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Balanced Spectral Feature Selection
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Abstract—In many real-world unsupervised learning applica-
tions, given data with balanced distribution, that is, there are
an approximately equal number of instances in each class, we
often need to construct a model to reveal such balance. However,
in many data, especially the high-dimensional ones, the data in
the original feature space often do not present such balance due
to the redundant and noisy features. To tackle this problem, we
apply an unsupervised spectral feature selection method to select
some informative features, which can better reveal the balanced
structure of data. Although spectral feature selection is one of
the most popular unsupervised feature selection methods and has
been widely studied, none of the existing spectral feature selection
methods consider the balance property of data. To address this
issue, in this article, we propose a novel balanced spectral feature
selection (BSFS) method, which not only selects the discrimina-
tive features but also picks those to reveal the balanced structure
of data. To the best of our knowledge, this is the first spectral
feature selection method considering balance structure of data.
By introducing a balanced regularization term, we integrate the
balanced spectral clustering and feature selection into a unified
framework seamlessly. At last, the experiments on benchmark
datasets show that the proposed one outperforms the conven-
tional feature selection methods in both clustering performance
and balance, which demonstrates the effectiveness and efficiency
of the proposed method.

Index Terms—Balanced clustering, feature selection, unsuper-
vised learning.

I. INTRODUCTION

IN MANY real-world data mining applications, we often
need to discover or reveal the balanced structure for given

data with balanced distribution, that is, in each class or clus-
ter, there are an approximately equal number of instances. For
example, in wireless sensor networks, the energy load balance
should be considered, because the unbalanced structure may
lead to the unbalance of energy consumption and may fur-
ther shorten the network lifetime [1]. Another scenario which
needs balanced structure is the cloud computing, where the
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multiple tenant placement should be balanced for reducing the
energy consumption and delay [2]. Therefore, discovering the
balanced structure of data is an essential and important task
in some data mining applications.

However, although some data are with balanced distribution,
it is still difficult to discover their balanced structure in the
original feature space. As we know, the original features of
data are often noisy and redundant, which makes the balanced
structure not so obvious. This problem may be more severe
in high-dimensional data. To tackle this problem, we apply
feature selection methods to select some informative features
to characterize the balanced structure. Feature selection is a
fundamental problem in machine learning and has been widely
studied [3]–[8]. These methods often select the discriminative
and less redundant features for classification or clustering. For
example, Nie et al. [3] applied �2,1 regression to pick features
leading to a robust feature selection method; Tang et al. [9]
learned the latent representation for feature selection.

Among the above-mentioned methods, spectral feature
selection is one of the most famous unsupervised methods and
have been demonstrated promising performance in clustering.
However, none of the existing spectral feature selection meth-
ods consider the balanced structure of data. This problem may
be even more severe in unsupervised learning, because there
are no labels that can help us to select features. To address
this issue, in this article, we propose a novel balanced spectral
feature selection (BSFS) method, which pays attention to the
balanced structure of data. To reveal the balanced structure,
we apply spectral clustering [10] to generate the pseudolabels
and further obtain the clustering structure to guide the feature
selection. Unlike traditional spectral clustering, we introduce
a balanced term to guarantee the balance of the result. Then,
we use the balanced result to guide us to select features. When
selecting features, we directly use the �2,0-norm to pick the
exact top-k features without approximations such as �2,1-norm
or �2,p-norm. To make the balanced clustering and the feature
selection be boosted by each other, we seamlessly integrate
them into a unified framework.

Since we directly use the �2,0-norm to select features and
involve the balanced term, the optimization of the objective
function could be complicated. To tackle this problem, we pro-
vide an effective and efficient alternating direction method of
multipliers (ADMMs) [11] to iteratively optimize the objective
function. We further propose a speedup strategy to reduce the
time complexity. Finally, we compare the proposed algorithm
with several state-of-the-art unsupervised feature selection
methods on nine benchmark datasets. The experimental results
demonstrate the effectiveness and efficiency of our proposed
one. It is worthy to clarify that one of our assumption is that
the given data have a balanced intrinsic structure such that by
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imposing the balanced term, we can select the features that can
reveal such balanced structure. The proposed method may be
inappropriate to handle the imbalanced data. If the data does
not have such balanced structure, since the proposed method
still imposes the balanced term, it may not discover the true
intrinsic structure that is imbalanced.

The main contributions of this article are as follows.
1) We apply feature selection to discover the balanced

structure of data. Different from some existing bal-
anced clustering methods [12]–[14], which are designed
for particular clustering methods, our feature selection
method provides a more general way to discover the
balanced structure, that is, our method can be followed
by any standard data analyzing method, like k-means, to
show the balanced structure. Moreover, our experiments
show that our strategy may achieve a better tradeoff
between the clustering performance and balance.

