus �4 ∉ � . However, the path from

�4to � can be blocked under a subset � of the existing��� , meaning that �4⊥⊥ � | � , for some � ⊆ ��� .

Furthermore, we do not use the sensitive variable � (equivalent to intervening on � and removing its

incoming edge to � ), sensitive information will not be transmitted through �4. According to Lemma 4, this

feature can be used, and �4 also corresponds to the feature�2 in the algorithm, i.e.,�2⊥⊥ � | � for some

� ⊆ ��� .

• The analysis of features that are not selected is as follows: features �10, �11, and �12 in the graph also

have all paths to � blocked by ��� , and using these features for training can ensure fairness. However,

since these features are outside the ��� , it indicates that they do not contain information related to � .

Using these features to improve the accuracy of the classiier will not provide good results. Through the

�2 conditional independence test, it can be obtained that, under the condition of��� , these features are

independent of � , These features are independent of � under the��� condition, then they are not causally

fair.

• Another type of feature that should not be selected like �5, where �5 ∈ ��� , but there is no path from �5

to � that��� can block. This indicates that using such variables would include discriminatory information

and such features should not be selected. In other words, �5 ⊥̸⊥ � , �5 is not causally fair.

The above points explain the distinguishing features of the FairCFS algorithm when selecting fair causal

features. Ultimately, the selected features can all ind a conditional set � , which blocks the paths from these

features to the sensitive variable � , preventing the transmission of sensitive information. Thus, using these

features for classiier training will not lead to discrimination.

6 EXPERIMENTS

In this section, we used seven fair classiication datasets to evaluate the algorithms FairCFS against six causal

feature selection algorithms and two fair feature selection algorithms, respectively.

6.1 Expermental Setup

To validate the accuracy and fairness of the FairCFS algorithm, we conducted experiments on seven real-

world datasets and compared them with six causal feature selection algorithms and two fair feature selection

algorithms, respectively. The eight algorithms used for comparison include six causal feature selection algorithms:

MMMB [39], HITONMB [2], PCMB [34], STMB [14], BAMB [22], and CFS [21]; And two fairness-aware feature

selection algorithms: Auto [4] and Seqsel [13]. The six causal feature algorithms and our algorithm FairCFS are all

implemented in the existing MATLAB software package1 Causal Learner [23]. All experiments were conducted

on a computer running Windows 10 with an Intel Core i5-13490F CPU and 32GB of RAM. The signiicance level

for the �2 conditional independence test was set to 0.01 [30]. The algorithm is as follows:

• MMMB: TheMMMB algorithm is a causal feature selection algorithm, which irst uses the MMPC algorithm

to obtain the PC of the class variable, then learns the PC of the variable in the PC to get the spouses of the

class variable.

• HITONMB: In contrast to MMMB, HITONMB uses the HITONPC algorithm to learn the PC of variables.

• PCMB: In contrast to MMMB, PCMB uses the GetPCD algorithm to learn the PC of variables.

• BAMB: The BAMB algorithm alternately adds and remove the target variable for PC and spouses.

• CFS: The CFS algorithm identiies children with multiple parent nodes in the target variable’s PC, then

identiies these children’s PC to learn the spouses of target.

1http://bigdata.ahu.edu.cn/causal-learner.
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Table 1. Fair classification datasets

datasets Num.samples Num.features Sensitive feature

Law 20798 11 race

Oulad 21562 10 gender

German 1000 20 age

Compas 6172 8 gender

CreditCardClients 30000 23 gender

StudentPerformanceMath 395 32 gender

StudentPerformancePort 649 32 gender

• STMB: The STMB algorithm irst uses the PCsimple algorithm to learn the PC of target variable, and then

uses the coexisting property to learn the spouses of target.

• Auto: The Auto algorithm irst trains a classiier for each feature, then selects the features with the best

AUC indicator to combine with the rest of the features, and retrains the classiier in the next round until

the end of the 100-round cycle.

• Seqsel: Based on the Rcit conditional independence test, Seqsel inds fair features based on whether features

and class variables are independent under the condition of an admissible feature set.

Datasets:We used seven publicly available and commonly used datasets for fairness classiication tasks to

compare the results of the FairCFS algorithm with existing causal feature algorithms and fair feature selection

algorithms. The details of these datasets are shown in Table 1. Based on a fair dataset survey [20], we followed

the procedures for handling attribute values, missing values, and sensitive feature selection.

