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Abstract

Medical image segmentation is an important task
in medical artificial intelligence. Traditional seg-
mentation methods often suffer from the infor-
mation loss problem, especially in medical im-
age data which contain many different-scale or-
gans or tissues. To address this problem, we pro-
pose a novel medical image segmentation method
called Wavelet Multi-scale Region-Enhanced Net-
work (WMREN), which has a UNet structure. In
the encoder, we design a bi-branch feature extrac-
tion architecture, which simultaneously learns the
representations with Haar wavelet transform and
the residual blocks. The bi-branch architecture
can effectively tackle the information loss problem
when extracting features. In the decoder we de-
sign an innovative Spatial Adaptive Fusion Module
to enhance the regions of interest. As we know,
the boundaries of objects play an important role
in segmentation. To this end, we also carefully
design a Contrast Refinement Enhancement Mod-
ule to highlight the boundaries of the medical ob-
jects. Extensive experiments on several bench-
mark datasets show that our method outperforms
state-of-the-art medical image segmentation meth-
ods, demonstrating its effectiveness and superior-
ity. The source code is publicly available at https:
//github.com/C101812/WMREN/tree/master.

1 Introduction
Medical image segmentation aims to segment anatomical
or pathological structures within medical images. It plays
a crucial role in computer-aided diagnosis and intelligent
healthcare and has been widely studied [Shaker et al., 2024;
Ates et al., 2023; Messaoudi et al., 2023; Yin et al., 2023;
Chen et al., 2024].

In recent years, deep learning methods, especially the
convolutional neural network (CNN) based methods, such
as fully convolutional network (FCN) [Shelhamer et al.,
2017] and UNet architecture [Ronneberger et al., 2015] have
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achieved significant advancements in medical image segmen-
tation. For example, [Turečková et al., 2020] proposed atten-
tion gates to improve segmentation accuracy. [Fang et al.,
2019] combined UNet architecture with residual channel at-
tention blocks for segmentation. [Xiang et al., 2020] pro-
posed Bio-Net, which achieved performance improvement
without adding extra parameters by recurrent bi-directional
skip connections.

Although UNet has been widely adopted, there still exist
some issues of detailed information missing during the seg-
mentation. More specifically, first, in the encoding stage, the
downsampling approach often leads to the loss of important
information [Xu et al., 2023a]. Second, in the decoding stage,
the fusion that directly concatenates shallow semantic infor-
mation from the skip connections and deep semantic infor-
mation from the previous layer of the decoder may be inap-
propriate in medical image segmentation. In medical image
segmentation, we should focus on various regions of inter-
est (ROI) with different shapes and sizes. However, directly
concatenating shallow and deep features may cause informa-
tion interference in the decoder due to background noises in
shallow features, hindering the model’s ability to effectively
capture ROIs and detailed information [Xu et al., 2023b;
Oktay et al., 2018].

To address these issues, in this paper, we propose a novel
Wavelet Multi-scale Region-Enhanced Network (WMREN),
which can effectively preserve the detail information and en-
hance the ROIs in the encoding and decoding process dur-
ing the segmentation. To tackle the first problem, we apply
the Haar Wavelet Downsampling (HWD) [Xu et al., 2023a]
to extract the features. HWD achieves lossless information
transformation via the Haar wavelet transform, preserving de-
tailed image information by increasing the number of fea-
ture map channels while reducing resolution. However, we
observe that, when directly applying HWD to handle med-
ical images, it cannot achieve satisfactory segmentation on
multi-scale organs due to its fixed receptive field. Figure 1
shows an example. Figure 1a is the ground truth segmen-
tation of an image in the multi-organ segmentation dataset
Synapse. Figure 1b is the segmentation result with HWD as
its encoder. Considering the small organ pancreas, HWD can-
not segment it accurately. To further address this issue, we
propose a novel bi-branch encoder that simultaneously ap-
plies the Haar wavelet transform and the residual blocks to
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Figure 1: An example of the results of different encoders. (a) is the
ground truth segmentation. (b) is the segmentation result of HWD
based encoder. (c) is the segmentation result of residual based en-
coder. (d) is the result of our bi-branch encoder.