2) We propose a novel spectral feature selection method.
Different from the existing methods that only focus on
the discriminative features, our method can select not
only the discriminative features but also those that can
reveal the balanced structure of data. To the best of
our knowledge, this is the first spectral feature selection
method considering the balanced structure of data.

3) We apply a simple yet effective way to control the bal-
ance and integrate the balanced spectral clustering and
feature selection into a unified framework and propose
an effective and efficient ADMM algorithm to select
features and do clustering jointly.

4) The experimental results show that our method outper-
forms other state-of-the-art unsupervised feature selec-
tion methods not only on the clustering performance but
also on the balance of results.

The remaining parts of this article are organized as follows.
Section II provides some related work. Section III introduces
our BSFS in detail. Section IV shows the experimental results.
Section V concludes this article and discusses some future
work.

II. RELATED WORK

In this section, we briefly introduce some related work of
feature selection and balanced clustering.

A. Feature Selection

Feature selection aims to identify and select the informa-
tive features in a dataset for some subsequent data analysis
methods. According to the accessibility of data labels, it
can be roughly classified into three categories: 1) super-
vised [15], [16]; 2) unsupervised [17]–[19]; and 3) semisu-
pervised [20], [21] methods. Because of the absence of
supervised information (i.e., labels), the unsupervised one is
more challenging and attracts much attention.

In unsupervised learning scenarios, since no labels can be
used, the methods aim to select some informative features to
preserve the intrinsic structure of data, such as the graph struc-
ture and subspace structure. For example, Zhu et al. [22] used
the co-regularization technique to make sure that the selected

features can preserve data distribution and reconstruction;
Feng and Duarte [23] proposed an autoencoder-based fea-
ture selection method, which can preserve the broad and local
structure of data; Xie et al. [24] provided a feature selection
method to preserve the distribution of the data; Ye et al. [25]
tried to preserve the intermediate representation by selected
features. Guo and Zhu [26] applied the dependence to guide
the feature selection; Shen et al. [27] proposed a robust fea-
ture selection method to reconstruct the original data that could
handle missing data. Du et al. [28] selected features to exploit
the combination effect of the features.

Since the graph structure is one of the most widely studied
structures in machine learning tasks, many feature selection
methods, especially the spectral feature selection methods,
pick the features to preserve the graph structure. For exam-
ple, Du and Shen [29] designed an adaptive graph structure
and proposed a spectral feature selection method to pre-
serve it; Shang et al. [30], [31] constructed a graph with
non-negative low-dimensional embedding for spectral feature
selection; Zhu et al. [32] proposed a spectral feature selection
method to characterize the global and local structure of data;
Dong et al. [33] extended adaptive graph learning to multiview
feature selection; Tang et al. [34] proposed a robust feature
selection method to preserve the graph structure by �1 norm-
based graph regularized term; Zhou et al. [35] ensembled
multiple graphs to simultaneously learn the consensus graph
and selected features; Nie et al. [36] learned an optimized
graph to select the top-k features; Tang et al. [9], [37] applied
manifold regularization to select features, and extended these
graph base methods to multiview data and obtained a consen-
sus learning guided multiview feature selection method [38].
Besides these conventional graph-based methods, some meth-
ods aim to preserve the hypergraph structure. For example,
Zhang and Hancock [39] constructed a hypergraph on features
that could preserve the high-order relationship of features and
then used the hypergraph partition method to choose the fea-
tures; recently, they further provided an adaptive hypergraph
learning method that could simultaneously select features and
construct the hypergraph [40]; Luo et al. [41] learned fea-
tures with spatial-spectral hypergraph discriminant analysis to
handle the hyperspectral images; Luo et al. [42] further con-
structed an interclass hypergraph and an intraclass hypergraph
to guide the feature learning; when handling hyperspectral
images, Duan et al. [43] proposed a local constrain-based
hypergraph learning method for feature learning.

