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A B S T R A C T

Unsupervised feature selection is an important machine learning task and thus attracts increasingly more
attention. However, due to the absence of labels, unsupervised feature selection often suffers from stability
and robustness problems. To tackle these problems, some works try to ensemble multiple feature selection
results to obtain a consensus result. Most of the existing methods do the ensemble on the feature level, i.e.,
they directly ensemble feature selection results by feature ranking or voting aggregation, without paying any
attention to the following downstream tasks. In this paper, we take clustering as the downstream task and
wish to ensemble the base results to select features which are appropriate for clustering. To this end, we
propose a novel bi-level feature selection ensemble method, which ensembles on two levels: the feature level
and the clustering level. Together with feature level ensemble, we also learn a consensus clustering result from
base feature selection results with self-paced learning. Then, we apply the consensus clustering result to guide
the feature selection in turn. Extensive experiments are conducted to demonstrate that the proposed method
outperforms other state-of-the-art feature selection and feature selection ensemble methods in the clustering
task. The codes of this paper are released in https://doctor-nobody.github.io/codes/BLFSE.zip.
. Introduction

Feature selection is a fundamental and important problem in ma-
hine learning and attracts increasingly more attention [1–6]. It aims
o select some informative features to facilitate the subsequent data
nalysis. According to the usage of data labels, feature selection can be
oughly categorized into three classes: supervised feature selection [1,2,
], semi-supervised feature selection [8–11], and unsupervised feature
election [6,12]. Among them, since unsupervised feature selection
oes not need any label information of data, it is more attractive and
lso more challenging.

Since there are no labels of data, conventional unsupervised feature
election methods aim to select features to capture some intrinsic struc-
ure of the data itself. For example, some methods used the original
ata to construct a graph structure and selected features to preserve
uch graph structure [13,14]; Li et al. tried to preserve the sparse struc-
ure of data [15]; some methods generated some pseudo-labels and se-
ected the features which are consistent with the pseudo-labels [16,17].
lthough these methods have demonstrated promising performance,

hey still often suffer from robustness and stability problems due to the
bsence of labels [18]. The reasons are mainly two folds: first, different
eature selection methods try to preserve different structures of data,
hereas given a specific task, the ideal intrinsic structure of data is
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often unknown due to the absence of labels, and thus the selected
features of one single method may not be those we really want; second,
many unsupervised methods contain some hyper-parameters and ran-
dom initializations, and different hyper-parameters and initializations
may lead to very different selection results.

To address these issues, some feature selection ensemble methods
are proposed [19–21]. They use one or multiple feature selection
methods to generate multiple base feature selection results, and then
aggregate them to generate a consensus feature selection result which
is often more robust and stable. These methods often ensemble base
results on feature level by feature ranking or voting aggregation. How-
ever, in many real applications, feature selection is not the terminal
point of a machine learning workflow and is often followed by some
downstream tasks. For example, sometimes we need to do clustering
or detect the outliers of data, but the original data contain many
uninformative features which may mislead the clustering or outlier
detection, and thus the feature selection methods are applied to select
the key features. In this scenario, clustering or outlier detection is the
downstream task, and the final goal is to achieve good performance
on the clustering or outlier detection instead of just feature selection.
The existing feature level ensemble methods pay no attention to the
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downstream tasks and sometimes cannot guarantee that the selected
features are suitable for the downstream tasks.

To tackle this problem, we redesign the feature selection ensemble
framework by fully considering the specific downstream task. Since
clustering is one of the most important unsupervised tasks, in this
paper, we consider clustering as the downstream task and propose a
novel Bi-Level Feature Selection Ensemble (BLFSE) method to select
features suitable for clustering. Just as its name implies, it ensembles
base feature selection results on two levels: feature level and clustering
level. In more detail, for the feature level ensemble, given multiple base
feature selection results or base feature scores, it aggregates them to
learn a consensus feature score. For the clustering level, it first uses
the features selected by multiple base methods to generate multiple
clustering results and ensemble them to obtain a consensus clustering
result to guide the feature selection. In the clustering level ensem-
ble, since both the base feature selection methods and the clustering
methods are imperfect, the base clustering results for the ensemble
are also unreliable. To address this issue, we plug it into a self-paced
learning framework, i.e., we use reliable data for the ensemble first,
and with the learning process, the model becomes increasingly stronger
and then we apply it to handle the unreliable data gradually. To make
the two levels of the ensemble be boosted by each other, we integrate
them into a unified feature selection objective function, and propose
an iterative optimization algorithm to jointly do the bi-level ensembles
and select features. Then we provide a strategy to automatically set
the hyper-parameters, so that the proposed method is easy to use,
especially in the unsupervised learning scenario. At last, we conduct
extensive experiments by comparing with the state-of-the-art feature
selection and feature selection ensemble methods. The experimental
results demonstrate its effectiveness and superiority.

The main contributions are summarized as follows:

• To the best of our knowledge, we are the first to ensemble the
unsupervised feature selection results in two levels, including
feature and clustering levels. We seamlessly integrate the feature
voting aggregation and self-paced clustering ensemble into a
unified framework, which is more appropriate for the following
clustering task.

• We develop an effective iterative algorithm to jointly do the
bi-level ensemble. Our model can automatically adjust the hyper-
parameters and does not involve any manually tuned hyper-
parameters, and thus the model is easy to use.

• Extensive experiments on benchmark data sets show that the
proposed bi-level ensemble method performs better than both the
state-of-the-art feature selection methods and the state-of-the-art
feature selection ensemble methods.

The remained parts of this paper are organized as follows. Section 2
briefly introduces some related work. Section 3 describes the proposed
bi-level feature selection ensemble method in detail. Section 4 provides
some experimental results. Section 5 concludes this paper.

2. Related work

In this section, we introduce some related work on unsupervised
feature selection, clustering ensemble, and feature selection ensemble.

2.1. Unsupervised feature selection

Unsupervised feature selection aims to select features to preserve
the intrinsic structure of data. Roughly speaking, it can be divided
into three categories: filter methods, wrapper methods, and embedded
methods [22].