extract features. As shown in Figure 1b, HWD may fail to
extract high-frequency features such as details and small ob-
jects like pancreas. On the contrary, the convolution based
network can capture the local detailed features with a small
convolution kernel. Figure 1c shows the result of the network
with residual blocks as its encoder. The small organ pan-
creas can be segmented correctly. Therefore, we try to tackle
the problem in Haar wavelet transform by parallelly extract-
ing features with a residual network. To effectively harness
the complementarity of the Haar wavelet transform and resid-
ual network, we design a novel Wavelet Residual Multi-scale
Module (WRMM), which has a bi-branch structure to han-
dle multi-scale objects. Figure 1d shows the result of our bi-
branch encoder, which performs better than both the HWD
based and Residual based encoders.

To tackle the second problem about the decoder, we de-
velop a novel module named Spatial Adaptive Fusion Module
(SAFM) for effectively fusing the features in the skip con-
nections and previous layer, instead of directly concatenat-
ing them, which can effectively enhance the ROIs. SAFM
module can focus on and enhance key regions and suppress
background noise during the feature fusion. However, we
observe that this fusion process has a side effect that may
blur the boundary of objects. To address this issue, we fur-
ther propose a Contrastive Refinement Enhancement Module
(CREM) and plug it into the SAFM to preserve the edge in-
formation. CREM employs a bi-branch architecture, where
the main branch enhances multi-scale features and fuses them
with decoder features, and the other branch extracts bound-
ary information by comparing the differences before and af-
ter boundary enhancement, which can effectively preserve
the boundary information. By integrating these two modules
into the decoder, the segmentation results can maintain both
global semantic information and local detail information.

Our main contributions are summarized as follows:

• We propose a novel WMREN framework for medical
image segmentation, in which we introduce a collabo-
rative downsampling approach combining the wavelet
transform and CNN. This framework can effectively ex-
tract multi-scale features from medical images by reduc-
ing information loss.

• We design an innovative SAFM module and a CREM
module in the decoder. These modules can highlight and
enhance the ROIs and preserve the boundary informa-
tion, while suppressing the noises and artifacts.

• We conduct comprehensive evaluations on medical im-
age datasets. The results demonstrate the superiority of
our method compared to state-of-the-art medical image
segmentation methods.

2 Related Works
2.1 Medical Image Segmentation
Medical image segmentation is an important task in medi-
cal image processing. In medical segmentation, U-shaped
networks, which are in an encoder-decoder framework, are
widely used in this field [Ronneberger et al., 2015; Isensee et
al., 2018; Rahman et al., 2024]. For example, UNet++ intro-
duced a nested encoder-decoder structure with dense feature
connections [Zhou et al., 2020]. To better utilize multi-scale
information, UNet 3+ was designed to comprehensive feature
transmission pathways, achieving more thorough feature fu-
sion [Huang et al., 2020]. Some works improved UNet by in-
corporating attention mechanisms [Oktay et al., 2018; Xiang
et al., 2020; Jin et al., 2020] and residual structures [He et al.,
2016; Ibtehaz and Rahman, 2020; Sharma and Mishra, 2023;
Rahman et al., 2021]. For example, the DeepLab series, in-
cluding DeepLabv3 [Chen et al., 2018a] and DeepLabv3+
[Chen et al., 2018b], incorporated atrous convolution and
spatial pyramid pooling to handle multi-scale information for
medical image segmentation.

Compared to CNNs, Transformer can capture long-range
dependencies and enhance global semantic understanding of
images more effectively [Zhang et al., 2024; Xie et al., 2021;
Chen et al., 2023; Rahman and Marculescu, 2023]. For exam-
ple, TransUNet effectively captured global and local features
through CNN-Transformer fusion [Chen et al., 2021]. MISS-
Former optimized multi-scale feature processing through in-
novative feed-forward networks and context bridging mod-
ules [Huang et al., 2022]. DAE-Former enhanced feature
dimension capture and spatial localization through improved
self-attention and cross attention [Azad et al., 2023]. How-
ever, the Transformer architecture still has unresolved issues
in computational complexity and detail preservation during
patch embedding. Therefore, in this paper, we still focus on
full convolutional network based methods.