Some methods focused on the subspace structure. For exam-
ple, Wen et al. [44] jointly learned sparse subspace form
data and selected features to preserve such subspace struc-
ture; Zhu et al. [45] selected features for subspace clustering;
Fan et al. [46], [47] applied the subspace clustering to select
features that can preserve both the hard and soft structure;
Zheng et al. [48] picked the features to preserve the low-
rank subspace structure; Tang et al. [37], [49] applied the
dual Laplacian regularization to learn the selective feature pro-
jection, which mapped the data into a low-rank subspace;
Li et al. [50] learned a feature dictionary subspace for
robust and compact feature selection; Zhong and Pun [51]
simultaneously did subspace clustering and feature selection.
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Although we do not have any true labels of data, we
can generate pseudolabels to guide the feature selection.
For example, Du et al. [52] applied global and local
information to jointly select features and learn the pseu-
dolabels; Hou et al. [53] selected features to preserve the
pseudolabels with manifold embedding; Wang et al. [54]
proposed a matrix factorization method to preserve the pseu-
dolabels for feature selection; Zhang et al. [55] applied the
uncorrelated regression model to unsupervised feature selec-
tion; Chen et al. [56] applied extreme learning machine to
generate the pseudolabels and use them to select features.
Tang et al. [57] used the pseudolabels to preserve the locality
and extended it to the multiview data.

Although the above-mentioned methods preserve different
structures, they all aim to select the discriminative features.
Unlike these methods, we try to select the features that
not only are discriminative but also can reveal the balanced
structure. Note that compared with our previous balanced
method [58], the proposed one has two advantages. On the
one hand, [58] used k-means to generate pseudolabels, which
may be inappropriate to handle the nonlinear data. In con-
trast, the proposed method is a spectral-based method that can
effectively tackle this problem. On the other hand, when [58]
handled the discrete constraints, the time complexity was cubic
with the number of features. However, our method can solve
the problem more efficiently, and the time complexity is just
linear with the dimensions of features.

B. Balanced Clustering

Given a dataset with balanced distribution, balanced clus-
tering aims to put the data into several clusters and make the
numbers of data in different clusters remain almost the same.
It can be roughly classified into two classes: 1) hard-balanced
clustering and 2) soft-balanced clustering.

In the first class, that is, the hard-balanced clustering, the
number of the instances in each cluster is strictly set as a fixed
number. For example, in [59] and [60], k-means clustering
methods that strictly constrain the cluster sizes are proposed;
Costa et al. [61] proposed a minimum sum-of-squares cluster-
ing method for balanced clustering.

Different from hard-balanced clustering, soft-balanced clus-
tering does not require the absolute balance. For exam-
ple, in [62] and [63], soft-balanced clustering methods are
proposed by introducing a penalty regularized term to achieve
balance; Liu et al. [13] designed an exclusive lasso term to
make the clustering results of least square regression be bal-
anced; Li et al. [14] applied the exclusive lasso to k-means
and min-cut methods to obtain the balance clustering.

In this article, we focus on the soft-balanced clustering
because it is more flexible than hard-balanced clustering.
Different from these balanced clustering methods, which are
designed for particular clustering methods, our algorithm is a
feature selection one, which focuses on selecting the informa-
tive features to reveal the balance structure. After selecting the
features, we can use any standard data analysis methods such
as k-means to show a balanced structure. Thus, this article
provides a more general way to reveal the balanced structure
of data.

III. BALANCED SPECTRAL FEATURE SELECTION

In this section, we introduce our BSFS method in detail. We
first introduce some notations. We use a bold uppercase and
lowercase character to denote a matrix and a vector, respec-
tively. For an arbitrary matrix A ∈ R

m×n, Aij denotes its (i, j)th
element.

A. Formulation

In conventional supervised feature selection methods, given
original data with n instances and d features X ∈ R

n×d belong-
ing to c classes and its label matrix Y ∈ {0, 1}n×c where if the
ith instance belongs to the jth class, then Yij = 1 and other
Yim = 0 with m �= j, they often learn a row sparse projec-
tion matrix W ∈ R

d×c that projects X into label space. More
formally, we can optimize the following formula:

min
W
‖Y− XW‖2F

s.t. ‖W‖2,0 = k (1)

where ‖W‖2,0 is the �2,0-norm, which counts the number of
nonzero rows in W. Since we aim to select k features, we
impose the �2,0-norm constraint on W to make sure that there
are exact k nonzero rows in W. Note that different from many
conventional feature selection methods, which applies the �2,1-
norm or �2,p-norm to approximate �2,0-norm, we directly use
the �2,0-norm constraint to select the exact top-k features
without approximations, which is more desirable in feature
selection task.