Classiiers and evaluation metrics: We applied the FairCFS and comparative algorithms to the datasets

mentioned above to obtain the features selected by each algorithm. We uniformly trained classiiers, such as

Logistic Regression (LR), Naive Bayes (NB), and k-nearest neighbors (KNN), on each dataset. We used ten-fold

cross-validation for each dataset and evaluated the algorithms’ accuracy and fairness using the following metrics:

• Accuracy (ACC): Prediction accuracy is the percentage of correctly classiied test samples in all samples.

For ACC, larger values indicate that the model is more accurate.

• Statistical Parity Diference (SPD) [10]: SPD is used to measure the degree of diference in the classiica-

tion results of a model between diferent groups (usually based on sensitive attributes such as gender or race).

This measure is mathematically formulated as follows: ��� =| � (� ′ = 1 | � = �1) − � (�
′
= 1 | � = �2) |,

��� ∈ [0, 1]. For SPD, smaller values indicate a fairer model.

• Predictive Equality (PE) [9]: This requires FPRs (meaning the probability of an individual with a negative

outcome to have a positive prediction) to be similar across groups. This measure is mathematically formu-

lated as follows:�� =| � (� ′ = 1 | � = 1, � = 0) − � (� ′ = 1 | � ≠ 1, � = 0) |, �� ∈ [0, 1]. For PE, smaller

values indicate a fairer model.

6.2 Comparison of FairCFS with causal feature selection algorithm

In this section, we conducted experiments on three diferent classiiers: LR, NB, and KNN, and we compared the

FairCFS algorithm with CFS, BAMB, HITONMB, MMMB, PCMB, and STMB across seven diferent datasets. The

results, including average accuracy and fairness metrics over 10-fold cross-validation, are summarized in Tables

2, 3, and 4. We can draw the following conclusions:

Accuracy: Next, we introduce the accuracy comparison results of FairCFS with others.
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Table 2. Comparison of FairCFS, MMMB, HITONMB, PCMB, STMB, BAMB, and CFS on LR Classifier (↑ indicates that a

higher value of the metric is beter, while ↓ indicates that a lower value of the metric is beter).

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

MMMB 0.7290 0.6762 0.8069 0.8917 0.6869 0.9188 0.9244

HITONMB 0.7280 0.6775 0.8070 0.8917 0.6860 0.9188 0.9275

PCMB 0.7280 0.6767 0.8070 0.8917 0.6869 0.9188 0.9244

STMB 0.7240 0.6775 0.8070 0.8918 0.6868 0.9112 0.9213

BAMB 0.7280 0.6772 0.8060 0.8918 0.6859 0.9188 0.9259

CFS 0.7270 0.6762 0.8060 0.8921 0.6859 0.9188 0.9276

FairCFS 0.6980 0.5722 0.7788 0.8897 0.6796 0.9189 0.9275

SPD ↓

MMMB 0.2561 0.2368 0.0293 0.0091 0.0063 0.1298 0.0804

HITONMB 0.2573 0.2321 0.0260 0.0093 0.0083 0.1298 0.0854

PCMB 0.1655 0.2375 0.0292 0.0091 0.0063 0.1298 0.0804

STMB 0.2209 0.2033 0.0356 0.0090 0.0091 0.1439 0.0758

BAMB 0.1407 0.2226 0.0263 0.0055 0.0107 0.1298 0.0829

CFS 0.1078 0.2409 0.0257 0.0058 0.0132 0.1298 0.0597

FairCFS 0.0117 0.0353 0.0000 0.0000 0.0000 0.1356 0.0565

PE ↓

MMMB 0.2452 0.1600 0.0134 0.0394 0.0112 0.0872 0.0454

HITONMB 0.2336 0.1592 0.0129 0.0394 0.0113 0.0872 0.0454

PCMB 0.2099 0.1634 0.0133 0.0394 0.0112 0.0872 0.0454

STMB 0.2114 0.1546 0.0206 0.0370 0.0069 0.0872 0.0454

BAMB 0.1433 0.1629 0.0135 0.0260 0.0089 0.0872 0.0454

CFS 0.1541 0.1788 0.0141 0.0276 0.0133 0.0872 0.0417

FairCFS 0.0204 0.0477 0.0000 0.0000 0.0000 0.1444 0.0430

• LR Classiier: In Table 2, it can be observed that, compared to other causal feature selection algorithms,

the FairCFS algorithm maintains a similar level of accuracy on most datasets, with an average diference of

around 0.01. CFS, HITONMB, and MMMB all achieved the best accuracy on both datasets, while neither