Filter methods select the informative features based on the prop-
erties of the data itself, without using any clustering algorithms to
guide the selection. They often evaluate each feature by some criteria
to obtain the score of each feature, and then select features according
2

to the scores. For example, Peng et al. used dependency, relevance, and
redundancy to evaluate each feature [23]; He et al. defined a Laplacian
score to indicate the importance of each feature [24]; Liu et al. selected
features according to the dependency margin [25]; Yao et al. proposed
a locally linear embedding score to select features [26]; Roffo et al.
selected features on an infinite path among feature distributions based
on the relevance and redundancy of each feature [27,28]. Since filter
methods do not involve any downstream learning methods, they are
often lightweight and efficient. However, also due to this, the selected
features may sometimes be unsuitable for the downstream learning
tasks.

Different from filter methods, wrapper, and embedded approaches
apply a clustering algorithm to guide the feature selection. In wrapper
methods, a specific clustering algorithm is used as a black box to
assist the feature selection. For example, MacQueen et al. proposed
a sequential method by applying kmeans to guide the feature subsets
search [29]; Cai et al. used spectral clustering results to select fea-
tures [30]; Luchian et al. selected features to minimize and maximize
the intra-cluster and inter-cluster inertias, respectively [31]; Dutta et al.
applied a multi-objective genetic algorithm to obtain the clusters of
data and further used the clustering result to select features [32].

Embedded methods embed the feature selection procedure into
a clustering algorithm and propose a unified optimization algorithm
for clustering and feature selection. To preserve the graph structures,
some methods embed the feature selection into spectral clustering. For
example, Zhao et al. provided an efficient spectral feature selection by
minimizing the redundancy [33]; Li et al. applied the nonnegative spec-
tral analysis to embed unsupervised feature selection into the spectral
clustering [34,35]; Shang et al. designed a non-negative spectral feature
selection with dual graph regularization [36]; Tang et al. imposed
manifold regularization on a spectral feature selection method in [37].
Subspace clustering, which is another famous clustering method, is also
often used to guide the feature selection [38–41]. Zhou et al. integrated
feature selection into a balanced clustering to select the features pre-
serving the balanced structure [42,43]. Some works applied clustering
ensemble to obtain a consensus clustering result and used it to select
features [44,45]. In recent years, deep learning has achieved promising
performance on many tasks. Hence, some works tried to apply deep
neural networks to feature selection [46–49]. Since deep learning often
needs a large number of labels of data, most deep feature selection
methods focused on supervised learning. Few unsupervised feature
selection methods often applied auto-encoder to select the features to
reconstruct the data, such as [46,49]. Since wrapper and embedded
methods consider the downstream clustering tasks, they often achieve
a better clustering performance.

Due to the absence of labels in unsupervised feature selection, it
often suffers from robustness and stability problems. To tackle these
problems, this paper applies ensemble learning to feature selection,
leading to the feature selection ensemble.

2.2. Clustering ensemble

Clustering ensemble takes multiple clustering results as inputs and
learns a consensus clustering result from them by considering the con-
sensus and diversity [50]. Since clustering ensemble can improve the
reliability of the single clustering method via improving the robustness
and stability, it has been widely studied [51–56].

Some clustering ensemble methods regard the multiple clustering
results as the new features of data and directly apply some clustering
methods to obtain the consensus results. For example, Topchy et al.
proposed an expectation–maximization method to obtain the consensus
result [57]; Nguyen et al. applied K-modes clustering method on the
base results to obtain the final result [58]. Some methods applied the
alignment method to do the ensemble. For example, Zhou et al. pro-
posed a method to align the multiple results obtained by kmeans [53];



Information Fusion 100 (2023) 101910P. Zhou et al.

m
𝐯
c
n
n

w
𝐯

o
d
c
r
g
t

3

t
s
∑

e
t
w
t

Table 1
Notations and descriptions used in our method.

Notation Description

𝑛, 𝑑, 𝑐 Number of instances, features, and clusters, respectively.
𝐗 ∈ R𝑑×𝑛 Data matrix, where each column represents an instance.
𝐯(𝑘) ∈ [0, 1]𝑑 The 𝑘th base feature selection result.
𝐯 ∈ [0, 1]𝑑 Consensus feature selection result.
𝐘(𝑘) ∈ {0, 1}𝑑 The 𝑘th base clustering result.
𝐒(𝑘) ∈ {0, 1}𝑛×𝑛 The connective matrix of the 𝑘th base clustering.
𝐒 ∈ [0, 1]𝑛×𝑛 The consensus matrix.
𝐋 ∈ R𝑛×𝑛 The Laplacian matrix of 𝐒.
𝐖 ∈ [0, 1]𝑛×𝑛 The weight matrix.
𝐏 ∈ R𝑐×𝑑 The projection matrix.

Li et al. relabeled the data according to the Dempster–Shafer evidence
theory to do the alignment [59].

One of the most popular clustering ensemble methods is the graph
based or connective matrix based method. These methods construct
the graph or connective matrices from the base results and obtain the
consensus result from the graph or connective matrices. For example,
Tao et al. proposed a robust spectral clustering ensemble method
on the connective matrices [60]; Zhou et al. proposed a self-paced
clustering ensemble method on the graph constructed from the connec-
tive matrices [61] and further designed an active clustering ensemble
method [62]; Huang et al. designed an ultra-scalable spectral clustering
method on the bipartite graph of the base results [63,64].

In this paper, we introduce the idea of clustering ensemble in the
feature selection task and apply it to the clustering level ensemble for
feature selection.

2.3. Feature selection ensemble

Inspired by the idea of ensemble learning [65–69], few works
ensemble multiple base feature selection results to learn a more robust
and stable result. The existing feature selection ensemble methods
often ensemble multiple base selection results only on feature level,
i.e., they directly aggregate the feature scores or feature rankings. For
example, Hong et al. linearly combined the score of each base feature
selection result to obtain a consensus one [19]; Zhang et al. applied the
consensus affinity to evaluate the importance of features [20]; Seijo-
Pardo et al. proposed feature selection methods by feature ranking
combination [21]; Das et al. developed a bi-objective genetic algorithm
to ensemble feature selection [70]; Chiew et al. provided a hybrid en-
semble method to combine both the homogeneous and heterogeneous
base feature selection results [71].

