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Fair Clustering Ensemble with Equal Cluster
Capacity

Peng Zhou, Rongwen Li, Zhaolong Ling, Liang Du, Xinwang Liu

Abstract—Clustering ensemble has been widely studied in data mining and machine learning. However, the existing clustering
ensemble methods do not pay attention to fairness, which is important in real-world applications, especially in applications involving
humans. To address this issue, this paper proposes a novel fair clustering ensemble method, which takes multiple base clustering
results as inputs and learns a fair consensus clustering result. When designing the algorithm, we observe that one of the widely used
definitions of fairness may cause a cluster imbalance problem. To tackle this problem, we give a new definition of fairness that can
simultaneously characterize fairness and cluster capacity equality. Based on this new definition, we design an extremely simple yet
effective regularized term to achieve fairness and cluster capacity equality. We plug this regularized term into our clustering ensemble
framework, finally leading to our new fair clustering ensemble method. The extensive experiments show that, compared with the
state-of-the-art clustering ensemble methods, our method can not only achieve a comparable or even better clustering performance,
but also obtain a much fairer and better capacity equality result, which well demonstrates the effectiveness and superiority of our
method.

Index Terms—Clustering ensemble, fairness, clustering with equal capacity

✦

1 INTRODUCTION

C LUSTERING is a fundamental unsupervised machine
learning task and has been widely used in real-world

applications such as social networks [1] and crime analysis
[2]. Since clustering is an unsupervised task, most clustering
methods may suffer from stableness and robustness prob-
lems [3]. To address these issues, clustering ensemble is pro-
posed [4]. Clustering ensemble aims to integrate multiple
weak base clustering results into a consensus one to achieve
a more robust or stable clustering result. In recent years,
due to its robustness and stableness, clustering ensemble
methods have been widely studied [5], [6], [7], [8], [9], [10].

As introduced above, since clustering is often used in
real-world applications involving humans such as social
networks and crime analysis, we should guarantee that the
clustering result is fair enough to help humans to make
decisions. Mainstream fairness has two forms: group-level
fairness which focuses on the fairness of some specific
groups, and individual-level fairness which focuses on the
fairness of every individual [11]. In this paper, we focus on
group-level fairness. In some real-world applications, some
specific groups should be protected, such as females, which
are called protected groups. The clustering with group-
level fairness wishes that there are no clusters that have a
disproportionately small number of instances in some spe-
cific protected groups [12], [13]. Although the conventional
clustering ensemble methods can improve the clustering
performance to some extent, none of them consider the

Peng Zhou, Rongwen Li, and Zhaolong Ling are with Anhui Provincial Inter-
national Joint Research Center for Advanced Technology in Medical Imaging,
School of Computer Science and Technology, Anhui University, Hefei, 230601,
China. Email: zhoupeng@ahu.edu.cn, E22301284@stu.ahu.edu.cn, and
zlling@ahu.edu.cn
Liang Du is with School of Computer and Information Technology, Shanxi
University, Taiyuan, 030006, China. Email: duliang@sxu.edu.cn
Xinwang Liu is with College of Computer, National University of Defense
Technology, Changsha, 410073, China. Email: xinwangliu@nudt.edu.cn

fairness of the consensus result, and thus may obtain unfair
consensus results if the base clustering results are unfair.
Notice that there exist some fair clustering methods, such as
fair k-means [14], fair spectral clustering [15], and fair deep
clustering [16]. Fair clustering ensemble has some essential
differences from fair clustering. Firstly, the conventional
fair clustering methods are designed for some particular
clustering methods such as k-means and spectral clustering,
but fair clustering ensemble does not care how to generate
the base results, and only takes the base results (which are
often unfair) as inputs and obtain a fair consensus result.
Therefore, the fair clustering ensemble is a more general
post-processing framework that can follow any fair or unfair
clustering methods. Secondly, the fair clustering ensemble
does not need to access the original features or attributes of
data, which can protect the privacy of the data [6].

To address the fairness problem in clustering ensemble,
in this paper, we propose a novel group-level fair clustering
ensemble method. Our method is based on a widely-used
definition of group-level fairness [17], which makes the par-
tition not biased towards or against some specific groups in
the population. However, we observe that this definition of
fairness ignores the capacity of each cluster, and may cause
some extremely large or small clusters. For example, the
results will be very fair if we put most or all instances into
one cluster, according to their definition. Figure 1 shows a
simple example of clustering of humans. In this example, we
have 20 people (10 males and 10 females) who are denoted
as triangles and squares and we wish to partition them into
two clusters. We have two protected groups, i.e., male and
female, where the triangles denote the males and the squares
denote the females. Figure 1(a) shows a clustering result,
where the yellow color denotes one cluster and the blue
color denotes the other cluster. According to the fairness
definition in [17], this result is perfectly fair. However, the
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(a) Fair result with inequal clus-
ter capacity.

                    
:Male

:Female

(b) Fair result with equal cluster
capacity.

Fig. 1. A simple example to show the fairness and cluster capacity
equality. There are two protected groups, i.e., males and females. The
triangles denote the males and the squares denote the females. (a) and
(b) show two clustering results. Each result divides the individuals into
two clusters, where one is denoted by the yellow color and the other is
denoted by the blue color. The result in (a) is fair but imbalanced and the
result in (b) is fair and has an equal cluster capacity.

Place B Place C

Place A

(a) The partition result of k-
means, which is imbalanced
and unfair.

Place B Place C

Place A

(b) A balanced and fair parti-
tion result.

Fig. 2. An example of hospital location for three places A, B, and C.
Places B and C are two dense urban centers close to each other, whose
radius is both small. Place A is a big suburb far away from B and C,
whose radius is large. We want to construct three hospitals for them. (a)
shows the result of traditional k-means, which is imbalanced and unfair.
(b) shows the balanced and fair result. In each result, the points with the
same color form a cluster and own a hospital.

result is imbalanced because most people are divided into
the yellow cluster. Figure 1(b) shows another clustering
result, which is also fair but has an equal cluster capacity. If
we do not consider the cluster capacity explicitly, although
conventional fair clustering methods have some objectives
w.r.t. fairness and accuracy, they may still put most or all
instances into one cluster. We take a Reverse MNIST [18]
data set in our experiments as an example. Considering a
state-of-the-art fair clustering method SFD [19], it achieves
good fairness, i.e., 0.709 on Bal and 0.979 on MNCE (Bal
and MNCE are metrics for fairness, and the larger the fairer).
However, we observe that SFD puts most data into one clus-

ter, which obtains low values on the cluster capacity equality
metrics, i.e., 0.029 on CCE and 0.558 on NE (CCE and NE
are metrics for cluster capacity equality, and the larger the
better). More experimental details are shown in Section 4.4.
It shows that although SFD can achieve good fairness since
it does not consider the cluster capacity explicitly, it may
cause results with inequality cluster capacity.

Besides, in many real-world applications, clusters with
equal capacity are often required. For example, when a
school divides the students into several classes, there should
be nearly the same number of students in each class. An-
other example is the energy load balance of wireless sensor
networks. The inequal capacity clusters may cause energy
consumption and shorten the network lifetime [20]. Cluster-
ing with equal capacity can also avoid extremely large or
small clusters that are often undesirable in clustering tasks.
Moreover, for the consideration of fairness, equal capacity
is often still helpful. Chen et al. provided an example of re-
source allocation in [21] to show the effects of equal capacity
on fairness. In this example, there are three places A, B, and
C, where each place has almost the same population. Places
B and C are two dense urban centers close to each other,
whose radius is both small. Place A is a big suburb far away
from B and C, whose radius is large. Now we hope to build
three hospitals in these places, and thus we need to partition
the people in these places into three clusters. If we use the k-
means clustering, since the radius of A is much larger than
B and C and k-means tries to minimize the overall distances
between each person and his/her cluster center, k-means is
prone to divide A into two clusters and merge B and C to
the same cluster, which is shown as Figure 2(a). Then, we
will build two hospitals in place A and let the people in B
and C share one hospital, which seems unfair because the
hospital in places B and C must serve four times as many
people as the hospitals in A (notice that the population in
A, B and C is almost the same). If we partition them into
equal capacity clusters, which means we build one hospital
in each of places A, B, and C, respectively, we can obtain a
fairer result. The result is shown in Figure 2(b).

To address this equal capacity issue, we propose a new
definition of fairness considering the capacity of clusters.
Based on this definition, we propose an extremely simple yet
effective regularized term to simultaneously achieve fair-
ness and equal cluster capacity. Then, we plug this fairness
and equal cluster capacity regularized term into a clustering
ensemble framework, leading to our Fair Clustering Ensem-
ble (FCE) method. At last, we provide an effective iterative
algorithm to optimize the introduced objective function to
obtain the final clustering result. The experimental results
on some benchmark data sets show that our method can
achieve a fairer and more capacity equal clustering result
than the state-of-the-art clustering ensemble methods. It
well demonstrates the effectiveness of our fair clustering
ensemble method.

It is worth clarifying that clustering may have different
goals, such as fairness, accuracy, and cluster capacity equal-
ity. These goals may be consistent or at odds with each other.
In this paper, we observe that fairness and cluster capacity
equality can be consistent with each other and we design
a regularized term, which can simultaneously improve fair-
ness and cluster capacity equality. However, the accuracy
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may be at odds with others. Notice that, when measuring
the accuracy, we often use external indicators, which need
ground truth labels. In practice, the ground truth itself may
be unfair or imbalanced, and thus the accuracy may be at
odds with the fairness or the cluster capacity equality. If
the applications involve humans which needs fairness, and
we also want to partition the data into some groups with
similar sizes, we can use the proposed method. If accuracy
is at odds with fairness, we should pay more attention to
fairness, or we may cause some bad social effects, such
as sexism or other discrimination. If the application does
not need fairness, and we just want to partition the data
into some groups with similar sizes, we can also use the
proposed method, which will be discussed in Section 3.4.
If we need neither fairness nor cluster capacity equality, we
can use the traditional methods instead of the proposed one.

The main contributions of this paper are summarized as:

• To the best of our knowledge, this is the first work
of clustering ensemble considering both the fairness
and equal cluster capacity.

• We provide a new fairness definition by fully consid-
ering the fairness and equal cluster capacity.

• We design a novel, simple, and effective regularized
term that can achieve fairness and equal cluster ca-
pacity simultaneously, and plug it into our clustering
ensemble framework to form a new fair clustering
ensemble method.

• The experimental results demonstrate the effective-
ness of our method on fairness, equal cluster capac-
ity, and accuracy.

2 RELATED WORK AND PRELIMINARIES

In this section, we briefly review some related works and
preliminaries about clustering ensemble, fair clustering, and
clustering with equal capacity.

2.1 Clustering Ensemble
Clustering ensemble was first proposed in [4], aiming to
integrate multiple weak base clustering results to obtain
a more robust consensus clustering result. Given a data
set with n instances X = {x1, . . . ,xn}, we first generate
m base clustering results C1, . . . , Cm, where the j-th base
result Cj contains c clusters πj

1, . . . , π
j
c and X =

⋃c
i=1 π

j
i .