2.2 Wavelet-based Feature Learning in CNNs
Recent studies have explored integrating the wavelet trans-
form into CNN architectures to avoid the information loss
caused by downsampling. For example, Multi-level Wavelet
CNN (MWCNN) was designed to achieve a good balance
between receptive field size and computational efficiency in
image restoration tasks [Liu et al., 2018]. SFFNet was pro-
posed to maximize spatial information utilization for segmen-
tation tasks while effectively handling regions with diverse
grayscale intensities in remote sensing imagery” [Yang et al.,
2024]. WTConv tackled CNN’s limited receptive field prob-
lem while avoiding excessive parameter growth [Finder et al.,
2025]. [Xu et al., 2023a] proposed a wavelet-based down-
sampling method (HWD) to tackle the spatial information
loss during CNN downsampling.

Despite the promising performance, we observe that the
wavelet downsampling may fail to handle the organs with



Figure 2: The framework of WMREN. It has a UNet structure,
which consists of WRMM in the encoder and REM in the decoder.

complicated shapes and different scales. To tackle this prob-
lem, we propose a bi-branch encoder by combining the
wavelet downsampling and residual blocks to extract features.

3 Method
In this section, we introduce our WMREN in more detail.
Figure 2 illustrates the overall framework of WMREN. It is
a UNet structure that contains an encoder and decoder. The
encoder contains four Wavelet Resdiual Multi-scale Modules
(WRMM) and the decoder contains three Region Enhance-
ment Modules (REM). WRMM will be introduced in Section
3.1 and REM will be introduced in Section 3.2. In the skip
connection between encoder and decoder, we apply 1×1 con-
volutions to adjust the number of channels, ensuring consis-
tent channel dimensions when fusing features with the de-
coder. The details of the encoder and decoder will be intro-
duced in the following subsections.

3.1 Wavelet Residual Multi-scale Module
The conventional encoder in UNet consists of convolution
and downsampling operations. In our WRMM encoder, we
design a Wavelet ResNet Downsampling Module (WRDM)
for downsampling and apply a Multi-scale Large Kernel
Module (MLKM) [Wang et al., 2024] for convolution. The
structure of WRMM is shown in Figure 3a. In the following,
we will introduce our designed WRDM in more detail.

Figure 3b shows the structure of WRDM. It has a bi-branch
structure. The left branch applies the Haar wavelet transform
for downsampling and the right branch applies a residual
block to extract features. The Haar wavelet branch first uses
HWD [Xu et al., 2023a] for downsampling. In more detail,

(a) WRMM (b) WRDM

Figure 3: The modules in the encoder. (a) The structure of WRMM.
It consists of a WRDM for downsampling and an MLKM for convo-
lution. (b)The structure of WRDM. It is a bi-branch downsampling
module.

given an input feature map X , it decomposes it into a low-
frequency component XL and three high-frequency compo-
nents: horizontal detail coefficients XHL, vertical detail co-
efficients XLH , and diagonal detail coefficients XHH :

[XL, XHL, XLH , XHH ] = DWT (X), (1)

where DWT denotes a wavelet transformation function.
Then, it combines the low-frequency component and three

high-frequency components and feeds them into a 1× 1 con-
volutional layer with a batch normalization (BN ) and Sig-
moid activation function (σ(·)) to obtain the feature maps of
HWD (XHWD). More formally, this downsampling can be
formulated as follows:

XHWD = σ (BN (Conv1×1 (Concat (XL, XHL, XLH , XHH)))) ,
(2)

where Concat represents the feature concatenation along the
channel dimension. Conv1×1 denotes the 1× 1 convolution.