PCMB nor STMB achieved the best accuracy on either dataset. However, from each data set, the diference in

algorithm accuracy is minimal, and the average accuracy variance in the causal feature selection algorithm

does not exceed 0.01. This is because, according to the faithfulness assumption, the MB selected by the

causal feature selection algorithm should be unique. When the MB discovery algorithm recognizes MB

correctly, The MB sets discovered by diferent algorithms are also diferent. The FairCFS algorithm removes

unfair nodes from MB, and the accuracy will inevitably decrease. Still, it can be seen from the experimental

results that the accuracy of the FairCFS algorithm does not decline much, which is comparable to other

algorithms in the Logistic Regression Classiier.

• NB Classiier: In Table 3, for the NB classiier, FairCFS not only achieved the highest accuracy on the

Studentm dataset but also on the Law and Oulad dataset. On the Law dataset, FairCFS is about 0.04 percent

higher than the second place. PCMB had the best accuracy on two datasets, and CFS and HITONMB each

had one dataset with the best accuracy. However, except for the Compas dataset, the diference between

FairCFS and the best results on other datasets is less than 0.02. It can be seen that for the Naive Bayes

Classiier, FairCFS performed slightly better but did not produce a signiicant diference. It can be stated that

according to hypothesis 1 mentioned in the FairCFS algorithm, the distribution of data after intervening in

the causal plot is more in line with the Naive Bayes classiier.

• KNN Classiier: In Table 4, on the KNN classiier, FairCFS, CFS, and STMB still achieved the highest

accuracy on two datasets, and FairCFS surpassed the second-best algorithm by 0.06 on the Law dataset. It
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Table 3. Comparison of FairCFS, MMMB, HITONMB, PCMB, STMB, BAMB, and CFS on NB Classifier (↑ indicates that a

higher value of the metric is beter, while ↓ indicates that a lower value of the metric is beter).

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

MMMB 0.7070 0.6722 0.7723 0.8106 0.6780 0.9190 0.9167

HITONMB 0.7120 0.6707 0.7725 0.8132 0.6699 0.9190 0.9198

PCMB 0.6920 0.6748 0.7723 0.8145 0.6780 0.9190 0.9214

STMB 0.7010 0.6704 0.7657 0.7799 0.6701 0.8987 0.9198

BAMB 0.6970 0.6662 0.7736 0.7966 0.6784 0.9190 0.9168

CFS 0.6950 0.6707 0.7797 0.8184 0.6783 0.9190 0.9199

FairCFS 0.6910 0.5790 0.7788 0.8550 0.6786 0.9191 0.9059

SPD ↓

MMMB 0.4521 0.2915 0.0360 0.0371 0.0124 0.1566 0.0942

HITONMB 0.4403 0.2584 0.0340 0.0338 0.0136 0.1566 0.0949

PCMB 0.3072 0.2783 0.0360 0.0384 0.0124 0.1566 0.0922

STMB 0.4529 0.2204 0.0404 0.0490 0.0116 0.1701 0.1119

BAMB 0.1331 0.2208 0.0334 0.0350 0.0132 0.1566 0.0911

CFS 0.1107 0.2475 0.0357 0.0230 0.0133 0.1566 0.1013

FairCFS 0.0524 0.0411 0.0000 0.0100 0.0083 0.1423 0.0844

PE ↓

MMMB 0.3969 0.2022 0.0246 0.0604 0.0178 0.0661 0.0794

HITONMB 0.3785 0.1693 0.0225 0.0659 0.0212 0.0661 0.0837

PCMB 0.3058 0.1837 0.0246 0.0619 0.0178 0.0661 0.0770

STMB 0.4272 0.1402 0.0303 0.0791 0.0198 0.0923 0.0819

BAMB 0.1376 0.1419 0.0217 0.0626 0.0177 0.0661 0.0837

CFS 0.1274 0.1589 0.0236 0.0497 0.0173 0.0661 0.0565

FairCFS 0.0524 0.0477 0.0000 0.0241 0.0088 0.0734 0.0714

can be seen that there is a slightly larger diference with other algorithms on the dataset where FairCFS

achieves the best accuracy. There is a diference of 0.06 from the second place on the Law dataset and 0.08 on

the Oulad dataset from the second place. However, FAirCFS also had a dataset called Credit that signiicantly

reduces the accuracy rate because the Credit dataset had more features that have a direct impact on the

gender of sensitive attributes. More features were deleted in FairCFS, and important prediction information

is lost.