Clustering ensemble aims to learn a consensus partition C∗

by ensembling the m base clusterings C1, . . . , Cm.
One kind of mainstream clustering ensemble method

is based on the co-association (CA) matrix, which is the
matrix containing the number of times two data appear
in the same cluster in multiple basic clusterings [22], [23],
[24], [25], [26], [27]. For example, Tao et al. learned the
robust representation from the CA matrix through the low-
rank constraint to remove noises [26]; Jia et al. generated
an enhanced CA matrix by propagating the high-reliability
information in the CA matrix to achieve better clustering
performance [27]. Because the CA matrix can also be viewed
as an adjacency matrix or a similarity matrix, there are also
many graph-based methods [28], [29], [30], [31], [32], [33].
For example, Liu et al. applied spectral clustering on the CA
matrix and proved its theoretical equivalence with weighted

k-means clustering [31]; Zhou et al. proposed a graph-based
tri-level robust clustering ensemble method [32]; Zhou et
al. applied the self-paced learning to learn a more robust
CA matrix for ensemble [34]; Chen et al. refined multiple
connection matrices through substantial rank recovery and
graph tensor learning [33]; Zhou et al. proposed a clustering
ensemble method on a multiplex graph [35].

Although clustering ensemble methods based on the CA
matrix or graph have shown good performance, the high
space and time complexity hinders their applications on
large-scale data sets. Therefore, many methods attempt to
ensemble base clustering using other data structures [36],
[37], [38], [39], [40], [41], [42]. For example, Bai et al. devel-
oped an information theory framework to maintain the con-
sistency of basic clustering results [39]; Zhou et al. proposed
an alignment method to ensemble multiple k-means [43];
Huang et al. proposed a clustering ensemble method based
on sparse graph representation and probabilistic trajectory
analysis [40]; Li et al. developed a clustering ensemble
method based on sample stability [41]; Zhou et al. proposed
a partial clustering ensemble method that simultaneously
filled in missing values and ensembled them [42]; Zheng et
al. obtained a more reliable clustering indicator matrix by
weighting on clusters and performed non-negative matrix
factorization [44].

Previous clustering ensemble methods focus on improv-
ing clustering performance, whereas ignoring the fairness
of the result. In this paper, we develop a new fair clustering
ensemble method that can improve not only the clustering
performance but also the fairness.

2.2 Fair Clustering

In recent years, the fairness of clustering has attracted in-
creasingly more attention [45]. Chierichetti et al. provided
the first definition of cluster fairness and proposed a fair
decomposition method by first decomposing data into small
subsets with fair properties, and then running off-the-shelf
clustering on these subsets [12]. Then, Rösner et al. proposed
a fair clustering method that can handle more than two pro-
tected groups [46]. Backurs et al. proposed a linear-time fair
decomposition algorithm for clustering [19]. Kleindessner et
al. extended spectral clustering by recasting the fairness as
a linear constraint [15].

There are several definitions for fairness in existing
works. One of the most widely used is proposed in [17],
which is shown as follows:

Definition 1. (Fairness) [17] Let X ∈ Rn×d denote n in-
stances with d attributes, which are partitioned into c disjoint
clusters C = {π1, . . . , πc}. Given T disjoint protected groups
G1,G2, . . . ,GT , let ηi = |Gi|

n and ηi(k) = |πk∩Gi|
|πk| denote

the proportion of group Gi in the whole data and cluster πk,
respectively. The fairness of πk can be defined as:

fairness (πk) = min

(
ηi

ηi(k)
,
ηi(k)

ηi

)
, ∀i ∈ {1, . . . T}

The fairness of the whole clustering result C is defined as:

fairness(C) = min
k∈{1,...c}

fairness(πk) (1)
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Remark 1. fairness(C) ∈ [0, 1]. The larger fairness(C) is,
the fairer the clustering result is. Therefore, fairness(C) = 1
means the results are perfectly fair. Definition 1 shows that a fair
clustering result requires that the proportion of Gi in each cluster
(i.e., ηi(k)) should be close to the proportion of Gi in the whole
data (i.e., ηi).

Based on this definition, several non-deep fair cluster-
ing methods and deep fair clustering methods have been
proposed. For non-deep fair clustering methods, Ziko et al.
proposed a variational fair clustering framework by combin-
ing fairness terms with three different clustering objectives
[47]; Chen et al. defined a notion of proportionally fair
clustering where all possible groups of reasonably large size
are entitled to choose a center for themselves [21]; Mohsen et
al. proposed adding weights to all sample points during the
clustering process to achieve fairness in clustering [48]; Li
et al. proposed a reweighting method to achieve the group-
level fairness [49]; Ghadiri et al. presented a fair k-means
method to choose cluster centers providing similar costs
for different groups [50]; Jessica et al. used antidote data
in clustering to improve group level fairness [51].

For deep fair clustering methods, Wang et al. embedded
this fairness into deep clustering by learning a differenti-
ated and fair clustering allocation function [52]; Chhabra
et al. provided a robust deep fair clustering method by
considering the fairness attack [53]; Zeng et al. embedded
fairness constraints into deep clustering by maximizing and
minimizing mutual information [16].

Although these works have demonstrated promising
performance on fairness, they are designed for some specific
clustering methods, which are not general enough. More-
over, these methods need to access all the original features
of data, which may cause privacy leakage. To address these
problems, this paper focuses on the fair clustering ensemble,
which is one of the post-processings for fair clustering.

2.3 Clustering with Equal Capacity
To avoid extremely large or small clusters, or to handle
the data whose original distribution is balanced, sometimes
we hope that clusters should contain similar numbers of
instances. Therefore, some clustering algorithms with equal
capacity have been proposed, which can be roughly divided
into two types: hard-equality and soft-equality methods.
Notice that, in previous literature, clustering with equal
capacity is often called ”balance clustering”. However, the
term ”balance” is also often used in fairness clustering to
refer the fairness. To avoid confusion, in this paper, we use
the term ”clustering with equal capacity” to refer to the
”balance clustering” used in the previous literature.

Hard-equality methods hope that the number of in-
stances in each cluster is strictly the same. To achieve
this, Bradley et al. and Malinen et al. considered imposing
some constraints on the k-means clustering so that they
can strictly control the size of the clusters in [54] and [55],
respectively. Then, Costa et al. designed the equal capacity
constraint for the minimum sum-of-squares clustering [56].

The soft-equality methods only apply the equal capacity
constraint as a penalty to the clustering objective function to
obtain less strict results compared with the hard-equality
methods. For example, Banerjee et al. designed effective

equal cluster capacity regularization terms and plugged
them into a clustering method [57], [58]. Liu et al. designed
a lasso-liked term to make the clustering results of least
square regression achieve equal cluster capacity [20]. Liu
et al. used the variance of cluster size as a penalty for
clustering and adopted a fast optimization process to handle
large-scale data sets [59]. Zhou et al. proposed new k-means
and spectral clustering methods with an equal capacity
regularized term and applied them to the feature selection
task [60], [61].

Clustering with equal cluster capacity can prevent dis-
crimination against minority groups and thus is helpful to
fair clustering [21]. Therefore, we also plug this property
into our fair clustering ensemble framework.

3 CLUSTERING ENSEMBLE WITH FAIRNESS

Most clustering methods cannot guarantee the fairness of
the clustering result. To address this issue, clustering en-
semble can be used as a post-processing to obtain a fair con-
sensus clustering result from multiple unfair base clustering
results, leading to a fair clustering ensemble. The problem
setting of the fair clustering ensemble is as follows:

Problem Setting. (Fair Clustering Ensemble) Given m base
clustering results C1, . . . , Cm of n instances, and T protected
groups G1, . . . ,GT , fair clustering ensemble aims to obtain a
consensus clustering result C∗ which is fair w.r.t. the protected
groups in G1, . . . ,GT .

Remark 2. The base clustering results C1, . . . , Cm can be gener-
ated by any clustering methods which are no matter fair or unfair
methods. Since the fair clustering ensemble does not require the
fairness of the base clustering methods and base results, it is a
more general framework to achieve fairness compared to the fair
clustering methods.

Remark 3. The inputs of the fair clustering ensemble are the
multiple base results C1, . . . , Cm together with several protected
groups G1, . . . ,GT . It does not need to access any original features
of data, and thus it can protect the privacy of data compared to
fair clustering methods. Notice that to obtain the base results
C1, . . . , Cm need the original features, for example, we run k-
means on the original features to obtain the base results. However,
the clustering ensemble does not care about this process and does
not care about how to obtain the base results, either. Considering
some popular scenarios of clustering ensemble, which are the
distributed computing scenario or the federated learning scenario,
the local clients can run off-the-shelf clustering methods on their
private data locally to generate the base results. Then, the local
clients upload their base results to the cloud server without their
private data, and the cloud server runs the clustering ensemble
method on these base results without accessing the private data.
In these scenarios, clustering ensemble can indeed generate a
consensus result which protects the privacy of data.

3.1 Fairness Regularize

In this paper, we use Definition 1 to measure the fairness
of the clustering result. However, we observe that although
Definition 1 can well characterize the fairness, it may cause
another problem of equal cluster capacity.
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Considering an extreme case if we put all instances
into one cluster in C, according to Definition 1, we have
fairness(C) = 1, which means it easily achieves the perfect
fairness. Therefore, if we directly use Definition 1 as the
objective, we may obtain an inequal capacity clustering
result. However, according to many previous works [61],
[62], [63], [64], [65], in many real-world applications, we
wish that the numbers of data in each cluster are about
the same, and should not have the extremely large or small
clusters. Hence, besides fairness, the equal cluster capacity
also needs to be considered sometimes in practice.

To measure the equality of cluster capacity, we also need
a metric of it just like fairness. Similar to Definition 1, we
provide the following definition of cluster capacity equality
of a clustering result C = {π1, . . . , πc}:

Definition 2. (Cluster Capacity Equality) Let |πk| indicates the
number of samples in cluster πk. The Cluster Capacity Equality
(CCE) of C can be defined as:

CCE (C) = min

( |πi|
|πj |

)
, ∀i, j ∈ {1, . . . , c}. (2)

Remark 4. CCE(C) ∈ [0, 1]. The larger CCE(C) is, the more
equal the cluster capacity is. It is easy to verify that when |πi| =
|πj | = n

c , it is the most equal result.

With this definition of cluster capacity equality, we
can provide a new metric to simultaneously measure the
fairness and cluster capacity equality of a clustering re-
sult C = {π1, . . . , πc}. Suppose we have T protected
groups G1, . . . ,GT . Then we give the following definition
of fairness CCE:

Definition 3. (fairness CCE) Let γi(k) = |πk∩Gi|
|Gi| be the

proportion of cluster πk in the group Gi. The fairnesss CCE of
πk can be defined as:

fairnesss CCE (πk) = min
i∈{1,...T}

(
cγi(k),

1

cγi(k)

)
.

The fairness CCE of a clustering result C is defined as:

fairness CCE(C) = min
k∈{1,...c}

fairness CCE(πk)

Remark 5. fairness balance(C) ∈ (0, 1]. The larger
fairness balance(C) is, the fairer and more cluster capacity
equal the clustering result C is.

Remark 6. Definition 3 is following the classical definition
of fairness, i.e., Definition 1. Strictly speaking, they are more
like fairness metrics. If we want to define what is ”fair” and
what is ”unfair” explicitly, we should give a threshold δ. If
fairness CCE ≥ δ, we can tell that the result is fair.

Remark 7. Here we show why fairness CCE(C) can be
used to measure the fairness and cluster capacity equality. It
is easy to verify that the closer cγi(k) is to 1, the larger
fairness CCE(πk) is. Take a closer look at cγi(k):

cγi(k) =
c|πk ∩ Gi|

|Gi|
(3)

If cγi(k) is close to 1, which means c|πk∩Gi|
|Gi| ≈ 1, and further we

obtain

|πk ∩ Gi| ≈
|Gi|
c

(4)

Summing the left-hand side and right-hand side of Eq.(4) w.r.t. i,
we have

T∑
i=1

|πk ∩ Gi| ≈
T∑

i=1

|Gi|
c

⇒ |πk| ≈
n

c
. (5)

Eq.(5) shows that the results have more equal cluster capacity
according to Definition 2.