In this paper, we propose a novel feature selection ensemble method.
Different from the above-mentioned feature level ensemble methods,
ours ensembles feature selection results on both the feature level and
clustering level. Notice that, as introduced before, some methods apply
clustering ensemble to feature selection [44,45]. Strictly speaking, they
are embedded feature selection methods instead of feature selection
ensemble methods, because they do not generate multiple base feature
selection results and thus do not ensemble feature selection results. In
our experiments, we also compare with them to show the superiority
of the bi-level feature selection ensemble method.

3. Bi-level feature selection ensemble

In this section, we introduce our BLFSE in more detail. Firstly, we
briefly introduce some notations. Boldface uppercase and lowercase let-
ters are used to denote matrices and vectors, respectively. For a matrix
𝐌, 𝐌𝑖. and 𝐌.𝑖 denote the 𝑖th row and column of 𝐌, respectively. The
(𝑖, 𝑗)-th element of 𝐌 is denoted as 𝑀𝑖𝑗 . The main notations used in our
method are summarized in Table 1.
3

Let 𝐗 = [𝐱1,… , 𝐱𝑛] ∈ R𝑑×𝑛 denote a data set containing 𝑛 instances
and 𝑑 features. We can use some lightweight filter feature selection

ethods, such as [2,24,27], to generate 𝑚 base feature selection results
(1),… , 𝐯(𝑚), where 𝐯(𝑘) ∈ [0, 1]𝑑 indicates the scores of all features
omputed by the 𝑘th base feature selection method (note that we
ormalize the score into the range [0, 1]). For the methods which do
ot return the scores of features, we can easily set 𝑣(𝑘)𝑖 = 1 if the 𝑖th

feature is selected by the 𝑘th method, and 𝑣(𝑘)𝑖 = 0 otherwise. Then, we
ill ensemble the 𝑚 feature selection results to learn a consensus score
∈ [0, 1]𝑑 .

Fig. 1 shows the framework of BLFSE. It ensembles the results
n two levels: feature and clustering levels. At the feature level, it
irectly ensembles the feature scores to learn a consensus score. At the
lustering level, it uses the selected features to generate a clustering
esult, and ensembles them to learn a consensus clustering result to
uide the feature level ensemble. In the following, we will introduce
he two levels of the ensemble in more detail.

.1. Feature level ensemble

In feature level ensemble, we directly ensemble 𝐯(1),… , 𝐯(𝑚) to learn
he consensus 𝐯. The key idea is that we wish the consensus one to be
imilar to each base result, and this can be achieved by minimizing
𝑛
𝑘=1 ‖𝐯 − 𝐯(𝑘)‖22. However, the quality of each base result differs from

ach other, and we wish the consensus one to be more similar to
he better results rather than the worse ones. Therefore, we impose a
eight 𝛼𝑘 ∈ [0, 1] on each base result, and learn the consensus one by

he following formula:

min
𝐯,𝜶

𝑚
∑

𝑘=1
𝛼2𝑘‖𝐯 − 𝐯(𝑘)‖22 (1)

𝑠.𝑡. 0 ≤ 𝑣𝑖 ≤ 1,
𝑑
∑

𝑖=1
𝑣𝑖 = 1, 0 ≤ 𝛼𝑖 ≤ 1,

𝑚
∑

𝑘=1
𝛼𝑘 = 1.

Note that we impose the constraint ∑𝑑
𝑖=1 𝑣𝑖 = 1 on 𝐯, for the purpose

that features will compete with each other and the worse ones will be
more easily killed in the competition, leading to a sparse 𝐯.

To see this, we can rewrite the objective function as ∑𝑚
𝑘=1 𝛼

2
𝑘‖𝐯 −

𝐯(𝑘)‖22 =
‖

‖

‖

‖

𝐯 −
∑𝑚
𝑘=1 𝛼

2
𝑘𝐯

(𝑘)
∑𝑚
𝑘=1 𝛼

2
𝑘

‖

‖

‖

‖

2

2
. When considering optimizing 𝐯, it is a

Euclidean projection onto a simplex, which leads to a sparse solution.
Small values in

∑𝑚
𝑘=1 𝛼

2
𝑘𝐯

(𝑘)
∑𝑚
𝑘=1 𝛼

2
𝑘

(which is a weighted average score of 𝐯(𝑘))
tends to be smaller. Intuitively, the worse features are those whose
weighted average score is small, which means the worse features are
ones that most base results agree that they are useless.

3.2. Clustering level ensemble

Since we often use the feature selection results for the clustering
task, besides the feature level ensemble, we also ensemble on the
clustering level for the purpose that the selected features could be
more suitable for clustering. Specifically, for each base feature selection
result 𝐯(𝑘), we run some off-the-shelf clustering methods on the data
with the selected features to obtain a base clustering result 𝐘(𝑘) ∈
{0, 1}𝑛×𝑐𝑘 , where 𝑐𝑘 is the number of clusters in the 𝑘th clustering result.
𝑌 (𝑘)
𝑖𝑗 = 1 if the 𝑖th instance belongs to the 𝑗th cluster in the 𝑘th result,

and 𝑌 (𝑘)
𝑖𝑗 = 0 otherwise.

Since for two base clustering results 𝐘(𝑖) and 𝐘(𝑗) there may not
exist a one-to-one match between their clusters, directly ensembling
𝐘(𝑘) may be difficult. To address this issue, following [60,61,63,72],
we generate the connective matrix 𝐒(𝑘) ∈ {0, 1}𝑛×𝑛 form 𝐘(𝑘) by 𝐒(𝑘) =
𝐘(𝑘)𝐘(𝑘)𝑇 . 𝑆(𝑘)

𝑖𝑗 = 1 if in the 𝑘th result 𝐱𝑖 and 𝐱𝑗 belong to the same
cluster, and 𝑆(𝑘)