Fairness: Based on the remaining two metrics’ results from Tables 2, 3, and 4, we can draw the following

conclusions:

• LR Classiier: Table 2 shows that for the LR classiier, FairCFS achieved the best fairness results on six

datasets. Notably, it signiicantly improved fairness on datasets like German and Compas compared to

other causal feature selection algorithms. While FairCFS does not achieve the best fairness on the Studentm

dataset, the diference in fairness metrics is slight, around 0.01, compared to the best result. However, For

the indicator PE, FairCFS and the best efect have a large gap, about 0.06 or so, through the analysis of the

data set, maybe because the number of samples in this data set is too small, resulting in features that can

not distinguish the diference of samples, from these causal feature selection algorithms also can be seen

that the indicators on this dataset are almost the same.

• NB Classiier: In Table 3, for the NB classiier, FairCFS achieved the best fairness results on all datasets for

SPD. While CFS performed better on the last two datasets for PE. Among them, on the dataset Compas,

except for the FairCFS indicator, SPD is lower than 0.05, and the SPD value of other algorithms is higher

than 0.22; this result can relect that the MB of the Compas dataset class variable contains a large amount
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Table 4. Comparison of FairCFS, MMMB, HITONMB, PCMB, STMB, BAMB, and CFS on KNN Classifier (↑ indicates that a

higher value of the metric is beter, while ↓ indicates that a lower value of the metric is beter).

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

MMMB 0.6610 0.5792 0.7195 0.8257 0.5972 0.9112 0.8858

HITONMB 0.6610 0.5824 0.7171 0.8267 0.5969 0.9112 0.8736

PCMB 0.6640 0.5780 0.7195 0.8257 0.5972 0.9137 0.8828

STMB 0.6780 0.5768 0.7054 0.8278 0.5969 0.8486 0.9028

BAMB 0.6550 0.5891 0.7173 0.8078 0.5976 0.8608 0.8952

CFS 0.6520 0.5949 0.7145 0.8009 0.5955 0.9187 0.8998

FairCFS 0.5880 0.5241 0.3675 0.8858 0.6786 0.8990 0.8906

SPD ↓

MMMB 0.1569 0.1625 0.0226 0.0292 0.0294 0.1111 0.0907

HITONMB 0.1569 0.1702 0.0176 0.0291 0.0274 0.1111 0.0699

PCMB 0.2759 0.1664 0.0225 0.0292 0.0294 0.1261 0.1155

STMB 0.0901 0.1367 0.0264 0.0319 0.0270 0.1042 0.0464

BAMB 0.1841 0.1744 0.0176 0.0154 0.0290 0.1106 0.0786

CFS 0.1475 0.1605 0.0162 0.0144 0.0160 0.1161 0.0747

FairCFS 0.0754 0.0197 0.0101 0.0013 0.0111 0.1130 0.0835

PE ↓

MMMB 0.1593 0.1171 0.0179 0.0645 0.0412 0.0912 0.0653

HITONMB 0.1569 0.1436 0.0170 0.0665 0.0332 0.0912 0.0653

PCMB 0.2705 0.1375 0.0177 0.0645 0.0412 0.0712 0.0639

STMB 0.1000 0.1191 0.0326 0.0686 0.0353 0.1341 0.0512

BAMB 0.2091 0.1352 0.0168 0.0389 0.0432 0.1487 0.0686

CFS 0.1811 0.1513 0.0171 0.0391 0.0213 0.0712 0.0635

FairCFS 0.0717 0.0488 0.0118 0.0139 0.0103 0.0603 0.0672

Fig. 3. Line chart of FairCFS and its causal feature selection rivals on fairness metrics SPD (let) and PE (right) with LR

classifier.

of sensitive information, FairCFS can signiicantly reduce unfairness by inding unfair features to delete

it. However, the improvement of fairness also led to a decrease in the accuracy of FairCFS on Compas,

verifying the inherent trade-of between accuracy and fairness.
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Fig. 4. Line chart of FairCFS and its causal feature selection rivals on fairness metrics SPD (let) and PE (right) with NB

classifier.

Fig. 5. Line chart of FairCFS and its causal feature selection rivals on fairness metrics SPD (let) and PE (right) with KNN

classifier.

• KNN Classiier: In Table 4, FairCFS continues to demonstrate its advantages in fairness on six datasets.