Then, dividing Eq.(4) by Eq.(5), we have

|πk ∩ Gi|
|πk|

≈ |Gi|
n

(6)

Notice that |πk∩Gi|
|πk| is exact ηi(k) in Definition 1 and |Gi|

n is ηi in
Definition 1. Therefore, according to Definition 1, the results are
fair. To sum up, the larger fairness balance is, the better the
fairness and cluster capacity equal of the clustering result is.

Based on the above discussion, we find that Eq.(4) is
the key to simultaneously achieving fairness (i.e., Eq.(6))
and equal cluster capacity (i.e., Eq.(5)). Let us take a closer
look at Eq.(4). Eq.(4) means that we should divide group Gi

averagely to each cluster. Based on this idea, we can design a
simple regularized term to simultaneously achieve fairness
and cluster capacity equality as follows.

We first construct a one-hot matrix G ∈ {0, 1}n×T for
all instances from G1, · · · ,GT , where n is the number of
instances and T is the number of protected groups. If the
i-th instance belongs to the j-th protected group, Gij = 1,
and Gij = 0 otherwise.

Then, given a clustering result with c clusters, we can
construct a one-hot result matrix Y ∈ {0, 1}n×c, where if
the i-th instance belongs to the j-th cluster, then Yij = 1
and Yij = 0 otherwise. Given G and Y, we can construct
A = GTY. Notice that the (i, j)-th element in A, which is
denoted as Aij , is Aij = |πj ∩ Gi|.

Now, consider the i-th protected group. According to
Eq.(4), we wish Gi be divided equally into each cluster,
which means Ai1, Ai2, · · · , Aic should be close to each other.
Notice that, the summation of Ai1, Ai2, · · · , Aic, which is∑c

j=1 Aij = |Gi|, is a constant. Now consider the following
optimization problem:

min
Ai1,··· ,Aic

c∑
j=1

A2
ij , (7)

s.t.
c∑

j=1

Aij = |Gi|.

It is easy to verify that the optima of Eq.(7) is Ai1 = Ai2 =

· · · = Aic = |Gi|
c , which means we divide Gi equally into

each cluster. Similarly, for any other protected groups Gk, we
can also minimize

∑c
j=1 A

2
kj to achieve fairness and cluster

balance.
To sum up, we obtain the following term to simultane-

ously achieve fairness and cluster capacity equality:

min
A

T∑
k=1

c∑
j=1

A2
kj = min

A
∥A∥2F ⇔ min

Y
∥GTY∥2F . (8)

Given a one-hot protected group matrix G, we wish
to learn a cluster partition matrix Y. If Y satisfies Eq.(8),
then the clustering result can satisfy the fairness and cluster
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capacity equality. In the following, we will plug this regu-
larized term into a clustering ensemble framework to obtain
our fair clustering ensemble method.

3.2 Objective function
In clustering ensemble, we first construct multiple one-hot
clustering result matrix Y(1), . . . ,Y(m) ∈ {0, 1}n×c from
C1, · · · , Cm as introduced before. Then we try to ensemble
Y(1), . . . ,Y(m) to obtain a consensus result Y ∈ Rn×c.

Notice that we cannot directly average Y(1), . . . ,Y(m)

to obtain Y because the clusters in each base result are
not aligned. For example, the first cluster in Y(i) is not
necessarily the same as the first cluster in Y(j). To tackle
this problem, we can introduce a learnable rotation matrix
R(i) ∈ Rc×c for each base result, where R(i)TR(i) = I, to
align the clusters in each base result. Then, when we learn
an appropriate rotation matrix R(i), Y(i)R(i) can be seen as
the aligned base result, which is ready for the ensemble.

We first learn a consensus orthogonal embedding
H ∈ Rn×c from Y(i)R(i) by minimizing

∑m
i=1 α

2
i ∥H −

Y(i)R(i)∥2F , where 0 ≤ αi ≤ 1 is the weight of the i-th base
result. Larger αi represents a more important base result.
Notice that each column of H is a representation of a cluster.
In the conventional clustering setting, each instance should
belong to only one cluster, and thus clusters should be far
away from each other. This is the reason why we wish H to
be orthogonal as spectral clustering did.

Since clustering aims to learn a hard partition of data
instead of an embedding, we need to obtain a 0/1 matrix Y
by discretizing H. To avoid using any post-processing meth-
ods, we design a one-stage clustering ensemble method,
which learns the 0/1 matrix Y directly without any post-
processing. To this end, inspired by the spectral rotation
[66], we add a discretizing term ∥Y−HR∥2F to the objective
function, where R ∈ Rc×c is also a rotation matrix. Then, we
obtain our clustering ensemble objective function:

min
θ

m∑
i=1

α2
i ∥H−Y(i)R(i)∥2F + λ1∥Y −HR∥2F

s.t. HTH = I, RTR = I, R(i)TR(i) = I (9)

Y ∈ {0, 1}n×c,
c∑

j=1

Yij = 1, 0 ≤ αi ≤ 1,
m∑
i=1

αi = 1,

where θ = {αi,H,R(i),R,Y} is the set of learnable param-
eters in the objective function, and λ1 is a hyper-parameter.
Since the second term is only for discretization instead of
ensemble, we do not wish it to affect the ensemble too much.
To this end, we fix λ1 as a small constant 0.001.

Then, we plug our fairness regularized term Eq.(8) into
Eq.(9), leading to our final objective function:

min
θ

m∑
i=1

α2
i ∥H−Y(i)R(i)∥2F +λ1

(
∥Y−HR∥2F +λ2∥GTY∥2F

)
,

s.t. HTH = I, RTR = I, R(i)TR(i) = I (10)

Y ∈ {0, 1}n×c,
c∑

j=1

Yij = 1, 0 ≤ αi ≤ 1,
m∑
i=1

αi = 1,

where λ2 is a trade-off hyper-parameter to balance the
clustering performance and fairness.

3.3 Optimization
We optimize one variable by fixing other variables.

3.3.1 Optimizing H

When fixing other variables, we can rewrite the subproblem
w.r.t. H as:

min
H

− tr(HTB) (11)

s.t. HTH = I,

where B =
∑m

i=1 α
2
iY

(i)R(i) + λ1YRT . Eq.(11) can be
solved by using the Singular Value Decomposition (SVD) on
B. Here the following Theorem gives a closed-form solution
for the problem in (11).

Theorem 1. supposing the SVD of B is B = UΣVT where U
and V are orthogonal matrices and Σ is a diagonal matrix, the
closed-form solution of H in (11) is H = UVT .

Proof. Minimizing Eq.(11) is equivalent to maximizing
tr(HTB). We have that the SVD of B is B = UΣVT . Since
H is column orthogonal, its SVD is H = H∗I∗I. According
to Von Neumann’s trace inequality, we have

tr(HTB) ≤ tr(IΣ)

= tr(UTBV)

= tr((UVT )TB)

The equality holds when H = UVT . Therefore, the global
optima of Eq.(11) is H = UVT .

3.3.2 Optimizing R(i)

The subproblem w.r.t. R(i) is

min
R(i)

− tr(R(i)TC) (12)

s.t. R(i)TR(i) = I,

where C = Y(i)TH. It can also be solved by Theorem 1, the
solution is the SVD of C.

3.3.3 Optimizing R

The subproblem w.r.t. R is

min
R

− tr(RTE), (13)

s.t. RTR = I,

where E = HTY. The solution is also similar to the one of
Eq.(11), which is the SVD of E.

3.3.4 Optimizing Y

When optimizing Y, we have the following formula

min
Y

∥Y −HR∥2F + λ2∥GTY∥2F (14)

s.t. Y ∈ {0, 1}n×c,
c∑

j=1

Yij = 1.

Notice that in each row of Y there is only one 1 and other
elements are zeros. Therefore, we can solve Eq.(14) row by
row. When solving the i-th row, we replace the i-th row
by [1, 0, · · · , 0], [0, 1, 0, · · · , 0], · · · , [0, · · · , 0, 1] respectively,
and select the one that has the lowest objective function
value as the solution of the i-th row as [67] did.
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3.3.5 Optimizing αi

When optimizing αi, we have the following subproblem

min
αi

m∑
i=1

α2
i ∥H−Y(i)R(i)∥2F (15)

s.t. 0 ≤ αi ≤ 1,
m∑
i=1

αi = 1.

According to Cauchy-Schwarz Inequality, we obtain the
closed-form solution of αi as:

αi =
∥H−Y(i)R(i)∥−2

F∑m
j=1 ∥H−Y(j)R(j)∥−2

F

. (16)

Algorithm 1 Fair Clustering Ensemble.

Input: Multiple base clustering results C1, · · · , Cm, pro-
tected groups G1, · · · ,GT , hyper-parameters λ1 and λ2.

Output: Final consensus clustering matrix Y
1: Construct base clustering result matrices

Y(1), · · · ,Y(m) and the one-hot protected attribute
matrix G.

2: Initialize R = I, R(i) = I, and αi =
1
m . Initialize H by

minimizing
∑m

i=1 ∥H−Y(i)R(i)∥2F .
3: while not converges do
4: Update Y by solving Eq.(14).
5: Update R by solving Eq.(13).
6: Update R(i) by solving Eq.(12).
7: Update H by solving Eq.(11).
8: Update αi by Eq.(16).
9: end while

Algorithm 1 summarizes the process of our FCE. Notice
that when solving each subproblem, the objective function
value decreases monotonously, and the objective function
has a lower bound, which guarantees the convergence of
Algorithm 1.

3.4 Discussions
Now we briefly analyze the time complexity of Algorithm 1.
When solving H, R(i), and R, we need the SVD of n-by-c, c-
by-c, and c-by-c matrices, respectively. The time complexity
of the SVDs are O(nc2), O(c3), and O(c3), respectively.
Notice that c is the number of clusters which is often
small in real applications. When solving one row of Y, we
need some matrix multiplications, whose time complexity
is O(nc2). Therefore, updating the whole Y needs O(n2c2)
time. Updating αi costs O(nc2) time. To sum up, the time
complexity is O(n2c2). Notice that the bottleneck is the
matrix multiplication when solving Y and it is often fast
in practice [67]. We can also easily parallelize the matrix
multiplication for further speedup.

The main part of the method is the fairness regularized
term ∥GTY∥2F , which is simple yet effective. Notice that
this term only needs the pseudo-labels Y and protected
groups matrix G. Therefore, this term can be plugged into
many other machine learning methods easily to improve
fairness, such as k-means and feature selection. This term is
a kind of fairness regularized term with universality.

Although the motivation of the regularized term
∥GTY∥2F is to improve fairness, we observe that this term

can also be used for clustering with equal capacity. We
just need to put all instances into one protected group,
which means that we let G be an n-dimensional vector
whose elements are all 1’s, and then this term, i.e., ∥1TY∥2F ,
degenerates to an equal cluster capacity regularized term.
Therefore, the clustering ensemble with equal cluster capac-
ity is a special case of our proposed framework.

4 EXPERIMENTS

In this section, we conduct experiments on some benchmark
data sets to show the effectiveness of the proposed method.