However, in unsupervised learning, we do not know Y
in advance, which makes the problem more challenging. A
natural idea is that we can use some clustering methods to
generate the pseudolabels Y. Since spectral clustering [10] is
one of the most popular clustering methods and demonstrated
promising performance, we use it to generate the pseudola-
bels. In more detail, we first construct a sparse similarity
matrix S ∈ R

n×n, where Sij ≥ 0 is the similarity of the
ith and the jth instances. Then, we obtain the normalized
Laplacian matrix L ∈ R

n×n by L = I− D−1/2SD−1/2, where
I is an identity matrix and D ∈ R

n×n is a diagonal matrix
whose diagonal elements are Dii =∑n

j=1 Sij. Spectral cluster-
ing aims to learn an orthogonal embedding Y ∈ R

n×c of L
by optimizing

min
Y

tr
(
YTLY

)

s.t. YTY = I. (2)

Note that in the traditional spectral clustering, it relaxes the
label matrix into a real-valued orthogonal matrix Y. In our
work, since we need the pseudolabel matrix, we replace the
orthogonal constraint back to the 0, 1-constraint without any
relaxation, that is, we minimize the following formula:

min
Y

tr
(
YTLY

)

s.t. Y ∈ {0, 1}n×c,

c∑

j=1

Yij = 1 (3)
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where
∑c

j=1 Yij = 1 makes sure that each instance just belongs
to one cluster. Taking the definition of L into (3), we have

tr
(
YTLY

) = tr
(
YTY

)− tr
(

YTD−1/2SD−1/2Y
)

= n− tr
(

YTD−1/2SD−1/2Y
)
. (4)

Let S̃ = D−1/2SD−1/2, from (4), we have min tr(YTLY) is
equivalent to max tr(YT S̃Y). Combining (1) and (3), we obtain
the following multiobjective optimization problem:

{
minW ‖Y− XW‖2F,

maxY tr
(

YT S̃Y
)
.

To optimize this multiobjective optimization problem with-
out introducing any more hyperparameters, we rewrite it as
the following form:

min
Y,W

‖Y− XW‖2F
tr
(

YT S̃Y
)

s.t. ‖W‖2,0 = k

Y ∈ {0, 1}n×c,

c∑

j=1

Yij = 1. (5)

Note that Y plays the role as the pseudolabels, so we can
achieve a balanced clustering result by imposing some con-
straints on Y. More specifically, we find that the number of
1’s in each column is equal to the number of instances in
each cluster. Therefore, by summing Y by columns, we can
obtain the number of instances in every cluster. We denote
the number of instances in the jth cluster by nj = ∑n

i=1 Yij.
Furthermore, since

∑c
j=1 nj = n, we can obtain the empir-

ical distribution p ∈ R
c of the number of instances in

each cluster by pj = (nj/n). Since we wish the distribu-
tion p should be as balanced as possible, we can achieve
this by maximizing the Shannon entropy of the distribu-
tion p, that is, maxp−∑c

j=1 pjlog(pj), which is equivalent to
minp

∑c
j=1 pjlog(pj). Take this regularized term to (5), leading

to our BSFS

min
Y,W

‖Y− XW‖2F
tr
(

YT S̃Y
) + γ

c∑

j=1

pjlog
(
pj
)

s.t. ‖W‖2,0 = k, Y ∈ {0, 1}n×c,

c∑

j=1

Yij = 1

pj =
∑n

i=1 Yij

n
(6)

where γ is a hyperparameter to control the balance of the
clustering result. From (6), we can find that our method has
the following two characteristics.

1) The feature selection and balanced clustering are seam-
lessly integrated into a unified framework. With the
selected features, we can achieve a better clustering
result. With the balanced regularized term, we can obtain
a more balanced result and this result may guide us to
select more informative features in turn.

2) We apply �2,0-norm to directly select the exact top-k
features without any approximations and postprocessing
such as ranking the features.

B. Optimization

Since (6) includes �2,0-norm constraint, which is hard to
optimize, we apply the ADMM [11] to handle it. More specif-
ically, we introduce an auxiliary variable V and rewrite (6) as
the following:

min
Y,W

‖Y− XW‖2F
tr
(

YT S̃Y
) + γ

c∑

j=1

pjlog
(
pj
)

s.t. ‖V‖2,0 = k, W = V

Y ∈ {0, 1}n×c,

c∑

j=1

Yij = 1

pj =
∑n

i=1 Yij

n
. (7)

Then, by introducing the Lagrange multiplies � ∈ R
d×c and

ρ ∈ R
c, we obtain its augmented Lagrange function

L = ‖Y− XW‖2F
tr
(

YT S̃Y
) + γ

c∑

j=1

pjlog
(
pj
)

+ tr
(
�T(W− V)

)+
c∑

j=1

ρj

(

pj −
∑n

i=1 Yij

n

)

+ μ

2

⎛

⎝‖W− V‖2F +
c∑

j=1

(

pj −
∑n

i=1 Yij

n

)2
⎞

⎠ (8)

where μ > 0 is an adaptive parameter. Now, we iteratively
optimize one variable with other variable fixed.