On the irst ive datasets, FairCFS performed best on both fairness indicators and still reduced both fairness

indicators by about 0.10 on the Compas dataset. On the Studentp dataset, the fairness achieved by the

FairCFS algorithm is also not signiicantly diferent from the best-performing approach. However, it also

highlights FairCFS’s limitations on small-scale datasets, where the reliance on conditional independence

tests may afect its performance.

To visually highlight the FairCFS algorithm’s superiority in fairness compared to six causal feature selection

algorithms, we provided comparative line charts for FairCFS and the other algorithms in Figure 3. In terms of

fairness, Figs. 3, 4, and 5 show that FairCFS contains the lowest fairness indicator on most datasets, especially

the irst ive, where FairCFS is at the lowest point. This shows that when FairCFS looks for fair causal features,

it efectively removes unfair features from MB. On the small sample dataset, the gap between the comparison

algorithms cannot be opened because when looking for accurate MB, the causal feature selection algorithm needs
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enough sample size to obtain a reliable conditional independence test, and when the sample size is not enough, it

may not be able to accurately identify the causal relationship between features.

6.3 Comparison of FairCFS with fair feature selection algorithm

In this section, we compared the FairCFS algorithm with Auto and Seqsel across seven diferent datasets. The

results, including average accuracy and fairness metrics over 10-fold cross-validation, are summarized in Tables

5, 6, and 7. We can draw the following conclusions:

Accuracy: The performance of FairCFS and Auto algorithms in terms of the Accuracy metric in Tables 5, 6,

and 7 indicates that both FairCFS and Auto outperform other algorithms. They achieved the best accuracy on 3

to 4 diferent datasets. On the other hand, the Seqsel algorithm only achieved the best accuracy on one dataset

using NB classiiers. It can be seen the performance of these algorithms can vary depending on their feature

selection strategies. FairCFS and Auto performed well by considering both predictive accuracy and fairness,

while Seqsels focus on fairness alone can lead to lower accuracy in some cases. When selecting features, Autos

strategy selected features with more accuracy because FairCFS relies on the conditional independence relationship

between features and class variables and sensitive variables when selecting features, and some statistic-based

practices may ind more features than FairCFS, thus containing more prediction information and higher accuracy.

Fairness: Tables 5, 6, and 7 clearly illustrated that the FairCFS algorithm can achieve higher fairness while

maintaining good accuracy. To visually highlight the FairCFS algorithm’s superiority in fairness compared to

two fair feature selection algorithms, we provided comparative line charts for FairCFS and the other algorithms

in Figure 4. In terms of fairness, Figs. 6, 7, and 8 show that FairCFS contained the lowest fairness indicator on

most datasets, especially the irst ive, where FairCFS is at the lowest point.

Table 5. Comparison of FairCFS, Auto, Seqsel on LR Classifier (↑ indicates that a higher value of the metric is beter, while ↓

indicates that a lower value of the metric is beter).

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

Auto 0.6990 0.6791 0.7969 0.8897 0.6866 0.8129 0.8689

Seqsel 0.6980 0.6296 0.7788 0.8896 0.6808 0.8205 0.8752

FairCFS 0.6980 0.5722 0.7788 0.8897 0.6796 0.9189 0.9275

SPD ↓

Auto 0.1156 0.2418 0.0314 0.0000 0.0194 0.1818 0.0907

Seqsel 0.0718 0.1044 0.0000 0.0005 0.0090 0.0951 0.0935

FairCFS 0.0117 0.0353 0.0000 0.0000 0.0000 0.1356 0.0565

PE ↓

Auto 0.1325 0.1702 0.0212 0.0000 0.0182 0.2965 0.0584

Seqsel 0.0569 0.0671 0.0000 0.0017 0.0099 0.3095 0.0381

FairCFS 0.0204 0.0477 0.0000 0.0000 0.0000 0.1444 0.0430

FairCFS can achieve the best fairness on the irst ive datasets and three classiiers, among which the fairness

index can be reduced to 0 on the dataset Credit and Law. These data sets are all large sample datasets, which

makes the FairCFS conditional independent test efect good, and it is easier to ind the fair features between the

datasets. At the same time, the Auto algorithm is limited by the indicators when the model is trained, resulting in

the inability to ind the features related to other fairness indicators clearly, and the model fairness is the worst.