To preserve space information more effectively, in the right
branch, we also apply several residual blocks to extract fea-
tures in parallel. In more detail, we first perform downsam-
pling of feature maps via convolutional layers and then use
residual blocks to extract features. Each residual block con-
sists of three consecutive convolutional layers with kernel
sizes of 1 × 1, 3 × 3, and 1 × 1, and then adds the input
features to the output feature. We denote the result of the
residual blocks as XRes.

After the Haar wavelet downsampling and residual down-
sampling, we fuse them to obtain a new representation. To
this end, we first obtain a fusion feature F1 by concatenating
two features (XHWD, XRes) followed by a 3×3 convolution,
which is shown as follows:

F1 = Conv3×3 (Concat (XHWD, XRes)) . (3)

Then, for each branch (i.e., the HWD branch and resid-
ual branch), we apply 1× 1 convolutional layer and Softmax



(a) REM (b) CREM (c) SAFM

Figure 4: The modules in the decoder. (a) The structure of REM. It contains CREM, SAFM, and CBAM. (b) The structure of CREM. (c) The
structure of SAFM.

activation function to calculate an adaptive weight (i.e., W1

for the HWD branch and W2 for the residual branch). More
formally, we calculate W1 and W2 as:

W1,W2 = Split(Softmax(Conv1×1

(Concat(Conv1×1(XHWD), Conv1×1(XRes))))) (4)

where Split represents the equal slice along the channel di-
mension. Softmax represents the Softmax activation func-
tion. The weighted features are integrated through a 3 × 3
convolution to obtain the fusion feature F2, which is:

F2 = Conv3×3 (XHWD ⊙W1 +XRes ⊙W2) (5)

where ⊙ denotes the element-wise multiplication. Finally, F1

and F2 are summed to obtain the final fusion representation
FDown = F1 + F2.

3.2 Region Enhancement Module
In the conventional UNet decoder, the fusion between deep
features from the decoder and shallow features from the en-
coder is just a concatenation. However, in medical image
segmentation, we should focus on some ROIs, especially the
boundaries of the organs. Therefore, when generating the
segmentation images in the decoder, we should enhance the
ROIs and boundaries. To this end, we design a Region En-
hancement Module in the decoder, which can enhance the im-
portant regions and boundaries when fusing the features from
the encoder and decoder. The structure of REM is shown
in Figure 4a. It consists of three modules: Spatial Adaptive
Fusion Module (SAFM), Contrast Refinement Enhancement
Module (CREM), and Convolutional Block Attention Module
(CBAM) [Woo et al., 2018]. SAFM enhances the main region
of segmentation targets by fusing deep-layer features from
the decoder with shallow-layer features from the encoder at
an early stage. CREM enhances the shallow-layer features of
the encoder through multi-scale boundary feature extraction.

CBAM [Woo et al., 2018] effectively highlights crucial infor-
mation through the lightweight channel and spatial attention
mechanisms.

In more detail, the feature from the previous decoder layer
is first fed into CBAM to obtain an enhanced feature map,
denoted as FCBAM , which serves as an input of the subse-
quent SAFM module. Meanwhile, the shallow feature Xskip

from the encoder is fed into CREM, which outputs an edge-
enhanced feature map XCREM and an edge weight informa-
tion map WCREM , where WCREM guides boundary recov-
ery during subsequent feature fusion. Next, SAFM receives
the edge-enhanced shallow features XCREM from CREM
and the features FCBAM from CBAM as inputs. Injecting
deep feature information into shallow features effectively pre-
vents the loss of main detail information during the subse-
quent fusion process. Its output is denoted as XSAFM . Dur-
ing the process of skip connection and decoder feature fusion,
XSAFM and FCBAM are first concatenated along the chan-
nel dimension, followed by 1 × 1 convolution to obtain the
fused feature map Ffusion. Then, using the previously ob-
tained edge weight WCREM to guide the detail recovery pro-
cess, we can obtain the reconstructed feature map for decoder
Fdecoder:

Fdecoder = (Ffusion ⊙WCREM ) + Ffusion (6)

With this complete process, the decoder module ensures ef-
fective fusion of deep and shallow features and accurate
preservation of details, thereby achieving high-quality feature
segmentation. In the following subsections, we will introduce
our designed CREM and SAFM in more detail.