1) Optimizing W: When fixing the other variables, we
denote a = [1/(tr(YT S̃Y))] for simplicity. Then, we obtain
the subproblem with W

min
W

a‖Y− XW‖2F + tr
(
�T(W− V)

)+ μ

2
‖W− V‖2F. (9)

Since it is an unconstraint quadratic programming, its closed-
form solution can be easily obtained by setting its partial
derivative w.r.t. W to zero

W =
(

XTX+ μ

2a
I
)−1

(

XTY− �− μV
2a

)

. (10)

Unfortunately, the size of XTX+(μ/2a)I is d×d, and the time
complexity of its inverse is O(d3). It is inappropriate in feature
selection tasks, because in feature selection tasks it often hap-
pens that d � n. To address this issue, we propose a speedup
strategy. Note that XTX is constant in the entire learning pro-
cessing, so we can compute its singular value decomposition
(SVD) in advance. When d > n, we use O(n2d) time to com-
pute the SVD of X as X = P�QT with P ∈ R

n×n, � ∈ R
n×n,

and Q ∈ R
d×n, where P and Q are orthogonal and � is diag-

onal. Note that this SVD can be computed in advance and
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just needs to be computed once. Then, the SVD of XTX is
XTX = Q�2QT . According to the Woodbury identity, we have
(

XTX+ μ

2a
I
)−1 =

(
Q�2QT + μ

2a
I
)−1

= 2a

μ
I− 4a2

μ2
Q
(

�−2 + 2a

μ
QTQ

)−1

QT

= 2a

μ
I− 4a2

μ2
Q
(

�−2 + 2a

μ
I
)−1

QT .

Note that �−2 + (2a/μ)I is a diagonal matrix and its inverse
can be computed in O(n) time. Then, taking it back to (10),
we have

W =
(

2a

μ
I− 4a2

μ2
Q
(

�−2 + 2a

μ
I
)−1

QT

)(

XTY− �− μV
2a

)

= 1

μ

(
2aXTY−�+ μV

)

− 4a2

μ2
Q
(

�−2 + 2a

μ
I
)−1(

QT
(

XTY− �− μV
2a

))

.

(11)

Therefore, in each iteration, (11) can be computed in O(ndc)
time, which is linear with d.

In the case n > d, we compute the SVD of XTX in
O(nd2) time, and in each iteration, we compute (10) directly
in O(ndc+ d2c), which is linear with n.

2) Optimizing V: When optimizing V, we aim to solve the
following subproblem:

min
V

∥
∥
∥
∥V−

(

W+ �

μ

)∥
∥
∥
∥

2

F
s.t. ‖V‖2,0 = k. (12)

Equation (12) also has a closed-form solution. We first let
V = W + (�/μ), and then we look for the k rows with the
largest �2-norm and set other rows to zeros.

3) Optimizing p: When optimizing p, we find that this can
be decoupled into c independent subproblems. Consider the
jth one, which has the following form:

min
pj

J = γ pjlog
(
pj
)+ ρjpj + μ

2
p2

j − μpjbj (13)

where bj = [(
∑n

i=1 Yij)/n]. Setting its partial derivative w.r.t.
pm to zero, we obtain the following formula:

∂J
∂pj
= γ log

(
pj
)+ μpj + ρj + γ − μbj = 0. (14)

It can be solved by any standard root finding algorithms. In
our implementation, we solve it by fzero function provided in
MATLAB.

4) Optimizing Y: When fixing other variables, we can
rewrite (8) as

min
Y

‖Y− XW‖2F
tr
(

YT S̃Y
) +

c∑

j=1

ρj

(

pj −
∑n

i=1 Yij

n

)

+ μ

2

c∑

j=1

(

pj −
∑n

i=1 Yij

n

)2

Algorithm 1 BSFS

Input: Data matrix X, normalized graph matrix S̃, parameter
γ and number of selected features k.

Output: Selected features.
1: Initialize Y by max YT S̃Y. Compute the SVD of XTX.

Initialize W by min ‖Y− XW‖2F , initialize V =W, pj =∑n
i=1 Yij/n, � = 0, ρ = 0 and μ = 1.