Seqsel algorithm inds features when the judgment of fair features is limited by acceptable features; in large-scale

datasets, admissible features are diicult to specify, so the judgment of fair features is prone to errors so that the

best fairness is not achieved. This demonstrates that by searching for the Markov blankets of sensitive variables

to ind a conditional set that makes features independent of the sensitive variable, it is possible to efectively

block the transmission of sensitive information.
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Table 6. Comparison of FairCFS, Auto, Seqsel on NB Classifier.

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

Auto 0.6840 0.6800 0.7970 0.6775 0.6790 0.7797 0.8721

Seqsel 0.6210 0.6296 0.2935 0.8555 0.6786 0.7925 0.8582

FairCFS 0.6910 0.5790 0.7788 0.8550 0.6786 0.9190 0.9059

SPD ↓

Auto 0.1450 0.2997 0.0282 0.0326 0.0124 0.0924 0.1666

Seqsel 0.1187 0.1051 0.0136 0.0125 0.0129 0.1176 0.1222

FairCFS 0.0524 0.0411 0.0000 0.0100 0.0083 0.1423 0.0844

PE ↓

Auto 0.1656 0.2036 0.0165 0.0480 0.0137 0.2000 0.1124

Seqsel 0.0875 0.0666 0.0191 0.0552 0.0122 0.2121 0.0941

FairCFS 0.0521 0.0477 0.0000 0.0241 0.0088 0.0734 0.0714

Table 7. Comparison of FairCFS, Auto, Seqsel on KNN Classifier.

metric Algorithm German Compas Credit Law Oulad Studentm Studentp

ACC ↑

Auto 0.6660 0.5928 0.7884 0.7800 0.6600 0.6987 0.8243

Seqsel 0.6470 0.5904 0.4374 0.7093 0.6379 0.6885 0.8351

FairCFS 0.5880 0.5241 0.3675 0.8858 0.6786 0.8990 0.8906

SPD ↓

Auto 0.0855 0.1941 0.0507 0.0255 0.0162 0.1470 0.0910

Seqsel 0.0999 0.1100 0.0166 0.0198 0.0120 0.0992 0.0774

FairCFS 0.0754 0.0197 0.0101 0.0013 0.0111 0.1130 0.0835

PE ↓

Auto 0.1162 0.1690 0.0235 0.0726 0.0164 0.2047 0.0961

Seqsel 0.1507 0.0936 0.0177 0.0815 0.0130 0.3337 0.0622

FairCFS 0.0717 0.0488 0.0118 0.0139 0.0103 0.0603 0.0672

Fig. 6. Line chart of FairCFS and its fair feature selection rivals on fairness metrics SPD (let) and PE (right) with LR classifier.

However, an analysis of datasets where FairCFS performed less favorably in terms of fairness reveals that on

small-scale datasets, FairCFS may not always exhibit the best fairness performance. After careful consideration,

we believe that the observed efects may be attributed to the accuracy of causal efect evaluation when dealing

with larger datasets. Larger datasets provide algorithms with richer information, allowing for more precise

ACM Trans. Knowl. Discov. Data.



20 • Z. Ling et al.

Fig. 7. Line chart of FairCFS and its fair feature selection rivals on fairness metrics SPD (let) and PE (right) with NB classifier.

Fig. 8. Line chart of FairCFS and its fair feature selection rivals on fairness metrics SPD (let) and PE (right) with KNN

classifier.

causal relationships when assessing interventions. Conversely, when dealing with smaller datasets, it becomes

challenging to accurately ascertain causal relationships between variables. For instance, the correct identiication

of the Markov Blanket of the target variable is diicult, leading to errors in fair feature recognition.

The larger sample size allows FairCFS to better discern and understand the causal relationships between

features, class label, and sensitive variables. This enhanced understanding contributes to more informed and

reasonable feature selection, resulting in a more signiicant impact on fairness metrics.

7 CONCLUSION

This paper analyzed the issue of blocking the transmission of sensitive information in fair causal feature selection

based on intervention fairness. From a Causal Perspective, it is important to ind suicient causal relationships

between variables in the fairness task of studying the efects of discrimination. Therefore, we proposed a fair causal

feature selection algorithm, FairCFS, which identiies features independent of sensitive variables by discovering

the Markov blankets of both the class and sensitive variables. Finally, experiments on seven real-world datasets
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demonstrated that FairCFS achieves comparable accuracy and better fairness. However, it is worth noting that the

conditional independence tests based [48] on the �2 test used in FairCFS may not be suicient when the sample

size of the dataset is small, leading to unexpected results. Therefore, future research could focus on reliably

improving fairness when dealing with small sample datasets.
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