4.1 Data Sets
We conduct experiments on six widely-used data sets in
fair machine learning works, including D&S [68], HAR [69],
MNIST-USPS [18], Reverse MNIST [18], JAFFE [70], Yale
[71]. D&S is a human daily and sports activities data set
including 8 participants. HAR is a human action recognition
data set including 30 participants. In both D&S and HAR
data sets, the instances of each participant form a protected
group. MNIST-USPS is an image data set containing im-
ages of handwritten digits from MNIST1 and USPS2 data.
Following [18], we randomly sample 2000 images from
MNIST to form one protected group and randomly sample
1800 images from USPS to form the other protected group.
Reverse MNIST is an image data set generated from MNIST.
Also following [18], we randomly sample 2000 images from
MNIST to form one protected group and randomly sample
2000 images and reverse them to form the other protected
group. JAFFE is a face image data set. Following [18], we put
the face images with the same expressions into a protected
group. Yale is also a face image data set. Following [18],
the people wearing glasses form a protected group and
other people form the other protected group. The detailed
information of these data sets is summarized in Table 1,

4.2 Experimental Setup
To evaluate the performance of the proposed method, we
conduct two groups of experiments. In the first group of
experiments, following a similar experimental protocol in
[72], we run k-means 100 times with different initializations
to obtain 100 base clustering results. We divide these 100
base results into 10 subsets. Then we run clustering ensem-
ble methods on the 10 subsets and report the average results
and standard deviation on the 10 subsets. To evaluate the
performance on the base results with more diversity, we
conduct the second group of experiments, which is a com-
parison on different base clustering algorithms. Specifically,
in each subset, we ensemble 10 base results including 3 k-
means results, 3 spectral clustering results, 3 hierarchical
clustering results, and 1 kernel k-means result. Other setups
are the same as the first group of experiments.

We compare our FCE with the following eleven main-
stream clustering ensemble methods:

• BCE [72], which is a probability framework for en-
semble to generate a stable consensus result.

1. http://yann.lecun.com/exdb/mnist
2. https://www.kaggle.com/bistaumanga/usps-dataset
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TABLE 1
Description of the data sets.

Data sets # of Instances # of Features # of Cluster Protected Groups
D&S 9120 5625 19 Person Identity (8)
HAR 10299 561 6 Person Identity (30)

MNIST-USPS 3800 256 10 Source of images (2)
Reverse MNIST 4000 784 10 Original or reversed (2)

JAFFE 213 676 10 Expression (7)
Yale 165 1024 15 w/o glasses (2)

• RCE [73], which minimizes Kullback Leibler (KL)
divergence between each base result and learns a
robust consensus result.

• LWGP [74], which applies a local weighting strategy
to a graph partition consensus clustering method.

• LWEA [74], which applies a local weighting strategy
to an agglomerative consensus clustering method.

• DREC [75], which is a clustering ensemble method
based on the dense representation.

• RSEC [26], which is a spectral-based robust cluster-
ing ensemble method.

• TRCE [32], which is a tri-level robust clustering
ensemble method.

• ECPCS-MC [76], which is a clustering ensemble
method by propagating cluster-wise similarities with
a meta-cluster.

• ECPCS-HC [76], which is a clustering ensemble
method by propagating cluster-wise similarities with
hierarchical consensus function.

• CESHL [77], which is a consensus clustering method
with structured hypergraph learning.

• PFREFF [78], which is a parameter-free robust en-
semble framework for fuzzy clustering.

In addition, we also report KM, which is the average
result of all base clusterings. To show the effectiveness of
our designed fairness regularized term, we also conduct
an ablation study by comparing it with our degenerated
version FCE-f, which removes the fairness regularized term
(i.e., Eq.(8)). In FCE, we use rotation matrices R(i) to align
the clusters in each base result. Another straightforward
way to align the clusters is to use the Hungary algorithm.
To show the effectiveness of our rotation matrices, we also
compare our FCE with a variant that first aligns the clusters
with Hungary algorithm and then does ensemble with our
designed fairness regularized term. We denote this version
as FCE-a.

For all methods and all data sets, we set the number of
clusters c as the true number of classes. We fix the hyper-
parameter λ1 to 0.001 as introduced before. The hyper-
parameter λ2 controls the fairness and cluster capacity
equality, and we tune it in

[
10−5, 101

]
. For other methods,

we tune the hyper-parameters as their papers suggested.
For example, in RSEC, following the authors’ suggestion,
we tune λ1 in the set {0.01, 0.1, 1} and λ2 in the set {0.1, 1}.
In DREC, we set λ as 100.

We use ACCuracy (ACC) and Normalized Mutual Infor-
mation (NMI) to measure the clustering performance. We
use Balance (Bal) [13] and Minimal Normalized Conditional

Entropy (MNCE) [16] to evaluate the fairness. In more
detail, Bal is defined as

Bal (C) = min
k

(
Nmin

k

Nmax
k

)
∈ [0, 1], (17)

where Nmin
k and Nmax

k denote the number of instances in
the smallest and the largest (in size) protected groups in
cluster πk, respectively. MNCE is defined as

MNCE =
mink

(
−
∑

i
|Gi∩πk|
|πk| log |Gi∩πk|

|πk|

)
−
∑

i
|Gi|
n log |Gi|

n

∈ [0, 1]. (18)

In addition, we also use our Definition 2, denoted as CCE,
and Normalized Entropy (NE) [64] to measure the cluster
capacity equality. NE is defined as

NE = − 1

log(c)

c∑
k=1

|πk|
n

log

( |πk|
n

)
∈ [0, 1]. (19)

In addition to the above indicators, we also report fairness
CCE(f CCE) in Definition 3.

All metrics are the larger the better.

4.3 Experimental Results
We report the results of all clustering ensemble methods on
all k-means base results in Tables 2, 3, and 4. The best results
are denoted in bold and the second best results are denoted
underlined. From these Tables, we can find that our FCE
outperforms other compared methods on all data sets w.r.t.
fairness (i.e., Bal and MNCE) and cluster capacity equality
(i.e., CCE and NE), demonstrating our method’s motivation.
When comparing w.r.t. the clustering performance, i.e., ACC
and NMI, although our method focuses on fairness and
cluster capacity equality, it is still comparable with other
compared methods on many data sets and even better than
them on some data sets.

When compared with the degenerated version FCE-f,
which is without the designed fairness regularized term,
FCE performs better w.r.t. the fairness and the cluster ca-
pacity equality. It demonstrates the effectiveness of our
designed fairness regularized term. In addition, when re-
moving this fairness regularized term, the ACC and NMI
of FCE-f can outperform other compared methods, which
shows the effectiveness of our ensemble strategy. Moreover,
it is interesting to see that the clustering performance of
ACC and NMI sometimes is even better than the original
FCE. It shows that sometimes we can only achieve a trade-
off between accuracy, fairness, and cluster capacity equality.
Notice that when computing the ACC and NMI, we need
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TABLE 2
Experimental results on MNIST-USPS and Reverse-MNIST data sets. FCE-f represents the degenerated version of FCE without the fairness

regularized term and FCE-a denotes the version that aligns the base results with the Hungary algorithm. The best and second best results are
denoted in bold and underlined, respectively.

Methods MNIST-USPS Reverse MNIST
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.371 0.343 0.001 0.006 0.320 0.966 0.000 0.318 0.285 0.003 0.011 0.293 0.961 0.004
±0.012 ±0.016 ±0.003 ±0.012 ±0.040 ±0.014 ±0.000 ±0.015 ±0.021 ±0.009 ±0.025 ±0.037 ±0.016 ±0.035

BCE [72] 0.385 0.389 0.000 0.000 0.276 0.974 0.000 0.346 0.335 0.000 0.000 0.237 0.962 0.000
±0.017 ±0.009 ±0.000 ±0.000 ±0.106 ±0.012 ±0.000 ±0.025 ±0.021 ±0.000 ±0.000 ±0.101 ±0.015 ±0.000

RCE [73] 0.384 0.400 0.000 0.000 0.372 0.980 0.000 0.350 0.367 0.000 0.000 0.345 0.976 0.000
±0.015 ±0.006 ±0.000 ±0.000 ±0.061 ±0.005 ±0.000 ±0.005 ±0.013 ±0.000 ±0.000 ±0.018 ±0.002 ±0.000

LWGP [74] 0.366 0.369 0.000 0.000 0.180 0.955 0.000 0.348 0.362 0.000 0.000 0.314 0.973 0.000
±0.017 ±0.031 ±0.000 ±0.000 ±0.136 ±0.021 ±0.000 ±0.008 ±0.016 ±0.000 ±0.000 ±0.086 ±0.007 ±0.000

LWEA [74] 0.390 0.361 0.000 0.000 0.004 0.876 0.000 0.344 0.346 0.000 0.000 0.193 0.942 0.000
±0.024 ±0.017 ±0.000 ±0.000 ±0.004 ±0.040 ±0.000 ±0.012 ±0.021 ±0.000 ±0.000 ±0.170 ±0.033 ±0.000

DREC [75] 0.387 0.399 0.000 0.000 0.341 0.975 0.000 0.342 0.358 0.000 0.000 0.296 0.967 0.000
±0.017 ±0.013 ±0.000 ±0.000 ±0.110 ±0.013 ±0.000 ±0.006 ±0.011 ±0.000 ±0.000 ±0.056 ±0.011 ±0.000

RSEC [26] 0.383 0.405 0.000 0.000 0.377 0.983 0.000 0.351 0.366 0.000 0.000 0.343 0.979 0.000
±0.017 ±0.009 ±0.000 ±0.000 ±0.045 ±0.004 ±0.000 ±0.006 ±0.013 ±0.000 ±0.000 ±0.052 ±0.004 ±0.000

TRCE [32] 0.379 0.400 0.000 0.000 0.326 0.976 0.000 0.332 0.342 0.000 0.000 0.319 0.976 0.000
±0.016 ±0.011 ±0.000 ±0.000 ±0.043 ±0.005 ±0.000 ±0.006 ±0.011 ±0.000 ±0.000 ±0.035 ±0.004 ±0.000

ECPCS-HC [76] 0.306 0.203 0.000 0.000 0.000 0.582 0.000 0.297 0.244 0.000 0.000 0.034 0.736 0.000
±0.025 ±0.035 ±0.000 ±0.000 ±0.000 ±0.065 ±0.000 ±0.028 ±0.058 ±0.000 ±0.000 ±0.105 ±0.104 ±0.000

ECPCS-MC [76] 0.374 0.394 0.000 0.000 0.350 0.979 0.000 0.349 0.368 0.000 0.000 0.337 0.976 0.000
±0.016 ±0.022 ±0.000 ±0.000 ±0.057 ±0.004 ±0.000 ±0.007 ±0.005 ±0.000 ±0.000 ±0.030 ±0.003 ±0.000

CESHL [77] 0.342 0.314 0.000 0.000 0.002 0.793 0.100 0.327 0.311 0.000 0.000 0.132 0.847 0.000
±0.053 ±0.070 ±0.000 ±0.000 ±0.003 ±0.155 ±0.316 ±0.039 ±0.073 ±0.000 ±0.000 ±0.170 ±0.145 ±0.000

PFREFF [78] 0.371 0.403 0.000 0.000 0.321 0.974 0.000 0.350 0.359 0.000 0.000 0.290 0.970 0.000
±0.016 ±0.011 ±0.000 ±0.000 ±0.107 ±0.014 ±0.000 ±0.004 ±0.013 ±0.000 ±0.000 ±0.080 ±0.015 ±0.000

FCE-f 0.395 0.406 0.000 0.000 0.391 0.985 0.000 0.352 0.368 0.000 0.000 0.340 0.977 0.000
±0.014 ±0.009 ±0.000 ±0.000 ±0.065 ±0.003 ±0.000 ±0.007 ±0.012 ±0.000 ±0.000 ±0.121 ±0.013 ±0.000

FCE-a 0.389 0.381 0.098 0.382 0.531 0.982 0.141 0.302 0.243 0.342 0.816 0.748 0.998 0.186
±0.046 ±0.055 ±0.054 ±0.113 ±0.153 ±0.017 ±0.015 ±0.016 ±0.017 ±0.042 ±0.036 ±0.025 ±0.000 ±0.042

FCE 0.419 0.385 0.105 0.445 0.703 0.997 0.190 0.328 0.266 0.339 0.814 0.774 0.999 0.174
±0.019 ±0.013 ±0.037 ±0.094 ±0.084 ±0.002 ±0.052 ±0.011 ±0.014 ±0.030 ±0.027 ±0.021 ±0.000 ±0.051

TABLE 3
Experimental results on D&S and HAR data sets. FCE-f represents the degenerated version of FCE without the fairness regularized term and
FCE-a denotes the version that aligns the base results with the Hungary algorithm. The best and second best results are denoted in bold and

underlined, respectively.