3.2.1 Contrast Refinement Enhancement Module
In medical image segmentation, the boundary information
is important and we should prevent the boundary blurring
during the segmentation image reconstruction. To this end,
we propose a Contrast Refinement Enhancement Module, as



shown in Figure 4b. We tackle the boundary-blurring issue
in two ways. On one hand, we enhance boundaries in the
shallow feature maps of the encoder. On the other hand, we
implement boundary guidance on the feature maps following
feature fusion in the decoder.

Specifically, at first, we need to obtain multi-scale infor-
mation from the shallow feature Xskip. To this end, the input
feature Xskip first is fed into a 1 × 1 convolution to obtain
P0 = Conv1×1 (Xskip). Then, P0 is fed into three cascaded
AveragePool layers (AvgPool) to obtain feature representa-
tions at different scales, which are shown as follows:

Pi = AvgPool (Pi−1) , for i = 1, 2, 3. (7)

P1, P2, and P3 are the three scales features, respectively.
To obtain boundary information through comparison, we

first perform the boundary blurring method on the feature
maps Pis (i = 1, 2, 3) to obtain boundary blurring feature
maps, and then subtract the blurred feature map from the orig-
inal feature map Pi to obtain edge information. The boundary
information is then added to the original feature map Pi to
achieve edge enhancement. The process is shown as follows:

Ei = Pi −AvgPool (Conv1×1 (Pi)) + Pi (8)

where Ei is the boundary enhanced features for the i-th scale.
To obtain multi-scale boundary feature maps, we concate-

nate P0 with the obtained Ei and then integrate them using
1 × 1 convolution, as shown in Eq.(9). The result is denoted
as XCREM , which will serve as an input to SAFM to provide
shallow-layer information.
XCREM = BN (ReLU (Conv1×1 (Concat (P0, E1, E2, E3))))

(9)

Besides, CREM also generates weights like the space at-
tention for the feature maps to highlight the boundary. The
weights, denoted as WCREM , are generated via a 1× 1 con-
volutional layer on the difference between the enhanced rep-
resentation XCREM and the original feature map Xskip as
follows:

WCREM = σ (Conv1×1 (XCREM −Xskip)) (10)

WCREM will be used as the weights in Eq.(6) to obtain the
reconstructed feature maps in decoder Fdecoder.

3.2.2 Spatial Adaptive Fusion Module
To better highlight the important regions in the encoder’s
shallow representations and effectively fuse them with the de-
coder’s representation, we propose the SAFM. As illustrated
in Figure 4c, let XCREM and FCBAM denote the shallow
features from CREM and deep features from CBAM, respec-
tively, both with dimensions H ×W ×C. The feature fusion
process can be described as follows.

To achieve adaptive feature selection and preserve impor-
tant features, attention weights are generated by applying Sig-
moid functions to both feature maps, enabling the emphasis
of crucial information while suppressing less relevant fea-
tures. Finally, to utilize complementary information from
both features, the weighted features are combined through
element-wise addition. We apply FMUL as the result of fu-
sion, which is shown as follows:
FMUL = (XCREM ⊙ σ(FCBAM )) + (FCBAM ⊙ σ(XCREM )).

(11)

Notice that only the regions that are highlighted in both
XCREM and FCBAM , which means these may be the ROIs,
can be highlighted in Eq.(11). Therefore, Eq.(11) can effec-
tively enhance the main body of ROIs.