𝑖𝑗 = 0 otherwise. Then we ensemble 𝐒(1),… ,𝐒(𝑚) to learn
a consensus matrix 𝐒 ∈ [0, 1]𝑛×𝑛.
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Fig. 1. The framework of BLFSE. Given a data matrix 𝐗 ∈ R𝑑×𝑛, it applies base feature selection methods to generate multiple base results 𝐯(𝑖). In the feature level ensemble,
denoted by the circle marked with a red-dotted line, it ensembles multiple 𝐯(𝑖) to a consensus result 𝐯; in the clustering level ensemble, denoted by the circle marked with a
lue-dotted line, with each base feature selection result, it applies off-the-shelf clustering methods on the data with selected features to generate multiple base connective matrices
(𝑖) and ensemble them to learn a consensus 𝐒 to guide the feature level ensemble.
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Intuitively, we can minimize ∑𝑚
𝑘=1 𝛽

2
𝑘‖𝐒−𝐒(𝑘)‖2𝐹 to learn the consen-

us 𝐒, where 𝛽𝑘 is the weight of the 𝑘th clustering result to make better
ase results contribute more to the consensus one. However, unlike the
eature level ensemble, directly optimizing it may not obtain the ideal
esult. The problem involves too many variables (𝑛×𝑛 variables in 𝐒) to
e learned from 𝑚×𝑛×𝑛 data (𝐒(1),… ,𝐒(𝑚)). What is worse, most of them
re unreliable. Considering that the base unsupervised feature selection
esult 𝐯(𝑘) may be unreliable, the clustering result 𝐘(𝑘) generated from

it may also be unreliable and this leads to the low quality of the con-
nective matrix 𝐒(𝑘). To alleviate this unreliability diffusion, we integrate
nsemble learning into a self-paced learning framework. The key idea is
hat we gradually involve data in ensemble learning from more reliable
nes to less reliable ones. In the beginning, the early model may be
oo weak to handle the unreliable data. Thus, we should use reliable
ata for learning. Then, during ensemble learning, the model becomes
tronger and stronger, and thus it can handle some less reliable data.

To achieve this, we impose a weight matrix 𝐖 ∈ [0, 1]𝑛×𝑛 on
𝐒 to indicate the reliability of each instance pair and automatically
determine it in the ensemble learning. Intuitively, for the instance pair
(𝐱𝑖, 𝐱𝑗), if most of 𝐒(𝑘)’s agree with each other that they belong to or do
not belong to the same cluster, then the learned 𝑆𝑖𝑗 may be reliable,
which leads to a large 𝑊𝑖𝑗 . More formally, we minimize the following
problem:

min
𝐖,𝐒,𝜷

𝑚
∑

𝑘=1
𝛽2𝑘‖𝐖⊙ (𝐒 − 𝐒(𝑘))‖2𝐹 − 𝜆‖𝐖‖1,

𝑠.𝑡. 0 ≤ 𝑊𝑖𝑗 ≤ 1, 0 ≤ 𝑆𝑖𝑗 ≤ 1, 𝐒 = 𝐒𝑇 ,

0 ≤ 𝛽𝑘 ≤ 1,
𝑚
∑

𝑘=1
𝛽𝑘 = 1, (2)

where ⊙ denotes the Hadamard product, which is the element-wise pro-
duction of two matrices. The second term is the self-paced regularized
term and 𝜆 > 0 is an adaptive parameter that grows in the process of the
learning, as suggested by [61,73,74]. From the following optimization
subsection, we can see that 𝐖 will get larger and larger with 𝜆 growing,
which means more and more data will be involved in the learning. The
constraint 𝐒 = 𝐒𝑇 makes sure 𝐒 is symmetric as 𝐒(1),… ,𝐒(𝑚) are.
4

c

Supposing in the clustering task, we want to partition the data into
𝑐 clusters. To make 𝐒 reflect such clustering structure more clearly,
we wish that 𝐒 contains just 𝑐 connective components. To achieve
this, we first compute its Laplacian matrix 𝐋 = 𝐃 − 𝐒, where 𝐃 is
a diagonal matrix whose diagonal elements 𝐷𝑖𝑖 =

∑𝑛
𝑗=1 𝑆𝑖𝑗 . Then,

according to [75], if 𝐒 is nonnegative and symmetric, the number of
connective components in 𝐒 is equal to 𝑛 minus the rank of 𝐋. Thus,

e need a constraint 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐 in the objective function.

.3. Objective function

After obtaining the consensus matrix 𝐒, we wish to select the
eatures to preserve the clustering structure 𝐒. To this end, we first
enerate the weighted instance matrix 𝑑𝑖𝑎𝑔(𝐯)𝐗, where 𝑑𝑖𝑎𝑔(𝐯) is a
iagonal matrix whose diagonal vector is the consensus feature scoew
. Then we define an orthogonal transformation matrix 𝐏 ∈ R𝑐×𝑑 to
roject the weighted instances into a new subspace to preserve 𝐒.

In more detail, for each weighted instance pair 𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 and
𝑖𝑎𝑔(𝐯)𝐱𝑗 , if 𝐱𝑖 and 𝐱𝑗 belong to the same cluster according to 𝐒, we wish
he projected instance pair 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 and 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗 could be close
o each other. To achieve this, we can minimize ∑𝑛

𝑖,𝑗=1 ‖𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 −
𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗‖22𝑆𝑖𝑗 . Integrating this term into the feature level ensem-
le and clustering level ensemble, we can obtain the final objective
unction of the proposed method:

min
𝜽

𝑛
∑

𝑖,𝑗=1
‖𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 − 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗‖22𝑆𝑖𝑗 +

𝑚
∑

𝑘=1
𝛽2𝑘‖𝐖⊙ (𝐒 − 𝐒(𝑘))‖2𝐹

− 𝜆‖𝐖‖1 +
𝑚
∑

𝑘=1
𝛼2𝑘‖𝐯 − 𝐯(𝑘)‖22,

𝑠.𝑡. 0 ≤ 𝑣𝑖 ≤ 1,
𝑑
∑

𝑖=1
𝑣𝑖 = 1, 0 ≤ 𝛼𝑖 ≤ 1,

𝑚
∑

𝑘=1
𝛼𝑘 = 1, 0 ≤ 𝛽𝑘 ≤ 1,

𝑚
∑

𝑘=1
𝛽𝑘 = 1,

0 ≤ 𝑊𝑖𝑗 ≤ 1, 0 ≤ 𝑆𝑖𝑗 ≤ 1, 𝐒 = 𝐒𝑇 , 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐, 𝐏𝐏𝑇 = 𝐈, (3)

here 𝜽 is the set of all learned parameters, i.e., 𝜽 = {𝐯,𝐒,𝐖,𝐏,𝜶, 𝜷}.
y Eq. (3), we seamlessly integrate the feature level ensemble and
lustering level ensemble into a unified feature selection framework. In
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this framework, we jointly ensemble the feature scores and clustering
results and use the ensemble results to guide the feature selection, so
that the ensemble and selection can be boosted by each other.