Methods D&S HAR
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.347 0.475 0.000 0.021 0.002 0.703 0.000 0.579 0.571 0.000 0.812 0.241 0.940 0.003
±0.014 ±0.009 ±0.000 ±0.023 ±0.000 ±0.020 ±0.000 ±0.018 ±0.020 ±0.000 ±0.031 ±0.034 ±0.014 ±0.003

BCE [72] 0.388 0.468 0.000 0.683 0.011 0.807 0.000 0.538 0.534 0.000 0.699 0.176 0.908 0.000
±0.036 ±0.016 ±0.000 ±0.253 ±0.012 ±0.055 ±0.000 ±0.024 ±0.017 ±0.000 ±0.085 ±0.137 ±0.072 ±0.000

RCE [73] 0.386 0.500 0.000 0.020 0.008 0.710 0.000 0.623 0.604 0.000 0.792 0.281 0.953 0.000
±0.019 ±0.012 ±0.000 ±0.007 ±0.002 ±0.015 ±0.000 ±0.016 ±0.016 ±0.000 ±0.060 ±0.107 ±0.029 ±0.000

LWGP [74] 0.351 0.457 0.000 0.000 0.000 0.622 0.000 0.616 0.595 0.000 0.799 0.307 0.968 0.000
±0.026 ±0.016 ±0.000 ±0.000 ±0.000 ±0.026 ±0.000 ±0.012 ±0.007 ±0.000 ±0.033 ±0.044 ±0.006 ±0.000

LWEA [74] 0.300 0.425 0.000 0.000 0.000 0.571 0.000 0.615 0.581 0.000 0.657 0.170 0.919 0.000
±0.033 ±0.020 ±0.000 ±0.000 ±0.000 ±0.037 ±0.000 ±0.015 ±0.011 ±0.000 ±0.242 ±0.119 ±0.043 ±0.000

DREC [75] 0.339 0.489 0.000 0.114 0.008 0.720 0.000 0.605 0.583 0.000 0.831 0.206 0.924 0.000
±0.027 ±0.014 ±0.000 ±0.122 ±0.003 ±0.022 ±0.000 ±0.010 ±0.011 ±0.000 ±0.046 ±0.139 ±0.046 ±0.000

RSEC [26] 0.407 0.525 0.000 0.106 0.051 0.874 0.000 0.609 0.581 0.000 0.806 0.342 0.973 0.000
±0.016 ±0.007 ±0.000 ±0.201 ±0.024 ±0.036 ±0.000 ±0.012 ±0.010 ±0.000 ±0.012 ±0.099 ±0.007 ±0.000

TRCE [32] 0.401 0.519 0.000 0.018 0.008 0.750 0.000 0.613 0.591 0.000 0.789 0.282 0.965 0.000
±0.020 ±0.011 ±0.000 ±0.010 ±0.003 ±0.011 ±0.000 ±0.013 ±0.010 ±0.000 ±0.030 ±0.031 ±0.004 ±0.000

ECPCS-HC [76] 0.304 0.441 0.000 0.000 0.000 0.578 0.000 0.492 0.506 0.000 0.126 0.001 0.593 0.000
±0.012 ±0.005 ±0.000 ±0.000 ±0.000 ±0.015 ±0.000 ±0.121 ±0.108 ±0.000 ±0.240 ±0.003 ±0.186 ±0.000

ECPCS-MC [76] 0.369 0.491 0.000 0.005 0.002 0.718 0.000 0.605 0.589 0.000 0.786 0.262 0.960 0.000
±0.028 ±0.017 ±0.000 ±0.010 ±0.003 ±0.026 ±0.000 ±0.015 ±0.010 ±0.000 ±0.036 ±0.031 ±0.008 ±0.000

CESHL [77] 0.161 0.181 0.000 0.000 0.129 0.864 0.000 0.584 0.575 0.000 0.393 0.129 0.835 0.000
±0.075 ±0.141 ±0.000 ±0.000 ±0.148 ±0.109 ±0.000 ±0.064 ±0.056 ±0.000 ±0.416 ±0.148 ±0.145 ±0.000

PFREFF [78] 0.397 0.517 0.000 0.039 0.010 0.761 0.000 0.602 0.582 0.000 0.789 0.265 0.956 0.000
±0.032 ±0.016 ±0.000 ±0.069 ±0.005 ±0.018 ±0.000 ±0.028 ±0.026 ±0.000 ±0.030 ±0.057 ±0.022 ±0.000

FCE-f 0.415 0.541 0.000 0.030 0.036 0.854 0.000 0.633 0.600 0.000 0.858 0.393 0.972 0.000
±0.025 ±0.019 ±0.000 ±0.019 ±0.023 ±0.034 ±0.000 ±0.030 ±0.018 ±0.000 ±0.052 ±0.155 ±0.020 ±0.000

FCE-a 0.392 0.463 0.213 0.905 0.227 0.958 0.332 0.600 0.527 0.194 0.986 0.569 0.989 0.403
±0.025 ±0.019 ±0.055 ±0.021 ±0.011 ±0.004 ±0.005 ±0.021 ±0.033 ±0.100 ±0.060 ±0.096 ±0.007 ±0.190

FCE 0.425 0.482 0.222 0.920 0.387 0.985 0.374 0.648 0.557 0.149 0.977 0.731 0.997 0.331
±0.019 ±0.016 ±0.038 ±0.034 ±0.049 ±0.002 ±0.048 ±0.026 ±0.024 ±0.148 ±0.002 ±0.045 ±0.000 ±0.050
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TABLE 4
Experimental results on JAFFE and Yale data sets. FCE-f represents the degenerated version of FCE without the fairness regularized term and
FCE-a denotes the version that aligns the base results with the Hungary algorithm. The best and second best results are denoted in bold and

underlined, respectively.

Methods JAFFE Yale
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.714 0.789 0.000 0.303 0.153 0.935 0.000 0.387 0.446 0.000 0.000 0.064 0.917 0.000
±0.023 ±0.015 ±0.000 ±0.058 ±0.026 ±0.006 ±0.000 ±0.011 ±0.013 ±0.000 ±0.000 ±0.016 ±0.012 ±0.000

BCE [72] 0.777 0.836 0.000 0.347 0.211 0.953 0.000 0.427 0.475 0.000 0.000 0.140 0.949 0.000
±0.087 ±0.050 ±0.000 ±0.339 ±0.131 ±0.030 ±0.000 ±0.030 ±0.030 ±0.000 ±0.000 ±0.095 ±0.024 ±0.000

RCE [73] 0.825 0.858 0.000 0.525 0.290 0.974 0.000 0.426 0.483 0.000 0.000 0.142 0.953 0.000
±0.054 ±0.025 ±0.000 ±0.182 ±0.124 ±0.013 ±0.000 ±0.022 ±0.019 ±0.000 ±0.000 ±0.061 ±0.013 ±0.000

LWGP [74] 0.847 0.870 0.000 0.369 0.247 0.976 0.000 0.408 0.462 0.000 0.000 0.048 0.914 0.000
±0.031 ±0.026 ±0.000 ±0.341 ±0.145 ±0.012 ±0.000 ±0.029 ±0.032 ±0.000 ±0.000 ±0.028 ±0.030 ±0.000

LWEA [74] 0.780 0.837 0.000 0.275 0.142 0.951 0.000 0.410 0.448 0.000 0.000 0.042 0.893 0.000
±0.059 ±0.033 ±0.000 ±0.317 ±0.113 ±0.026 ±0.000 ±0.024 ±0.029 ±0.000 ±0.000 ±0.028 ±0.020 ±0.000

DREC [75] 0.792 0.850 0.000 0.208 0.099 0.953 0.000 0.426 0.483 0.000 0.000 0.117 0.945 0.000
±0.036 ±0.022 ±0.000 ±0.244 ±0.054 ±0.014 ±0.000 ±0.021 ±0.018 ±0.000 ±0.000 ±0.040 ±0.013 ±0.000

RSEC [26] 0.843 0.869 0.000 0.700 0.492 0.988 0.000 0.431 0.493 0.000 0.000 0.281 0.979 0.000
±0.065 ±0.033 ±0.000 ±0.128 ±0.119 ±0.014 ±0.000 ±0.018 ±0.009 ±0.000 ±0.000 ±0.070 ±0.007 ±0.000

TRCE [32] 0.850 0.863 0.000 0.561 0.308 0.980 0.000 0.424 0.473 0.000 0.000 0.062 0.917 0.000
±0.029 ±0.017 ±0.000 ±0.172 ±0.109 ±0.007 ±0.000 ±0.026 ±0.023 ±0.000 ±0.000 ±0.035 ±0.028 ±0.000

ECPCS-HC [76] 0.702 0.784 0.000 0.069 0.227 0.901 0.000 0.357 0.395 0.000 0.000 0.022 0.804 0.000
±0.064 ±0.037 ±0.000 ±0.146 ±0.157 ±0.028 ±0.000 ±0.019 ±0.024 ±0.000 ±0.000 ±0.004 ±0.036 ±0.000

ECPCS-MC [76] 0.792 0.840 0.000 0.348 0.350 0.915 0.000 0.364 0.406 0.000 0.000 0.042 0.909 0.000
±0.054 ±0.030 ±0.000 ±0.378 ±0.057 ±0.030 ±0.000 ±0.032 ±0.044 ±0.000 ±0.000 ±0.030 ±0.023 ±0.000

CESHL [77] 0.655 0.731 0.000 0.000 0.037 0.863 0.000 0.363 0.405 0.000 0.000 0.023 0.816 0.000
±0.091 ±0.076 ±0.000 ±0.000 ±0.018 ±0.058 ±0.000 ±0.054 ±0.060 ±0.000 ±0.000 ±0.012 ±0.084 ±0.000

PFREFF [78] 0.816 0.851 0.000 0.565 0.304 0.976 0.000 0.416 0.487 0.000 0.000 0.110 0.942 0.000
±0.046 ±0.032 ±0.000 ±0.165 ±0.112 ±0.012 ±0.000 ±0.018 ±0.014 ±0.000 ±0.000 ±0.058 ±0.017 ±0.000

FCE-f 0.858 0.872 0.000 0.449 0.318 0.971 0.000 0.444 0.509 0.000 0.000 0.241 0.982 0.000
±0.061 ±0.042 ±0.000 ±0.343 ±0.180 ±0.016 ±0.000 ±0.032 ±0.027 ±0.000 ±0.000 ±0.091 ±0.000 ±0.000

FCE-a 0.809 0.786 0.466 0.979 0.767 0.998 0.645 0.413 0.459 0.161 0.746 0.626 0.996 0.520
±0.089 ±0.091 ±0.172 ±0.029 ±0.089 ±0.001 ±0.205 ±0.031 ±0.035 ±0.060 ±0.159 ±0.103 ±0.003 ±0.140

FCE 0.913 0.896 0.483 0.986 0.810 0.999 0.639 0.426 0.476 0.194 0.838 0.806 0.999 0.526
±0.086 ±0.077 ±0.032 ±0.005 ±0.025 ±0.001 ±0.013 ±0.025 ±0.017 ±0.048 ±0.127 ±0.070 ±0.004 ±0.094

the ground truth of the data sets. However, the ground
truth of some data sets may be naturally imbalanced or
unfair. On these data sets, when improving the fairness and
cluster capacity equality, we should sacrifice the clustering
performance to some extent. Notice that in our setting,
we assume that the base results have the same number of
clusters. However, our method can be extended to handle
the base results with different numbers of clusters. The
detailed results are shown in the Appendix.