2: while not converge do
3: Compute W by Eq.(11).
4: Compute V by solving Eq.(12).
5: Compute p by solving Eq.(14).
6: Compute Y by solving Eq.(15).
7: Update the Lagrange multipliers by Eq.(16).
8: end while
9: Select the k features corresponding to the k non-zero rows

of W.

s.t. Y ∈ {0, 1}n×c,

c∑

j=1

Yij = 1. (15)

Note that the constraints guarantee that there is only one 1
in each row of Y. So for simplicity, we can optimize Y row
by row. When optimizing the ith row while fixing the other
rows, we define ŷ1, . . . , ŷc where ŷj ∈ {0, 1}1×c and only the
jth element in ŷj is 1 and other elements are 0 s. Then, we set
the ith row of Y as ŷ1, . . . , ŷc, respectively, and find the one
who leads to the minimum of objective function, and set the
ith row of Y as it.

5) Updating Lagrange Multipliers: We update the
Lagrange Multipliers as follows:

⎧
⎪⎨

⎪⎩

�← �+ μ(W− V)

ρj ← ρj + μ
(

pj −
∑n

i=1 Yij
n

)

μ← 1.1 ∗ μ.

(16)

The entire algorithm is summarized in Algorithm 1. In
each subproblem, the objective function decreases monotoni-
cally. However, since the objective function (6) is not jointly
convex, it is difficult to analyze the convergence of ADMM
theoretically. In practice, our method often converges very fast.

C. Time Complexity

As introduced before, if d > n, computing the SVD of XTX
costs O(n2d) time. Then, in ADMM algorithms, optimizing W
costs O(ndc) time. The time complexity of optimizing V is
O(kd+ cd). When optimizing p, supposing the time complex-
ity of root finding algorithm is O(t), we need O(ct) time to
compute p. Since S̃ is often a sparse graph matrix, supposing
in each row there are O(κ) nonzero elements in S̃, computing
tr(YT S̃Y) costs O(cκn) time. Updating Y costs O(ndc+ cκn)

time. Supposing the number of iterations is l, the entire time
complexity is O(n2d+ l(ndc+ kd+ ct+ cκn)), which is linear
with d.

If d < n, computing the SVD of XTX costs O(d2n) time.
Updating W costs O(ndc + d2c) time. The other parts are
similar to the case d > n. Therefore, the time complexity is
O(nd2+ l(d2c+ ndc+ kd+ ct+ cκn)), which is linear with n.
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TABLE I
DESCRIPTION OF THE DATASETS

Note that compared with some previous meth-
ods [58], [64], [65] whose complexity is cubic in d. Our
proposed method reduced the time complexity significantly,
especially in the case of handling high-dimensional data.

IV. EXPERIMENTS

In this section, to demonstrate the effectiveness and effi-
ciency of the proposed BSFS, we compare it with the state-
of-the-art unsupervised feature selection methods on some
benchmark datasets.

A. Datasets

We use nine datasets, including: 1) PIE [66];
2) News4b [67]; 3) CBCL;1 4) Basehock;2 5) USPS49 [67];
6) Lung;2 7) Leukemia;2 8) Gisette;2 and 9) MNIST.3 The
details of the datasets are summarized in Table I.

B. Experimental Setup

We compare BSFS with the following methods.
1) AllFea, which uses all features for clustering.
2) FSASL [29], which adaptively learns the local and global

structure when selecting features.
3) SOGFS [64], which learns an optimal graph structure

for feature selection.
4) LRPFS [48], which aims to preserve the low-rank

structure of data when selecting features.
5) URAFS [68], which uses generalized uncorrelated

regression to select features and adaptively construct the
graph.

6) NSSLFS [65], which selects features with sparse sub-
space learning.

7) UGFS [28], which is a top-k feature selection method
considering combination effect.

8) DGUFS [26], which is a dependence guided feature
selection method.

9) RSOGFS [36], which is a top-k feature selection method
with optimal graph learning.

10) FSBC [58], which is a k-means-based balanced feature
selection method.

1http://cbcl.mit.edu/software-datasets/FaceData2.html
2http://featureselection.asu.edu/files/datasets/BASEHOCK.mat
3http://yann.lecun.com/exdb/mnist/

11) BSFS_nb. To demonstrate the effectiveness of the bal-
anced regularized term, we remove this term (or equiv-
alently speaking, set γ = 0), leading to BSFS_nb.

To evaluate the quality of the selected features, we run
k-means clustering on the selected features, and report the
accuracy (ACC) and normalized mutual information (NMI)
results. In addition, to evaluate the balance of the clustering
results, we also report the normalized entropy (NE) [13], [14],
which is defined as

NE = − 1

log(c)

c∑

j=1

nj

n
log
(nj

n

)
(17)

where n is the number of instances, nj is the number of
instances in the jth cluster, and c is the number of clusters.
From (17), we can find that 0 ≤ NE ≤ 1, and the larger NE
is, the more balanced the result is.