3.4. Optimization

We first handle the rank constraint. According to Ky Fan Theo-
rem [76], by introducing an orthogonal matrix 𝐘 ∈ R𝑛×𝑐 , Eq. (3) can
be rewritten as:

min
𝜽

𝑛
∑

𝑖,𝑗=1
‖𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 − 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗‖22𝑆𝑖𝑗 − 𝜆‖𝐖‖1

+
𝑚
∑

𝑘=1
𝛽2𝑘‖𝐖⊙ (𝐒 − 𝐒(𝑘))‖2𝐹 +

𝑚
∑

𝑘=1
𝛼2𝑘‖𝐯 − 𝐯(𝑘)‖22 + 2𝜌𝑡𝑟(𝐘𝑇𝐋𝐘),

𝑠.𝑡. 0 ≤ 𝑣𝑖 ≤ 1,
𝑑
∑

𝑖=1
𝑣𝑖 = 1, 0 ≤ 𝛼𝑖 ≤ 1,

𝑚
∑

𝑘=1
𝛼𝑘 = 1,

0 ≤ 𝑊𝑖𝑗 ≤ 1, 0 ≤ 𝑆𝑖𝑗 ≤ 1, 𝐒 = 𝐒𝑇 , 𝐘𝑇𝐘 = 𝐈,

0 ≤ 𝛽𝑘 ≤ 1,
𝑚
∑

𝑘=1
𝛽𝑘 = 1, 𝐏𝐏𝑇 = 𝐈, (4)

where 𝜽 = {𝐯,𝐒,𝐖,𝐏,𝐘,𝜶, 𝜷}, and 𝜌 is a large enough hyper-parameter
to make 𝑟𝑎𝑛𝑘(𝐋) = 𝑛−𝑐. Then, we optimize Eq. (4) by a block coordinate
descent method.

3.4.1. Optimizing 𝐖
When fixing other variables, the subproblem w.r.t. 𝐖 can be de-

coupled into 𝑛×𝑛 independent subproblems, and we consider the (𝑖, 𝑗)-th
subproblem:

min
0≤𝑊𝑖𝑗≤1

𝑊 2
𝑖𝑗

𝑚
∑

𝑘=1
(𝑆𝑖𝑗 − 𝑆

(𝑘)
𝑖𝑗 )2 − 𝜆𝑊𝑖𝑗 . (5)

By setting its derivative w.r.t. 𝑊𝑖𝑗 to zero, we obtain 𝑊𝑖𝑗 = 𝜆
2𝐴𝑖𝑗

,

where 𝐴𝑖𝑗 =
∑𝑚
𝑘=1(𝑆𝑖𝑗 − 𝑆

(𝑘)
𝑖𝑗 )2. Since 𝐴𝑖𝑗 ≥ 0, 𝑊𝑖𝑗 ≥ 0. If 𝜆

2𝐴𝑖𝑗
> 1, then

in the range [0, 1], Eq. (5) is a monotone decreasing function, and thus
the solution is 1. To sum up, the solution of 𝑊𝑖𝑗 is:

𝑊𝑖𝑗 = min
(

𝜆
2𝐴𝑖𝑗

, 1
)

, (6)

Note that, a small 𝐴𝑖𝑗 means most 𝐒(𝑖)’s agree with each other,
nd thus leads to a large 𝑊𝑖𝑗 which means the pair (𝐱𝑖, 𝐱𝑗 ) is reliable.
oreover, 𝜆 represents the ’’age’’ of the model. 𝐖 is proportional to 𝜆,
hich means at the early stage (𝜆 is small), most pairs have a small
eight and only a few reliable ones (where 𝐴𝑖𝑗 is small) will have the

arge weights. With 𝜆 growing, more pairs with large 𝐴𝑖𝑗 will have large
eights and affect the model. This is consistent with the motivation of

elf-paced learning.

.4.2. Optimizing 𝐏
When fixing the other variables, we obtain the following subprob-

em:

min
𝐏𝐏𝑇 =𝐈

𝑡𝑟(𝐏𝑑𝑖𝑎𝑔(𝐯)𝐗𝐋𝐗𝑇 𝑑𝑖𝑎𝑔(𝐯)𝐏𝑇 ). (7)

According to Ky Fan Theorem [76], the closed-form solution of 𝐏
is the 𝑐 eigenvectors of 𝑑𝑖𝑎𝑔(𝐯)𝐗𝐋𝐗𝑇 𝑑𝑖𝑎𝑔(𝐯) corresponding to the 𝑐
smallest eigenvalues.

3.4.3. Optimizing 𝐒
Note that 𝐋 is relative with 𝐒, and thus the subproblem w.r.t

𝐒 are complicated. Fortunately, the following Theorem provides its
closed-form solution:
5

Theorem 1. Denoting 𝐵𝑖𝑗 = ‖𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 − 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗‖22 and 𝐶𝑖𝑗 =
𝐘𝑖. − 𝐘𝑗.‖22, the closed-form solution of the subproblem w.r.t. 𝐒 is

𝑖𝑗 = max

⎛

⎜

⎜

⎜

⎝

min

⎛

⎜

⎜

⎜

⎝

∑𝑚
𝑘=1 𝛽

2
𝑘𝑆

(𝑘)
𝑖𝑗 − 𝐵𝑖𝑗+𝜌𝐶𝑖𝑗

2𝑊 2
𝑖𝑗

∑𝑚
𝑘=1 𝛽

2
𝑘

, 1

⎞

⎟

⎟

⎟

⎠

, 0

⎞

⎟

⎟

⎟

⎠

. (8)