To further show the fairness, we show some visual-
ization results in Figure 3. Figure 3 shows the number
of instances of each protected group Gj in each cluster
πi in the D&S data set before and after learning. Figure
3 (a) shows the result before learning. The numbers of
instances of one protected group in each cluster have a
great difference, which means the base results are unfair.
Figure 3 (b) shows the number of instances of each protected
group in each cluster after learning, which is much more fair
than the results before learning. It well shows that our FCE
can effectively achieve fairness as a post-processing for the
standard clustering method.

The results on different base clustering algorithms are
shown in Tables 5, 6, and 7. We can see that our method also
achieves better fairness and cluster capacity equality in this
setting.

When comparing with FCE-a, we observe that FCE often
outperforms FCE-a. The main reason is that the Hungary
algorithm may be a little inappropriate for our clustering
ensemble task. Hungary algorithm is a kind of methods for

”hard” alignment or matching, which means there should
be a bijection between two objects. However, in the cluster-
ing ensemble, the ”hard” matching for clusters may be unre-
alistic and there may even not exist such a bijection, because
each base result may be in different semantic spaces. That
is why the rotations method, which is a ”soft” alignment
method, outperforms the Hungary algorithm. Notice that,
on some data sets, FCE-a achieves comparable performance
on fairness. That is because, in FCE-a, we obtain the final
clustering result also with our designed fairness regularized
term. This term enforces the results to be fair despite that
the aligned base results Y(i) may be not good enough.

(a) Before learning (b) After learning

Fig. 3. The distribution of different protection groups in each cluster
before and after learning on the D&S data set.

4.4 Comparison with Fair Clustering Methods
To show the effectiveness of our method on fairness, we
also compare it with some state-of-the-art fair clustering
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TABLE 5
Experimental results with different base clustering algorithms on MNIST-USPS and Reverse-MNIST data sets. FCE-f represents the degenerated
version of FCE without the fairness regularized term and FCE-a denotes the version that aligns the base results with the Hungary algorithm. The

best and second best results are denoted in bold and underlined, respectively.

Methods MNIST-USPS Reverse MNIST
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.338 0.355 0.000 0.000 0.149 0.895 0.000 0.369 0.430 0.000 0.000 0.305 0.966 0.000
±0.028 ±0.070 ±0.000 ±0.000 ±0.078 ±0.059 ±0.000 ±0.023 ±0.052 ±0.000 ±0.000 ±0.101 ±0.018 ±0.000

BCE [72] 0.354 0.386 0.000 0.000 0.132 0.923 0.000 0.382 0.429 0.000 0.000 0.153 0.945 0.000
±0.023 ±0.020 ±0.000 ±0.000 ±0.053 ±0.016 ±0.000 ±0.019 ±0.024 ±0.000 ±0.000 ±0.106 ±0.022 ±0.000

RCE [73] 0.363 0.398 0.000 0.000 0.119 0.908 0.000 0.393 0.464 0.000 0.000 0.354 0.979 0.000
±0.002 ±0.006 ±0.000 ±0.000 ±0.004 ±0.002 ±0.000 ±0.003 ±0.001 ±0.000 ±0.000 ±0.005 ±0.001 ±0.000

LWGP [74] 0.350 0.401 0.000 0.000 0.148 0.916 0.000 0.389 0.468 0.000 0.000 0.316 0.973 0.000
±0.003 ±0.003 ±0.000 ±0.000 ±0.003 ±0.001 ±0.000 ±0.002 ±0.002 ±0.000 ±0.000 ±0.005 ±0.002 ±0.000

LWEA [74] 0.371 0.404 0.000 0.000 0.111 0.903 0.000 0.386 0.465 0.000 0.000 0.299 0.968 0.000
±0.011 ±0.014 ±0.000 ±0.000 ±0.032 ±0.013 ±0.000 ±0.008 ±0.004 ±0.000 ±0.000 ±0.005 ±0.003 ±0.000

DREC [75] 0.384 0.421 0.000 0.000 0.170 0.937 0.000 0.403 0.470 0.000 0.000 0.322 0.974 0.000
±0.022 ±0.020 ±0.000 ±0.000 ±0.028 ±0.008 ±0.000 ±0.005 ±0.011 ±0.000 ±0.000 ±0.039 ±0.010 ±0.000

RSEC [26] 0.355 0.393 0.000 0.000 0.174 0.941 0.000 0.387 0.453 0.000 0.000 0.313 0.976 0.000
±0.008 ±0.015 ±0.000 ±0.000 ±0.067 ±0.027 ±0.000 ±0.006 ±0.012 ±0.000 ±0.000 ±0.064 ±0.005 ±0.000

TRCE [32] 0.339 0.361 0.000 0.000 0.116 0.912 0.000 0.362 0.428 0.000 0.000 0.304 0.962 0.000
±0.026 ±0.032 ±0.000 ±0.000 ±0.021 ±0.004 ±0.000 ±0.010 ±0.009 ±0.000 ±0.000 ±0.025 ±0.005 ±0.000

ECPCS-HC [76] 0.261 0.189 0.000 0.000 0.000 0.600 0.000 0.315 0.354 0.000 0.000 0.002 0.798 0.000
±0.003 ±0.003 ±0.000 ±0.000 ±0.000 ±0.015 ±0.000 ±0.013 ±0.017 ±0.000 ±0.000 ±0.000 ±0.024 ±0.000

ECPCS-MC [76] 0.352 0.380 0.000 0.000 0.133 0.913 0.000 0.398 0.463 0.000 0.000 0.350 0.976 0.000
±0.009 ±0.009 ±0.000 ±0.000 ±0.010 ±0.007 ±0.000 ±0.003 ±0.001 ±0.000 ±0.000 ±0.005 ±0.002 ±0.000

CESHL [77] 0.301 0.281 0.000 0.000 0.046 0.769 0.000 0.398 0.462 0.000 0.000 0.346 0.975 0.000
±0.035 ±0.069 ±0.000 ±0.000 ±0.043 ±0.086 ±0.000 ±0.002 ±0.003 ±0.000 ±0.000 ±0.005 ±0.002 ±0.000

PFREFF [78] 0.361 0.395 0.000 0.000 0.128 0.912 0.000 0.395 0.465 0.000 0.000 0.348 0.979 0.000
±0.004 ±0.013 ±0.000 ±0.000 ±0.050 ±0.019 ±0.000 ±0.006 ±0.002 ±0.000 ±0.000 ±0.002 ±0.002 ±0.000

FCE-f 0.368 0.407 0.000 0.000 0.185 0.945 0.000 0.400 0.469 0.000 0.000 0.324 0.976 0.000
±0.010 ±0.015 ±0.000 ±0.000 ±0.045 ±0.012 ±0.000 ±0.008 ±0.017 ±0.000 ±0.000 ±0.111 ±0.013 ±0.000

FCE-a 0.341 0.277 0.303 0.783 0.618 0.994 0.552 0.343 0.319 0.296 0.775 0.672 0.996 0.532
±0.141 ±0.011 ±0.021 ±0.021 ±0.048 ±0.002 ±0.021 ±0.004 ±0.003 ±0.005 ±0.005 ±0.008 ±0.000 ±0.007

FCE 0.360 0.331 0.241 0.707 0.749 0.998 0.403 0.359 0.356 0.311 0.790 0.754 0.998 0.468
±0.022 ±0.013 ±0.038 ±0.053 ±0.045 ±0.002 ±0.079 ±0.012 ±0.009 ±0.023 ±0.022 ±0.026 ±0.001 ±0.032

TABLE 6
Experimental results with different base clustering algorithms on D&S and HAR data sets. FCE-f represents the degenerated version of FCE

without the fairness regularized term and FCE-a denotes the version that aligns the base results with the Hungary algorithm. The best and second
best results are denoted in bold and underlined, respectively.

Methods D&S HAR
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.537 0.644 0.000 0.118 0.108 0.919 0.000 0.540 0.532 0.000 0.656 0.154 0.887 0.003
±0.058 ±0.049 ±0.000 ±0.188 ±0.083 ±0.056 ±0.000 ±0.072 ±0.090 ±0.000 ±0.260 ±0.109 ±0.089 ±0.000

BCE [72] 0.548 0.653 0.000 0.096 0.082 0.940 0.000 0.594 0.616 0.000 0.768 0.183 0.930 0.000
±0.032 ±0.021 ±0.000 ±0.167 ±0.070 ±0.017 ±0.000 ±0.061 ±0.011 ±0.000 ±0.170 ±0.119 ±0.038 ±0.000

RCE [73] 0.574 0.686 0.000 0.023 0.123 0.948 0.000 0.581 0.582 0.000 0.878 0.463 0.980 0.000
±0.004 ±0.003 ±0.000 ±0.001 ±0.007 ±0.001 ±0.000 ±0.022 ±0.011 ±0.000 ±0.080 ±0.109 ±0.013 ±0.000

LWGP [74] 0.576 0.681 0.000 0.013 0.131 0.948 0.000 0.531 0.573 0.000 0.933 0.308 0.958 0.000
±0.006 ±0.004 ±0.000 ±0.011 ±0.005 ±0.003 ±0.000 ±0.009 ±0.010 ±0.000 ±0.004 ±0.005 ±0.001 ±0.000

LWEA [74] 0.578 0.678 0.000 0.006 0.062 0.945 0.000 0.584 0.578 0.000 0.750 0.353 0.955 0.000
±0.013 ±0.008 ±0.000 ±0.011 ±0.062 ±0.945 ±0.000 ±0.025 ±0.009 ±0.000 ±0.220 ±0.270 ±0.046 ±0.000

DREC [75] 0.573 0.689 0.000 0.049 0.054 0.942 0.000 0.585 0.585 0.000 0.620 0.113 0.919 0.000
±0.023 ±0.012 ±0.000 ±0.100 ±0.044 ±0.012 ±0.000 ±0.020 ±0.011 ±0.000 ±0.001 ±0.025 ±0.038 ±0.000

RSEC [26] 0.580 0.669 0.000 0.246 0.137 0.964 0.000 0.621 0.595 0.000 0.909 0.496 0.984 0.000
±0.015 ±0.012 ±0.000 ±0.169 ±0.058 ±0.006 ±0.000 ±0.040 ±0.018 ±0.000 ±0.001 ±0.057 ±0.009 ±0.000

TRCE [32] 0.579 0.688 0.000 0.020 0.124 0.946 0.000 0.601 0.613 0.000 0.745 0.231 0.949 0.000
±0.004 ±0.003 ±0.000 ±0.007 ±0.006 ±0.003 ±0.000 ±0.059 ±0.023 ±0.000 ±0.200 ±0.134 ±0.015 ±0.000