Subsequently, the fused features FMUL are fed into a 1 ×
1 convolution, followed by a BatchNorm normalization and
ReLU activation function. The integrated features are then
processed through another Sigmoid function to generate the
final attention weights WSAFM , which are shown as follows:
WSAFM = σ (ReLU (BN (Conv1×1 ( FMUL)))) , (12)

where ReLU denotes the ReLU activate function.
To ensure that useful low-level information is not lost while

highlighting important features, we apply residual connec-
tions to preserve the original information. Specially, these
weights in Eq.(12) are multiplied with XCREM and com-
bined with the input features through a residual connection
as: We denote the result of the SAFM as FSAFM

FSAFM = (XCREM ⊙WSAFM ) +XCREM . (13)

3.3 Loss Function
We employ a composite loss function to optimize the net-
work parameter, which combines Cross Entropy Loss LCE

and Dice Loss LDice . Specifically, the total loss function Ltotal
is defined as:

Ltotal = 0.4× LCE + 0.6× LDice. (14)
The Cross Entropy Loss (LCE) measures pixel-level discrep-
ancies between predicted results and ground truth labels, con-
tributing to improving classification accuracy. The Dice Loss
(LDice) focuses on evaluating the overlap between predicted
segmentation masks and ground truth masks to improve the
segmentation accuracy.

Figure 5: The segmentation results on Synapse dataset. Our method
most closely approximates the ground truth (GT), particularly in pre-
serving the fine details of the gallbladder and aorta that are lost in
other methods

4 Experiment
4.1 Experimental Setup and Implementation

Details
We evaluate our method on three benchmark datasets:
Synapse1), ACDC2, and ISIC17 [Codella et al., 2018]. On

1https://www.synapse.org#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/



Architectures Avg. DSC↑ Avg. HD95↓ Aorta↑ Gallbladder↑ Kidney (L)↑ Kidney (R)↑ Liver↑ Pancreas↑ Spleen↑ Stomach↑
UNet [Ronneberger et al., 2015] 70.11 44.69 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96
R50+ViT [Chen et al., 2021] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
R50+AttnUNet [Chen et al., 2021] 75.57 35.97 85.16 69.42 79.20 71.07 93.38 42.88 87.27 70.28
TransUNet [Chen et al., 2021] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [Cao et al., 2022] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
CoTr [Xie et al., 2021] 78.56 24.05 87.09 65.37 86.19 80.32 94.22 52.28 87.01 76.00
DAEFormer [Azad et al., 2023] 82.43 17.46 88.96 72.30 86.08 80.88 94.98 65.12 91.96 79.19
MISSFormer [Huang et al., 2022] 81.96 18.20 87.19 70.23 84.91 83.94 94.41 65.67 91.92 80.81
CT-Net [Zhang et al., 2024] 82.60 - 89.00 67.70 84.10 80.60 96.20 67.90 90.00 85.00
nn-Unet [Wang et al., 2023] 82.36 24.74 90.96 65.57 81.92 78.36 95.96 69.36 91.12 85.60
PVT-CASCADE [Rahman and Marculescu, 2023] 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.69
PVT-EMCAD-B2[Rahman et al., 2024] 83.63 15.68 88.14 68.87 88.08 84.10 95.26 68.51 92.17 83.92

WMREN (ours) 84.40 15.65 88.88 74.63 88.52 84.24 95.11 69.62 91.08 83.11

Table 1: The performance of all methods on the Synapse dataset. We report DSC scores for each organ individually. We also report the
average DSC, which is denoted as Avg. DSC, and the average HD 95, which is denoted as Avg. HD95. An upward arrow (↑) indicates higher
values are better, and a downward arrow (↓) indicates lower values are better. The best results are highlighted in bold.

Methods Avg.DSC RV Myo LV

R50+UNet [Chen et al., 2021] 87.55 87.10 80.63 94.92
R50+AttenUNet [Chen et al., 2021] 86.75 87.58 79.20 93.47
SwinUNet[Cao et al., 2022] 88.07 85.77 84.42 94.03
TransUNet [Chen et al., 2021] 89.71 86.67 87.27 95.18
MISSFormer [Huang et al., 2022] 90.36 89.55 85.44 94.99
PVT-CASCADE [Rahman and Marculescu, 2023] 91.46 89.97 88.90 95.50
PVT-EMCAD-B2 [Rahman et al., 2024] 92.12 90.65 89.68 96.02

WMREN (ours) 92.64 92.69 89.05 96.18

Table 2: Performance comparison against the baseline decoder on
the ACDC dataset. The best results are highlighted in bold.