Proof. See Appendix. □

3.4.4. Optimizing 𝐯
When fixing the other variables, we can rewrite Eq. (4) as follows:

min
𝐯

𝑛
∑

𝑖,𝑗=1
‖𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑖 − 𝐏𝑑𝑖𝑎𝑔(𝐯)𝐱𝑗‖22𝑆𝑖𝑗+

𝑚
∑

𝑘=1
𝛼2𝑘‖𝐯 − 𝐯(𝑘)‖22

𝑠.𝑡. 0 ≤ 𝑣𝑖 ≤ 1,
𝑑
∑

𝑖=1
𝑣𝑖 = 1. (9)

Although Eq. (9) seems complicated, the following Theorem shows
hat it is strictly convex w.r.t. 𝐯.

heorem 2. Eq. (9) is strictly convex quadratic programming.

roof. See Appendix. □

Since Eq. (9) is strictly convex quadratic programming, we can
use standard convex optimization, such as the accelerated penalty
method [77], to find the global solution to this subproblem.

3.4.5. Optimizing 𝐘
The subproblem which involves 𝐘 is

min
𝐘𝑇 𝐘=𝐈

𝑡𝑟(𝐘𝑇𝐋𝐘). (10)

Similar to the optimization of 𝐏, it can also be solved by Ky Fan Theo-
rem. The closed-form solution is the 𝑐 eigenvectors of 𝐋 corresponding
to the 𝑐 smallest eigenvalues.

3.4.6. Optimizing 𝜶
When fixing the other variables, we rewrite Eq. (4) as:

min
𝜶

𝑚
∑

𝑘=1
𝛼2𝑘‖𝐯 − 𝐯(𝑘)‖22, 𝑠.𝑡. 0 ≤ 𝛼𝑖 ≤ 1,

𝑚
∑

𝑘=1
𝛼𝑘 = 1. (11)

According to Cauchy–Schwarz Inequality, we can obtain its closed-
form solution:

𝛼𝑘 =
‖𝐯 − 𝐯(𝑘)‖−22

∑𝑚
𝑗=1 ‖𝐯 − 𝐯(𝑗)‖−22

. (12)

3.4.7. Optimizing 𝜷
The optimization of 𝜷 is similar to 𝜶. The closed-form solution of 𝜷

is:

𝛽𝑘 =
‖𝐖⊙ (𝐒 − 𝐒(𝑘))‖−2𝐹

∑𝑚
𝑗=1 ‖𝐖⊙ (𝐒 − 𝐒(𝑗))‖−2𝐹

. (13)

.5. Discussion and algorithm

We first introduce some initialization of the proposed method. We
nitialize 𝐯 = 1

𝑚
∑𝑚
𝑘=1 𝐯

(𝑘), 𝐒 = 1
𝑚
∑𝑚
𝑘=1 𝐒

(𝑘), 𝛼𝑘 =
1
𝑚 and 𝛽𝑘 =

1
𝑚 .

For the adaptive parameter 𝜆 which will influence the reliability
matrix 𝐖, we should initialize and adjust it more carefully. At the
beginning, 𝐒 is initialized as the mean of 𝐒(𝑘) and 𝛼𝑘 =

1
𝑚 , and then we

take a closer look at 𝐀 in Eq. (6). Given any pair (𝐱𝑖, 𝐱𝑗 ), we suppose
that 𝑚 clustering results agree that they belong to the same cluster and
𝑖𝑗
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Algorithm 1 BLFSE Algorithm

Input: Instance matrix 𝐗, and 𝑚 feature score vectors 𝐯(1),⋯ , 𝐯(𝑚).
Output: Selected features.
1: On each base feature selection result, run off-the-shelf cluster-

ing methods to obtain base clustering results, and further obtain
connective matrices 𝐒(1),⋯ ,𝐒(𝑚).

2: Initialize the parameters as introduced before.
3: for 𝜓 = 0.9, 0.8,⋯ , 0.5 do
4: Compute 𝜆 by Eq. (14), and compute 𝐖 by Eq. (6).
5: while not converge do
6: Compute 𝐏 by solving Eq. (7).
7: Compute 𝐒 by Eq. (8).
8: Compute 𝐯 by solving Eq. (9).
9: Compute 𝐘 by solving Eq. (10).

10: Compute 𝜶 and 𝜷 by Eqs. (12) and (13), respectively.
11: Adjust 𝜌 as introduced before.
12: end while
13: end for
14: Select the top features according to 𝐯.

Table 2
Information of the data sets.

#instances #features #classes

20NG 3970 1000 4
BBC 737 1000 5
CSTR 475 1000 4
Isolet 1560 617 26
PIE 1428 1024 68
WEBACE 2340 1000 20
Tr11 414 6429 9
Tr12 313 5804 8

the other 𝑚 − 𝑚𝑖𝑗 results believe that they belong to different clusters.
hen 𝐴𝑖𝑗 can be calculated as:

𝑖𝑗 =
𝑚
∑

𝑘=1
𝛼2𝑘(𝑆𝑖𝑗 − 𝑆

(𝑘)
𝑖𝑗 )2 =

(

(𝑚𝑖𝑗
𝑚

− 1
)2 𝑚𝑖𝑗

𝑚
+
(𝑚𝑖𝑗
𝑚

)2 (

1 −
𝑚𝑖𝑗
𝑚

)

)

1
𝑚
.

Define 𝜓 = 𝑚𝑖𝑗∕𝑚, which indicates the ratio of the results that reach an
greement. For instance, 𝜓 = 0.7 indicates that 70% results agree that

𝐱𝑖 and 𝐱𝑗 are in the same cluster. Therefore, when 𝜓 > 0.5, the larger 𝜓
is, the more reliable the pair is. To this end, we initialize 𝜓 = 0.9 and
compute 𝜆 as:

𝜆 = 2((𝜓 − 1)2𝜓 + 𝜓2(1 − 𝜓))∕𝑚 = 2(𝜓(1 − 𝜓))∕𝑚. (14)

Taking it back to Eq. (6), we find that, for 𝐱𝑖 and 𝐱𝑗 , if more than 90%
clustering results reach an agreement, then 𝑊𝑖𝑗 = 1, i.e., this pair is
used completely. In the following process, 𝜆 is increased gradually by
decreasing 𝜓 from 0.9 to 0.5 with a step size of 0.1.