ECPCS-HC [76] 0.519 0.628 0.000 0.005 0.001 0.826 0.000 0.544 0.581 0.000 0.159 0.000 0.600 0.000
±0.024 ±0.021 ±0.000 ±0.009 ±0.000 ±0.031 ±0.000 ±0.001 ±0.000 ±0.000 ±0.019 ±0.000 ±0.003 ±0.000

ECPCS-MC [76] 0.585 0.690 0.000 0.020 0.120 0.940 0.000 0.591 0.604 0.000 0.308 0.038 0.821 0.000
±0.008 ±0.005 ±0.000 ±0.007 ±0.008 ±0.002 ±0.000 ±0.012 ±0.011 ±0.000 ±0.103 ±0.021 ±0.039 ±0.000

CESHL [77] 0.334 0.448 0.000 0.002 0.006 0.641 0.000 0.208 0.028 0.068 0.110 0.100 0.915 0.100
±0.105 ±0.132 ±0.000 ±0.007 ±0.006 ±0.182 ±0.000 ±0.057 ±0.083 ±0.217 ±0.314 ±0.316 ±0.041 ±0.316

PFREFF [78] 0.478 0.574 0.000 0.024 0.028 0.895 0.000 0.531 0.488 0.137 0.868 0.427 0.976 0.200
±0.012 ±0.024 ±0.000 ±0.003 ±0.007 ±0.023 ±0.000 ±0.188 ±0.258 ±0.289 ±0.115 ±0.322 ±0.020 ±0.421

FCE-f 0.582 0.690 0.000 0.023 0.134 0.954 0.000 0.604 0.591 0.000 0.858 0.327 0.968 0.000
±0.009 ±0.004 ±0.000 ±0.001 ±0.006 ±0.003 ±0.000 ±0.047 ±0.028 ±0.000 ±0.110 ±0.113 ±0.012 ±0.000

FCE-a 0.581 0.619 0.232 0.923 0.426 0.987 0.383 0.581 0.532 0.196 0.979 0.660 0.995 0.362
±0.023 ±0.015 ±0.089 ±0.052 ±0.091 ±0.008 ±0.135 ±0.002 ±0.006 ±0.003 ±0.003 ±0.005 ±0.000 ±0.004

FCE 0.592 0.643 0.269 0.950 0.600 0.996 0.423 0.598 0.542 0.213 0.985 0.760 0.997 0.409
±0.016 ±0.011 ±0.016 ±0.005 ±0.027 ±0.001 ±0.028 ±0.055 ±0.034 ±0.021 ±0.001 ±0.071 ±0.002 ±0.047
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TABLE 7
Experimental results with different base clustering algorithms on JAFFE and Yale data sets. FCE-f represents the degenerated version of FCE

without the fairness regularized term and FCE-a denotes the version that aligns the base results with the Hungary algorithm. The best and second
best results are denoted in bold and underlined, respectively.

Methods JAFFE Yale
ACC NMI Bal MNCE CCE NE f CCE ACC NMI Bal MNCE CCE NE f CCE

KM 0.951 0.948 0.025 0.856 0.652 0.996 0.033 0.495 0.558 0.006 0.037 0.234 0.969 0.013
±0.034 ±0.032 ±0.075 ±0.126 ±0.155 ±0.005 ±0.100 ±0.033 ±0.023 ±0.022 ±0.136 ±0.126 ±0.020 ±0.054

BCE [72] 0.859 0.899 0.050 0.810 0.386 0.973 0.053 0.492 0.543 0.000 0.000 0.097 0.945 0.000
±0.068 ±0.040 ±0.158 ±0.293 ±0.185 ±0.018 ±0.169 ±0.042 ±0.019 ±0.000 ±0.000 ±0.072 ±0.021 ±0.000

RCE [73] 0.978 0.971 0.000 0.909 0.688 0.998 0.000 0.537 0.596 0.000 0.000 0.226 0.977 0.000
±0.005 ±0.004 ±0.000 ±0.029 ±0.067 ±0.001 ±0.000 ±0.012 ±0.007 ±0.000 ±0.000 ±0.030 ±0.003 ±0.000

LWGP [74] 0.978 0.971 0.000 0.909 0.688 0.998 0.000 0.500 0.561 0.000 0.000 0.120 0.956 0.000
±0.005 ±0.004 ±0.000 ±0.029 ±0.067 ±0.001 ±0.000 ±0.025 ±0.021 ±0.000 ±0.000 ±0.071 ±0.015 ±0.000

LWEA [74] 0.962 0.968 0.000 0.902 0.683 0.997 0.000 0.513 0.558 0.000 0.000 0.105 0.955 0.000
±0.006 ±0.006 ±0.000 ±0.039 ±0.077 ±0.001 ±0.000 ±0.024 ±0.019 ±0.000 ±0.000 ±0.067 ±0.013 ±0.000

DREC [75] 0.980 0.972 0.000 0.911 0.701 0.998 0.000 0.528 0.590 0.000 0.000 0.207 0.971 0.000
±0.004 ±0.005 ±0.000 ±0.029 ±0.058 ±0.001 ±0.000 ±0.020 ±0.011 ±0.000 ±0.000 ±0.062 ±0.007 ±0.000

RSEC [26] 0.981 0.974 0.000 0.919 0.707 0.998 0.000 0.523 0.586 0.000 0.000 0.237 0.975 0.000
±0.004 ±0.005 ±0.000 ±0.008 ±0.040 ±0.001 ±0.000 ±0.021 ±0.014 ±0.000 ±0.000 ±0.114 ±0.007 ±0.000

TRCE [32] 0.965 0.970 0.000 0.893 0.660 0.997 0.000 0.504 0.568 0.000 0.000 0.136 0.964 0.000
±0.011 ±0.008 ±0.000 ±0.021 ±0.053 ±0.001 ±0.000 ±0.018 ±0.009 ±0.000 ±0.000 ±0.055 ±0.005 ±0.000

ECPCS-HC [76] 0.979 0.970 0.000 0.911 0.701 0.058 0.000 0.487 0.552 0.000 0.000 0.053 0.934 0.000
±0.005 ±0.004 ±0.000 ±0.029 ±0.058 ±0.001 ±0.000 ±0.034 ±0.029 ±0.000 ±0.000 ±0.031 ±0.019 ±0.000

ECPCS-MC [76] 0.970 0.966 0.000 0.918 0.677 0.996 0.000 0.496 0.567 0.010 0.058 0.205 0.973 0.032
±0.031 ±0.019 ±0.000 ±0.008 ±0.099 ±0.005 ±0.000 ±0.028 ±0.019 ±0.031 ±0.183 ±0.064 ±0.009 ±0.101

CESHL [77] 0.958 0.950 0.000 0.909 0.688 0.998 0.000 0.529 0.583 0.000 0.000 0.190 0.967 0.000
±0.009 ±0.008 ±0.000 ±0.029 ±0.067 ±0.001 ±0.000 ±0.021 ±0.020 ±0.000 ±0.000 ±0.088 ±0.018 ±0.000

PFREFF [78] 0.862 0.888 0.000 0.828 0.376 0.978 0.000 0.501 0.559 0.000 0.000 0.162 0.968 0.000
±0.032 ±0.048 ±0.000 ±0.045 ±0.111 ±0.006 ±0.000 ±0.013 ±0.007 ±0.000 ±0.000 ±0.049 ±0.005 ±0.000

FCE-f 0.970 0.966 0.000 0.828 0.650 0.992 0.000 0.530 0.590 0.000 0.000 0.249 0.979 0.000
±0.034 ±0.020 ±0.000 ±0.291 ±0.220 ±0.017 ±0.000 ±0.013 ±0.011 ±0.000 ±0.000 ±0.113 ±0.008 ±0.000

FCE-a 0.977 0.968 0.500 0.989 0.869 0.999 0.633 0.506 0.540 0.127 0.654 0.616 0.995 0.465
±0.006 ±0.007 ±0.000 ±0.000 ±0.002 ±0.003 ±0.010 ±0.011 ±0.012 ±0.050 ±0.142 ±0.114 ±0.002 ±0.093

FCE 0.990 0.983 0.500 0.999 0.869 0.999 0.645 0.517 0.544 0.161 0.757 0.738 0.998 0.508
±0.007 ±0.008 ±0.000 ±0.000 ±0.001 ±0.001 ±0.001 ±0.004 ±0.005 ±0.041 ±0.107 ±0.039 ±0.001 ±0.097
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Fig. 4. Convergence curves of FCE on all data sets.
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TABLE 8
Comparison with fair clustering methods. FCE is the original version of our method. FCE dbase represents the version that uses different base

clustering methods as input. FCE-f and FCE dbase-f denote the versions without the fairness regularized term of FCE and FCE dbase,
respectively. The best and second best results are denoted in bold and underlined, respectively. avg rank denotes the average rank over all

metrics of each method.

Methods
D&S HAR

ACC NMI Bal MNCE CCE NE f CCE avg rank ACC NMI Bal MNCE CCE NE f CCE avg rank
SpFC [15] 0.430(4) 0.551(4) 0.000(5) 0.000(8) 0.072(6) 0.891(6) 0.000(5) 5.4 0.538(8) 0.587(4) 0.000(6) 0.000(9) 0.006(9) 0.621(8) 0.000(6) 7.1
VFC [47] 0.539(3) 0.617(3) 0.186(4) 0.923(3) 0.236(4) 0.981(3) 0.133(4) 3.4 0.600(6) 0.654(1) 0.200(2) 0.983(3) 0.156(7) 0.913(7) 0.099(4) 4.3
FFC [79] - - - - - - - - 0.602(5) 0.490(8) 0.007(5) 0.955(6) 0.468(3) 0.981(3) 0.015(5) 5.0
KFC [80] 0.154(8) 0.180(8) 0.000(5) 0.666(5) 0.007(8) 0.392(8) 0.000(5) 6.7 0.252(9) 0.133(9) 0.000(6) 0.985(1) 0.023(8) 0.470(9) 0.000(6) 6.8
SFD [19] - - - - - - - - - - - - - - - -
CFC [53] 0.187(7) 0.413(7) 0.251(2) 0.947(2) 0.463(2) 0.961(4) 0.280(3) 3.9 0.643(2) 0.531(7) 0.166(3) 0.975(5) 0.275(6) 0.915(6) 0.162(3) 4.6

FCE-f(ours) 0.415(6) 0.541(5) 0.000(5) 0.030(6) 0.036(7) 0.854(7) 0.000 (5) 5.9 0.633(3) 0.600(2) 0.000(6) 0.858(7) 0.393(4) 0.972(4) 0.000(6) 4.6
FCE dbase-f(ours) 0.582(2) 0.690(1) 0.000(5) 0.023(7) 0.134(5) 0.954(5) 0.000(5) 4.3 0.604(4) 0.591(3) 0.000(6) 0.858(7) 0.327(5) 0.968(5) 0.000(6) 5.1

FCE(ours) 0.425(5) 0.482(6) 0.222(3) 0.920(4) 0.387(3) 0.985(2) 0.374(2) 3.6 0.648(1) 0.557(5) 0.149(4) 0.977(4) 0.731(2) 0.997(1) 0.331(2) 2.7
FCE dbase(ours) 0.592(1) 0.643(2) 0.269(1) 0.950(1) 0.600(1) 0.996(1) 0.423(1) 1.1 0.598(7) 0.542(6) 0.213(1) 0.985(1) 0.760(1) 0.997(1) 0.409(1) 2.6