Figure 6: The segmentation results on ACDC dataset. For the right
ventricle details and myocardial borders, our segmentation results
show closer alignment with the ground truth images.

all data sets, we follow the default protocol for splitting the
dataset into training, validation, and testing sets. The Synapse
dataset is a multi-organ segmentation dataset, which consists
of 3779 axial abdominal CT images collected from 30 clini-
cal cases. Each image is annotated with labels for eight ab-
dominal organs: aorta, gallbladder, spleen, left kidney, right
kidney, liver, pancreas, and stomach. The performance eval-
uation is conducted using two metrics: the average Dice
score (DSC) in percentage and the average Hausdorff Dis-
tance (HD95) in millimeters across all eight abdominal or-
gans. The ACDC dataset is an automated cardiac diagnostic
challenge dataset that consists 100 cardiac cine-MRI scans
from clinical cases, and corresponding labels for three car-
diac regions: the left ventricle (LV), right ventricle (RV), and
myocardium (MYO). All methods are evaluated with DSC
over all three cardiac regions. The ISIC17 dataset is a skin
lesion segmentation dataset containing high-resolution med-
ical images of melanoma skin lesions. Each image includes

Figure 7: The segmentation results on ISIC2017 dataset. Our seg-
mentation method outperforms existing approaches in both bound-
ary delineation and main body segmentation.

pixel-level annotations marking the lesion area. Performance
evaluation is conducted using the DSC to measure the seg-
mentation accuracy of the lesion regions.

Methods Avg.DSC

UNET [?] 83.07
DeepLabv3+ [Chen et al., 2018a] 83.84
SwinUnet [Cao et al., 2022] 83.24
PVT-CASCADE [Rahman and Marculescu, 2023] 85.50
PVT-EMCAD-B2 [Rahman et al., 2024] 85.95
TransUnet [Chen et al., 2021] 86.94
MISSFormer [Huang et al., 2022] 86.34

WMREN (ours) 87.67

Table 3: Performance comparison against the baseline decoder on
the ISIC17 dataset. Best results are highlighted in bold.

All experiments are implemented using PyTorch on Win-
dows 10 system and Nvidia GeForce RTX 4090 GPU. Fol-
lowing [Huang et al., 2022], various data augmentation tech-
niques are employed, including random cropping, random
rotation, random Gaussian noise, random blurring, as well
as transformations in luminance, contrast, and resolution.
Images from Synapse and ACDC datasets are reshaped to
224 × 224 pixels. In the ISIC17 dataset, images are resized
to 256 × 256. The model is trained via SGD optimizer with
a momentum of 0.90, weight decay of 0.0001, and an initial
learning rate of 0.05 and following a polynomial decay pol-
icy. It is trained for 400 epochs with a batch size of 24.



Architecture Avg. DSC↑ Avg. HD95↓
H-Net 81.29 18.89
R-Net 82.59 18.75

WMREN(ours) 84.40 15.65

Table 4: Results of different degenerated approaches of downsam-
pling on Synapse dataset. The best results are highlighted in bold.

Decoder Avg. DSC↑ Avg. HD95↓
baseline 82.72 17.23
baseline+SAFM 83.52 21.86
baseline+SAFM+CREM 84.40 15.65

Table 5: Results of different degenerated approaches of decoder on
Synapse dataset. The best results are highlighted in bold.

4.2 Experimental Results
Table 1 shows the results of WMREN and other methods on
the Synapse dataset. It shows that WMREN achieves state-of-
the-art performance with an average DSC of 84.40%, surpass-
ing both CNN-based and Transformer-based methods. Our
method also has the lowest HD95 at 15.65 mm, indicating
its effectiveness in organ boundary detection. Besides, com-
pared to other state-of-the-art methods, our method achieves
better segmentation accuracy for the small organs, such as the
pancreas, gallbladder, and kidneys. It demonstrates superior
performance in segmenting small organs, while maintaining
high accuracy for large organs such as the stomach and liver.