When considering 𝜌, it is initialized as 1. Then, it is adjusted
according to the rank of 𝐋. In more detail, if 𝑟𝑎𝑛𝑘(𝐋) > 𝑛 − 𝑐, which
means the rank regularization is not strong enough, we update 𝜌← 2𝜌.
If 𝑟𝑎𝑛𝑘(𝐋) < 𝑛− 𝑐, which means the constraint is too strong, we update
it by 𝜌← 𝜌∕2.

Note that 𝜆 and 𝜌 are adjusted automatically, and the number of
lusters 𝑐 is often given by the downstream clustering task. We do not

need any other manually tuned hyper-parameters, which is practical in
unsupervised learning scenarios. The whole algorithm is summarized
in Algorithm 1. The most expensive steps of Algorithm 1 are the
eigenvalue decompositions (optimizing 𝐏 and 𝐘) and the optimization
of the quadratic programming (optimizing 𝐯). When solving 𝐏, it costs
𝑂(𝑛2𝑑 + 𝑑2𝑛) time to compute the matrix multiplication 𝐗𝑇𝐋𝐗, and
𝑂(𝑑2𝑐) time for eigenvalue decomposition. When solving 𝐘, it costs
𝑂(𝑛2𝑐) time for eigenvalue decomposition. When solving 𝐯, since Eq. (9)
6

is strictly convex quadratic programming according to Theorem 2, w
it has a faster convergence rate when applying accelerated penalty
method [77]. In each iteration to solve 𝐯, it costs 𝑂(𝑑2) time to compute
he gradients. Since it is strictly convex, given a predefined tolerance
, it needs 𝐾 = 𝑂( 1

√

𝜖
) step to converge. Therefore, the time complexity

of updating 𝐯 is 𝑂(𝑑2𝐾). To sum up, the whole time complexity is
𝑂(𝑛2𝑑+𝑛𝑑2+𝑑2𝐾) which is not worse than the conventional embedded
eature selection methods (e.g. [13,78]) whose time complexity is often
ubic in 𝑑. In the future, we will further study how to reduce its time
omplexity.

. Experiments

In this section, we compare BLFSE with some state-of-the-art unsu-
ervised feature selection and ensemble methods on benchmark data
ets.

.1. Data sets

We conduct experiments on 8 benchmark data sets, including
0NG [84], BBC [85], CSTR [86], Isolet [87], PIE [88], WEBACE [89],
r11 [90], and Tr12 [90].

Table 2 provides detailed information of these data sets.

.2. Compared methods

We compare with the following feature selection and ensemble
ethods:

• RCE [44], which first applies clustering ensemble to generate the
consensus clustering result and then selects features to preserve
it.

• FSASL [79], which adaptively learns the local and global struc-
ture when selecting features.

• SOGFS [13], which learns an optimal graph structure for feature
selection.

• LRPFS [80], which selects features to preserve the low rank
structure.

• URAFS [14], which applies generalized uncorrelated regression
to select features.

• CGUFS [45], which applies clustering ensemble to guide the
feature selection.

• NSSLFS [38], which uses sparse subspace learning to guide the
feature selection.

• FSE [18], which is a feature selection ensemble method with
ranking aggregation of features.

• HEFS [71], which is a hybrid ensemble feature selection method
to aggregate the feature scores.

• AEFS [46], which is an unsupervised feature selection method
with auto-encoder.

• LDSSL [81], which is a feature selection method with local dis-
criminative based sparse subspace learning.

• SLSDR [82], which is a robust feature selection method with
sparse and low-redundant subspace learning.

• DUFS [83], which is an unsupervised feature selection method by
considering pairwise dependence.

• UFSTAE [49], which is an unsupervised feature selection method
via transformed auto-encoder.

• BSFS [43], which is a balanced spectral feature selection method.

Among them, RCE and CGUFS are feature selection methods based
n the clustering ensemble; and FSE and HEFS are feature selection
nsemble methods on the feature level.

.3. Experimental setup

To evaluate the quality of the features selected by each method,

e apply kmeans clustering on the selected features and report the
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Table 3
ACC results compared with other feature selection methods. The bold font means that the difference is statically significant, i.e., the 𝑝-value of the 𝑡-test
is smaller than 0.05. The numbers in the parentheses are the 𝑝-values.

Methods 20NG BBC CSTR Isolet PIE WEBACE Tr11 TR12

RCE [44] 0.4696 0.5793 0.5695 0.4548 0.4500 0.3861 0.3598 0.3701
(0.0043) (0.0000) (0.0002) (0.0013) (0.0000) (0.0000) (0.0000) (0.0000)

FSASL [79] 0.4708 0.6168 0.5621 0.4838 0.4996 0.3807 0.4903 0.4858
(0.0047) (0.0014) (0.0000) (0.0229) (0.0000) (0.0000) (0.4484) (0.0000)

SOGFS [13] 0.3606 0.4453 0.3843 0.3750 0.3435 0.2931 0.3021 0.2855
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

LRPFS [80] 0.3159 0.4603 0.5186 0.4587 0.3345 0.2447 0.2950 0.2369
(0.0000) (0.0000) (0.0000) (0.0007) (0.0000) (0.0000) (0.0000) (0.0000)

URAFS [14] 0.4712 0.4749 0.5299 0.4257 0.4853 0.3832 0.4719 0.4815
(0.0041) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0252) (0.0000)

CGUFS [45] 0.3087 0.4764 0.5830 0.4651 0.3450 0.3405 0.4045 0.4459
(0.0000) (0.0000) (0.0001) (0.0032) (0.0000) (0.0000) (0.0000) (0.0000)

NSSLFS [38] 0.2809 0.3768 0.3792 0.4485 0.3127 0.3549 0.3221 0.2910
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

FSE [18] 0.4632 0.5874 0.5723 0.4617 0.5857 0.3898 0.4975 0.4809
(0.0004) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.7416) (0.0000)