Methods
MNIST-USPS Reverse MNIST

ACC NMI Bal MNCE CCE NE f CCE avg rank ACC NMI Bal MNCE CCE NE f CCE avg rank
SpFC [15] 0.371(4) 0.447(1) 0.000(8) 0.000(8) 0.135(6) 0.912(6) 0.000(8) 5.9 0.350(5) 0.421(2) 0.000(6) 0.000(6) 0.120(7) 0.985(4) 0.000(6) 5.1
VFC [47] 0.360(6) 0.306(8) 0.142(6) 0.544(6) 0.067(8) 0.846(8) 0.085(4) 6.6 0.329(6) 0.306(6) 0.015(5) 0.114(5) 0.203(6) 0.975(7) 0.039(5) 5.7
FFC [79] 0.437(1) 0.412(2) 0.217(5) 0.684(5) 0.605(3) 0.993(3) 0.370(2) 3.0 0.309(8) 0.217(8) 0.114(4) 0.477(4) 0.498(3) 0.989(3) 0.135(4) 4.9
KFC [80] 0.145(9) 0.014(9) 0.500(1) 0.920(1) 0.002(10) 0.055(10) 0.010(7) 6.7 0.172(9) 0.045(9) 0.000(6) 0.000(6) 0.001(10) 0.449(10) 0.000(6) 8
SFD [19] 0.139(10) 0.012(10) 0.230(4) 0.697(4) 0.008(9) 0.524(9) 0.033(6) 7.4 0.122(10) 0.006(10) 0.709(1) 0.979(1) 0.029(9) 0.558(9) 0.140(3) 6.1
CFC [53] 0.328(8) 0.386(5) 0.231(3) 0.702(3) 0.115(7) 0.904(7) 0.084(5) 5.4 0.377(2) 0.317(5) 0.000(6) 0.000(6) 0.085(8) 0.758(8) 0.000(6) 5.9

FCE-f(ours) 0.395(3) 0.406(4) 0.000(8) 0.000(8) 0.391(4) 0.985(4) 0.000(8) 5.6 0.352(4) 0.368(3) 0.000(6) 0.000(6) 0.340(4) 0.977(5) 0.000(6) 4.9
FCE dbase-f(ours) 0.368(5) 0.407(3) 0.000(8) 0.000(8) 0.185(5) 0.945(5) 0.000(8) 6.0 0.400(1) 0.469(1) 0.000(6) 0.000(6) 0.324(5) 0.976(6) 0.000(6) 4.4

FCE(ours) 0.419(2) 0.385(6) 0.105(7) 0.445(7) 0.703(2) 0.997(2) 0.190(3) 4.1 0.328(7) 0.266(7) 0.339(2) 0.814(2) 0.774(1) 0.999(1) 0.174(2) 3.1
FCE dbase(ours) 0.360(6) 0.331(7) 0.241(2) 0.707(2) 0.749(1) 0.998(1) 0.403(1) 2.9 0.359(3) 0.356(4) 0.311(3) 0.790(3) 0.754(2) 0.998(2) 0.468(1) 2.6

Methods
JAFFE Yale

ACC NMI Bal MNCE CCE NE f CCE avg rank ACC NMI Bal MNCE CCE NE f CCE avg rank
SpFC [15] 0.952(5) 0.941(5) 0.000(7) 0.909(6) 0.826(3) 0.999(1) 0.000(7) 4.9 0.393(8) 0.471(9) 0.000(6) 0.000(6) 0.121(8) 0.920(8) 0.000(6) 7.3
VFC [47] 0.981(3) 0.969(2) 0.400(4) 0.983(4) 0.852(2) 0.999(1) 0.625(3) 2.7 0.406(7) 0.489(7) 0.125(4) 0.664(4) 0.272(3) 0.965(6) 0.400(3) 4.9
FFC [79] 0.901(7) 0.918(6) 0.250(5) 0.924(5) 0.307(8) 0.983(7) 0.322(5) 6.1 0.472(3) 0.527(3) 0.125(4) 0.664(4) 0.153(7) 0.968(5) 0.116(5) 4.4
KFC [80] 0.319(9) 0.375(9) 0.250(5) 0.898(7) 0.075(9) 0.746(9) 0.201(6) 7.7 0.260(10) 0.371(10) 0.000(6) 0.000(6) 0.027(10) 0.795(10) 0.000(6) 8.2
SFD [19] - - - - - - - - 0.315(9) 0.512(4) 0.000(6) 0.000(6) 0.061(9) 0.816(9) 0.000(6) 7.0
CFC [53] 0.988(2) 0.951(4) 0.463(3) 0.985(3) 0.792(5) 0.999(1) 0.563(4) 3.1 0.466(4) 0.492(6) 0.142(3) 0.718(3) 0.209(6) 0.942(7) 0.250(4) 4.7

FCE-f(ours) 0.858(8) 0.872(8) 0.000(7) 0.449(9) 0.318(7) 0.971(8) 0.000(7) 7.7 0.444(5) 0.509(5) 0.000(6) 0.000(6) 0.241(5) 0.982(3) 0.000(6) 5.1
FCE dbase-f(ours) 0.970(4) 0.966(3) 0.000(7) 0.828(8) 0.650(6) 0.992(6) 0.000(7) 5.9 0.530(1) 0.590(1) 0.000(6) 0.000(6) 0.249(4) 0.979(4) 0.000(6) 3.7

FCE(ours) 0.913(6) 0.896(7) 0.483(2) 0.986(2) 0.810(4) 0.999(1) 0.639(2) 4.0 0.426(6) 0.476(8) 0.194(1) 0.838(1) 0.806(1) 0.999(1) 0.526(1) 2.7
FCE dbase(ours) 0.990(1) 0.983(1) 0.500(1) 0.999(1) 0.869(1) 0.999(1) 0.645(1) 1.0 0.517(2) 0.544(2) 0.161(2) 0.757(2) 0.738(2) 0.998(2) 0.508(2) 2.0

methods, including:

• SpFC [15], which embeds the fairness constraints
into the Laplacian matrix of a graph for clustering.

• VFC [47], which is a universal variational fair clus-
tering framework.

• FFC [79], which is a three-stage fair clustering
method based on k-means algorithm.

• KFC [80], which is a flexible fair clustering method
based on k-center algorithm.

• SFD [19], which is a fast fair decomposition algo-
rithm based on fairlet subsets.

• CFC [53], which is a robust fair clustering framework
via consensus k-means.

For fair clustering methods, we also set the hyper-
parameters according to the suggestions in their papers.
Specifically, in SpFC, we first compute the similarity matrix

S ∈ Rn×n, whose (p, q)-th element is Spq = e−
∥Xp.−Xq.∥2

2
2σ2 ,

where σ is a bandwidth parameter and is set as 0.5. Then
we construct the k-NN graph from S with the number of
neighbors k = 15. In VFC, we set the clustering mode as
k-means and search λ to find the best trade-off between

clustering performance and fairness in a range [1, 10]. In
FFC, the balance parameter δ is set as 0.2. For KFC, we use
the default parameter value of δ = 0.1. For SFD, we set the
parameters α = {1, 2} and β = 5. In CFC, it takes the same
base clustering results as ours as the inputs to construct the
input graph for further learning.

We show the results in Table 8. The number in the paren-
theses denotes the rank of the method w.r.t. the evaluation
metric. We also report the average rank over all metrics
of each method, which is denoted as avg rank. Notice
that FFC cannot run a result in acceptable time on the
large data set D&S. SFD can only handle data sets with
two protected groups, and thus they only have results on
HAR, MNIST-USPS, and Reverse MNIST. From Table ??, we
find that our method can outperform these fair clustering
methods on cluster capacity equality (i.e., CCE, and NE)
on all data sets. Regarding fairness, our method can also
often achieve comparable or better performance on many
data sets. Notice that KFC and SGD achieve a very high
performance w.r.t. Bal and MNCE on MNIST-USPS and
Reverse MNIST, respectively. However, we observe that
they put most data into one cluster. For example, on MNIST-
USPS, the numbers of data in each cluster of KFC are 3746,
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Fig. 5. Running time of all methods on all data sets.

7, 12, 6, 16, 6, and 7, respectively. On Reverse MNIST, the
numbers of data in each cluster of SFD are 2242, 54, 244,
128, 282, 152, 184, 254, 210, and 250, respectively. This also
demonstrates our motivation to consider cluster capacity
equality. When comparing w.r.t. ACC and NMI, our FCE
sometimes performs worse than other methods. Notice that,
these fair clustering methods need the original features of
data whereas ours only uses the base clustering results from
k-means without the original features. Poor base clustering
results may limit the performance of our FCE. To see this, we
also report the results of FCE dbase, which is our FCE with
different base clustering algorithms as introduced in Section
4.3. We can see that better base results can improve the ACC
and NMI of our FCE, and FCE dbase can even outperform
other fair clustering methods on some data sets. We also
report the versions without the fairness regularized term
of FCE and FCE dbase, denoted as FCE-f and FCE dbase-f.
The results show that with the fairness regularized term, the
overall performance of our method can be further improved.

4.5 Efficiency Results

Figure 4 shows the convergence curves of our method on all
data sets. It can be seen that our method can often converge
very fast (i.e., often converges within 10 iterations).

Figure 5 shows the running time of our method com-
pared with other clustering ensemble methods on all data
sets. Since some methods are very time-consuming, we
report the logarithm of the time in seconds for better com-
parison. From Figure 5, we can see that our method is com-
parable with the mainstream clustering ensemble methods.
Ours is even faster than some state-of-the-art methods, such
as RSEC and CESHL. Despite this, since the time complexity
of our method is still square in the number of instances,

in the future, we will study how to further speed up this
method.

4.6 Trade-off between Accuracy, Fairness, and Cluster
Capacity Equality

In this subsection, we show the trade-off curves of cluster-
ing accuracy (e.g. ACC), fairness (e.g. MNCE), and cluster
capacity equality (e.g. NE) by tuning the hyper-parameter
λ2. The trade-off curves are shown in Figure 6. We can see
that, there exists a trade-off between accuracy and fairness
and cluster capacity equality. Too high fairness or cluster
capacity equality may lead to a decrease in accuracy. Despite
this, our method can still obtain a good trade-off on most
data sets, because the inflection points often appear in the
upper right. Moreover, from the trade-off curves of fairness
and cluster capacity equality, we find that our regularized
term can indeed improve fairness and cluster capacity
equality simultaneously, demonstrating the effectiveness of
the regularized term.

4.7 Selection of Number of Clusters

Like many other mainstream clustering methods and clus-
tering ensemble methods, our method also assumes that
the number of clusters is known. If the number of clusters
is unknown, we can use some internal indices to guide
the decision of the number of clusters. In our method, we
tried to use the Silhouette Coefficient Index as the internal
index to search the number of clusters. In more detail, we
concatenate the indicator matrices of the base results as a
representation of data to compute the Silhouette Coefficient
Index. Then, we run our algorithm to automatically search
for the optimal number of clusters by selecting the one that
maximizes the Silhouette Coefficient Index. The results of
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Fig. 6. Tade-off curves between the accuracy, fairness, and the cluster capacity equality.

this strategy are shown in Table 9, which is denoted as
FCE unknown k. We can see that, the results are very close
to the original version which uses the ground truth of the
number of clusters. It well demonstrates the effectiveness of
our strategy for deciding the number of clusters for FCE.

5 CONCLUSION

This paper proposed a new notion of fair clustering en-
semble. When observing the limitation of the traditional
definition of fairness to handle the cluster capacity, we
designed a simple yet effective regularized term to simul-
taneously achieve fairness and cluster capacity equality.
Then, we plugged this carefully designed regularized term
into a clustering ensemble framework, leading to our novel
Fair Clustering Ensemble method. Extensive experiments

on benchmark data sets by comparing with state-of-the-
art clustering ensemble methods shew our superiority in
fairness and cluster capacity equality.
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