Tables 2 and 3 show the results on ACDC and ISIC17
datasets, respectively. WMREN also performs the best on
these datasets. Our method achieves a leading average DSC
of 92.12% on ACDC dataset and 87.67% on ISIC17 dataset,
demonstrating the superiority of the proposed method.

Figures 5, 6, and 7 show the qualitative results on the
Synapse, ACDC, and ISIC17 datasets, respectively. As
demonstrated in Figure 5, our method exhibits superior per-
formance in capturing fine details such as small objects and
boundaries compared to other approaches. Figure 6 shows
that our method demonstrates superior segmentation perfor-
mance in areas where other approaches lose details, partic-
ularly in the right ventricle and myocardial boundaries. As
shown in Figure 7, our method effectively mitigates common
issues found in other approaches, including blurred segmen-
tation boundaries and spurious segmented objects.

4.3 Ablation Study
In this section, we conduct comprehensive ablation studies
to evaluate the effects of our designed modules, including the
WRDM in the encoder, and SAFM and CREM in the decoder.

In the encoder, we design a WRDM module that simulta-
neously applies the Haar wavelet branch and residual branch
to extract features. To show the effectiveness of the bi-branch
architecture, we compare it with two single-branch encoders,
i.e., H-Net that only uses the Haar wavelet branch and R-Net
that only uses the residual branch. The results on Synapse
are shown in Table 4. It can be seen that bi-branch network

Figure 8: Qualitative result of ablation study on decoders. (a) is the
ground truth segmentation. (b) is the segmentation result of baseline
decoder. (c) is the segmentation result of baseline+SAFM (d) is the
result of our REM decoder which is based baseline+SAFM+CREM.

performs better than both the single-branch network, demon-
strating the effectiveness of bi-branch encoder WRDM.

In the decoder, we design a CREM module to enhance
the boundaries and SAFM to enhance the ROIs. To show
the effectiveness of these two modules, we conduct ablation
studies by comparing with the following degenerated models:
baseline denotes the UNet backbone without the CREM and
SAFM. Baseline+SAFM denotes the network with SAFM but
without CREM. Baseline+SAFM+CREM denotes our whole
network. We can see that, compared to the baseline model,
baseline+SAFM improved DSC by 0.8% and the combination
of CREM and SAFM improved DSC by 1.68%. This demon-
strates that SAFM is effective in enhancing the model’s per-
formance. Furthermore, we can observe that baseline+SAFM
increased baseline by 4.58 w.r.t. HD95. The main reason may
be that although SAFM can enhance the ROIs, it may blur the
boundaries which causes the increase of the HD95. To tackle
this problem, we design the CREM module to enhance the
boundaries. We can see that, with CREM, our model achieves
15.65 w.r.t. HD95, which is much lower than both baseline
and baseline SAFM, demonstrating the effectiveness of the
CREM on boundaries enhance.

Figure 8 shows a qualitative result. Considering the pan-
creas, the baseline decoder cannot detect the whole region
of the pancreas. Together with SAFM, baseline+SAFM can
capture the regions, showing the effectiveness of the region
enhancement. However, the boundary of baseline+SAFM is
incorrect. After plugging CREM into the model, we can seg-
ment the pancreas more accurately. It demonstrates the effec-
tiveness of CREM in boundary enhancement.

5 Conclusion
In this paper, to address the detail loss issues of traditional
medical image segmentation methods, we proposed an in-
novative Wavelet Multi-scale Region-Enhanced Network for
medical image segmentation. In the encoder, we integrated
wavelet downsampling with residual blocks to minimize de-
tail information loss during the downsampling. In the de-
coder, we carefully designed a Contrastive Refinement En-
hancement Module to highlight the boundaries of organs and
a Spatial Adaptive Fusion Module to enhance the ROIs. Ex-
tensive experiments on benchmark datasets show that our
method outperforms other state-of-the-art medical images
segmentation methods. The ablation studies also demon-
strates the effectiveness of all our designed modules and their
contributions to the overall performance.
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