Since we often do not know the optimal number of selected
features in advance, we report the results of different num-
bers of selected features [for the datasets except MNIST, in
the range {10, 20, . . . , 100}; and for MNIST, in the range
({10, 20, . . . , 300})]. We also report the average results over
the entire range of the number of selected features. In BSFS,
we construct 10-nn graph S̃ from the Gaussian kernel matrix
k(xi, xj) = e−[(‖xi−xj‖22)/(2σ 2)], where the bandwidth parameter
σ is set as the average distance of all instance pairs. We tune
γ in [10−5, 105] by grid search. For other compared methods,
we tune the parameters as suggested in their papers.

All experiments are conducted using MATLAB 2017b on a
PC computer with Windows 10, 3.41-GHz CPU and 32-GB
memory.

C. Experimental Results on Clustering Performance

We report the average clustering results (ACC, NMI, and
EN) over the range of selected features in Table II. Note
that for the largest dataset MNIST, FSASL, SOGFS, LRPFS,
URAFS, and DGUFS run out of memory. From Table II, we
find that on most datasets, our method can outperform other
unsupervised feature selection methods not only on the cluster-
ing performance (i.e., ACC and NMI) but also on the balance
(i.e., EN). The main reasons may be in two-fold as follows.

1) First, we introduce the balanced regularized term to con-
trol the balance, which may improve the balance of
the clustering results. Compared with BSFS_nb, which
removes this term, our method performs better in most
cases, and it demonstrates the effectiveness of this term.

2) Second, different from the compared methods which use
�2,1-norm to select features, our method uses �2,0-norm
to directly pick the exact top-k features, which makes
the projection matrix W as sparsity as possible. The
experimental results also demonstrate that this is more
desirable for feature selection.

Figs. 1–3 show the detail results w.r.t. the different numbers
of features. The horizontal yellow line represents the results of
AllFea. From these figures, we can find that BSFS can outper-
form AllFea at most time. It means that although BSFS uses
less features for clustering, it can still improve the clustering
accuracy and balance. Moreover, BSFS also performs better
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TABLE II
CLUSTERING RESULTS ON DIFFERENT DATASETS

TABLE III
RUNNING TIME OF ALL METHODS ON DIFFERENT DATASETS TO SELECT 100 FEATURES (SEC.)

than other state-of-the-art algorithms in most cases, which well
demonstrates its superiority.

Fig. 4 shows the selected features of our method in
PIE dataset, which is a face dataset. We show the results
of 20, 40, . . . , 100 selected features. The yellow points are
selected features. From Fig. 4, we find that our method prefers
to select the features in some discriminative parts, such as eyes,
nose, and mouth, which can well describe the character of a
person.

Fig. 5 shows an example result of the numbers of instances
in each cluster on PIE dataset. Fig. 5(a) shows the result of
kmeans on all features. Fig. 5(b)–(f) shows the results with
20, 40, . . . , 100 selected features. We can see that with the

selected features, the data are more balanced than the data
with all features, which demonstrates the effectiveness of our
balance schema.

D. Experimental Results on Efficiency

To demonstrate the efficiency of the proposed method, we
show the running time of all methods to select 100 features in
Table III. From Table III, we can find that our method is sig-
nificantly faster than other compared methods, especially on
some high-dimensional data. For example, we achieve 28 946
times and 530 times speedup compared with the slowest meth-
ods on Leukemia and Basehock datasets, respectively. Due to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. ACC results on all datasets with different number of features. (a) ACC on PIE. (b) ACC on News4b. (c) ACC on CBCL. (d) ACC on Basehock.
(e) ACC on USPS. (f) ACC on Lung. (g) ACC on Leukemia. (h) ACC on Gisette. (i) ACC on MNIST.

the proposed speedup strategy, we reduce the time complexity
from cubic with d to linear with d, which makes our method
faster than the compared ones.

Fig. 6 shows the convergence curves of BSFS on PIE,
News4b, CBCL, and Lung datasets. The results on other
datasets are similar. From Fig. 6, we find that BSFS often
converges within several tens iterations.

E. Experiments on Balanced Clustering

As one application, our method can be used for balance
clustering. To demonstrate the effectiveness, we compare our
BSFS (with 300 selected features for MNIST and 100 selected
features for other datasets) with some balanced clustering
methods in this section. The compared balanced clustering
methods are as follows.

1) ISC [69], which applies the size constraint to guarantee
the balance. It is a hard-balanced clustering.

2) BCLS [13], which is a balanced clustering with least
square regression. It is a soft-balanced clustering.

3) BCKM [14], which is a balanced clustering with kmeans.
It is a soft-balanced clustering.

4) BCMC [14], which is a balanced clustering with min-cut.
It is a soft-balanced clustering.

Table IV shows the ACC, NMI, and NE results on all
datasets. Note that on the largest dataset MNIST, ISC and
BCLS run out of memory. On most datasets, our method can
achieve better clustering performance on ACC and NMI. It
demonstrates the discriminant of the selected features of our
method. With respect to the balance metric NE, ISC often
achieves the best performance, because it is a hard-balanced
clustering method. Our method is not better than the soft-
balanced methods, but it is closed to them on most datasets.
The reason may be that in the balanced clustering methods,
they often impose a balanced constraint directly on the clus-
tering results. Notice that our method is a feature selection
method, that is, we only select some features and then in the
clustering process, we only perform the regular kmeans on the
selected features without any balanced constraints. Therefore,
the balanced constraint is implicit in our method and is not
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. NMI results on all datasets with different number of features. (a) NMI on PIE. (b) NMI on News4b. (c) NMI on CBCL. (d) NMI on Basehock.
(e) NMI on USPS. (f) NMI on Lung. (g) NMI on Leukemia. (h) NMI on Gisette. (i) NMI on MNIST.

TABLE IV
CLUSTERING RESULTS COMPARED WITH BALANCED CLUSTERING METHODS

as strong as those balanced clustering. Despite this, the NE of
our method is closed to the balanced clustering methods on
most datasets, which demonstrates that the selected features

can indeed reveal the balanced structure. Notice that different
from the balanced clustering methods, which are designed for
particular clustering methods, our method provides a more
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. NE results on all datasets with different number of features. (a) NE on PIE. (b) NE on News4b. (c) NE on CBCL. (d) NE on Basehock. (e) NE on
USPS. (f) NE on Lung. (g) NE on Leukemia. (h) NE on Gisette. (i) NE on MNIST.

Fig. 4. Example result of selected features (with different numbers of
features) of BSFS on PIE dataset.

general way to reveal the balanced structure and can be fol-
lowed by any standard data analyzing method such as k-means.
Moreover, the experimental results may reveal that sometimes
the explicit balanced constraints used in existing balanced clus-
tering methods may affect the clustering performance, and the
early processing method like ours may achieve a better tradeoff
between the clustering performance and balance. Therefore,

the balanced feature selection may be more appropriate for
discovering the balanced structure sometimes.

F. Parameter Study

In our method, there is only one hyperparameter (γ ), which
is needed to tune manually. To explore the effect of γ on
clustering performance and balance, we tune it in the range
[10−5, 105]. We show the ACC, NMI, and EN results on PIE
and CBCL datasets in Fig. 7. The results on other datasets are
similar. From Fig. 7, we can see that our BSFS can achieve a
relatively stable performance in a wide range of γ . Therefore,
the selection of the parameter γ is not difficult in practice.

V. CONCLUSION

In this article, we proposed a novel BSFS method. Different
from conventional unsupervised feature selection methods,
which focused on selecting the discriminative features, our
method also paid attention to the balanced structure of data.
By introducing the balanced regularized term, we integrated
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Example result of the numbers of data in each cluster (with different
numbers of features) of BSFS on PIE dataset. (a) Original data. (b) 20 selected
features. (c) 40 selected features. (d) 60 selected features. (e) 80 selected
features. (f) 100 selected features.

(a) (b)

(c) (d)

Fig. 6. Convergence curves on (a) PIE, (b) News4b, (c) CBCL, and (d) Lung.

the balanced spectral clustering and feature selection method
into a unified framework. Then, we proposed an effective
and efficient ADMM method to optimize the objective func-
tion, which can select the exact top-k features without any
postprocessing. The extensive experimental results show that
BSFS outperformed the state-of-the-art methods not only on

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Clustering results on PIE and CBCL with respect to different values
of γ . (a) ACC on PIE. (b) NMI on PIE. (c) EN on PIE. (d) ACC on CBCL.
(e) NMI on CBCL. (f) EN on CBCL.

the clustering performance but also on the balance of the
clustering results.

The strengths of the proposed method are in two-fold.
On the one hand, the proposed one is highly efficient com-
pared with other state-of-the-art unsupervised feature selection
method. On the other hand, on the balanced data, since the
proposed method considers balance explicitly, it can better
reveal the balanced structure of data. Despite these merits,
notice that we make the assume that the given data is balanced.
If the data itself is unbalanced, our method may be misled by
the balance and achieve some worse results. Therefore, the
proposed method may be inappropriate to handle the imbal-
anced data. In the future, we will study how to evaluate the
balance of data without any label information, that is, given a
data, we judge whether the proposed method will work before
selecting features.
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