HEFS [71] 0.4748 0.6159 0.6117 0.4291 0.5571 0.3936 0.3710 0.4234
(0.0158) (0.0004) (0.0192) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AEFS [46] 0.2790 0.4064 0.4337 0.4585 0.3476 0.3236 0.2092 0.2474
(0.0000) (0.0000) (0.0000) (0.0010) (0.0000) (0.0000) (0.0000) (0.0000)

LDSSL [81] 0.4417 0.6203 0.5921 0.4794 0.4886 0.4178 0.4893 0.4843
(0.0003) (0.0025) (0.0019) (0.0157) (0.0000) (0.0000) (0.3136) (0.0000)

SLSDR [82] 0.3917 0.3464 0.6223 0.4843 0.4426 0.3061 0.3077 0.2890
(0.0000) (0.0000) (0.1174) (0.2032) (0.0000) (0.0000) (0.0000) (0.0000)

DUFS [83] 0.4645 0.6755 0.5631 0.4677 0.3336 0.3446 0.4875 0.4748
(0.0011) (0.0420) (0.0000) (0.0010) (0.0000) (0.0000) (0.2586) (0.0000)

UFSTAE [49] – 0.4275 0.4243 0.4629 0.5056 0.4631 0.3717 0.3860
– (0.0000) (0.0000) (0.0074) (0.0000) – (0.0136) (0.0000)

BSFS [43] 0.4780 0.6200 0.6293 0.4185 0.5269 0.3877 0.4728 0.4710
(0.0108) (0.0010) (0.2785) (0.0000) (0.0000) (0.0000) (0.0408) (0.0000)

BLFSE 0.5239 0.6936 0.6451 0.5006 0.6325 0.4075 0.5013 0.5450
– – – – – (0.0000) – –
clustering performance. Two clustering metrics including Accuracy
(ACC) and Normalized Mutual Information (NMI) are used. Since it
is often difficult to know the optimal number of selected features in
advance, the results with 10, 20,… , 200 selected features are reported.

In our method, we use a lightweight filter feature selection method
nf-FS (Infinite Feature Selection) proposed in [27] to generate the base
eature selection results. In more detail, to generate diverse base feature
election results, we randomly split the data set into 10 subsets, with
∕10 instances in each one. Then, in each subset, we run Inf-FS to
enerate a base feature score vector, and thus we get 10 score vectors
(1),… , 𝐯(10). Then, we apply kmeans to generate the base clustering
esults for simplicity. We run our BLFSE to ensemble the 10 base score
ectors to select features. For other feature selection ensemble methods
i.e., FSE and HEFS), since we aim to compare the performance of
nsemble learning, we use the same base feature selection results as
sed in ours for a fair comparison. For the RCE and CGUFS, which are
lustering ensemble based feature selection methods, we use the same
ase clustering results as ours uses for a fair comparison.

.4. Experimental results

Tables 3 and 4 show the average ACC and NMI of BLFSE and other
ethods over the range of selected features (with 10, 20,… , 200 selected

features). We also report the 𝑡-test results. The bold font means that the
difference is statically significant according to 𝑡-test, i.e., the 𝑝-value of
he 𝑡-test is smaller than 0.05. The numbers in the parentheses are the 𝑝-

values. Notice that UFSTAE has no results on the 20NG data set because
it runs out of memory on this data set. From Tables 3 and 4, we find
that, although the base feature selection results we used are imperfect
because we just use a subset of instances to generate them, BLFSE can
7

still outperform other state-of-the-art feature selection methods even
the deep feature selection methods AEFS and UFSTAE, which shows the
effectiveness of the proposed ensemble method. Even compared with
clustering ensemble based feature selection methods (RCE and CGUFS)
and feature level ensemble methods (FSE and HEFS), ours also achieves
better performance. It well demonstrates that the proposed bi-level
ensemble method can outperform single-level ensemble methods.

Figs. 2 and 3 show the detailed ACC and NMI results w.r.t. the dif-
ferent numbers of selected features of all methods, respectively. We find
that BLFSE outperforms both the feature selection and feature selection
ensemble methods most time. Moreover, among the 10, 20,… , 200 se-
lected features, when comparing on the best performance all methods
can achieve, ours also outperforms other compared methods on most
data sets. It means that if we select a suitable number of features for
all methods, ours performs better.

To further demonstrate the effectiveness of the ensemble approach,
we compare our method BLFSE with the 10 base feature selection re-
sults. We use R1, . . . , R10 to denote the clustering results on the 10 base
feature selection results, respectively. Table 5 shows the average results
of all methods over the range of 10, 20,… , 200 selected features, and
Figs. 4 and 5 show the detailed ACC and NMI results w.r.t. the different
numbers of selected features. We find that BLFSE can outperform the 10
base results or at least are comparable with the best one most time. It
shows that our ensemble schema can indeed improve the performance
of the base results or at least provide a stable good consensus result. It
well demonstrates our motivation of ensemble.

Fig. 6 shows the convergence curves of our method on 20NG, Isolet,
WEBACE, and Tr11. The results on other data sets are similar. From
Fig. 6, we find that our method can converge very fast, i.e., it often
converges within ten iterations.
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Fig. 2. ACC with different numbers of features for all methods.
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Fig. 3. NMI with different numbers of features for all methods.
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Fig. 4. ACC with different numbers of features for all base feature selection results.
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Fig. 5. NMI with different numbers of features for all base feature selection results.
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Table 4
NMI results compared with other feature selection methods. The bold font means that the difference is statically significant, i.e., the 𝑝-value of the 𝑡-test
is smaller than 0.05. The numbers in the parentheses are the 𝑝-values.

Methods 20NG BBC CSTR Isolet PIE WEBACE Tr11 TR12

RCE [44] 0.2453 0.4334 0.3837 0.6304 0.7276 0.4247 0.3019 0.2932
(0.0240) (0.0007) (0.0006) (0.0387) (0.0000) (0.0000) (0.0000) (0.0000)

FSASL [79] 0.2462 0.4406 0.3390 0.6427 0.7489 0.4332 0.4902 0.4350
(0.0232) (0.0042) (0.0000) (0.0203) (0.0000) (0.0124) (0.1933) (0.0000)

SOGFS [13] 0.1181 0.1880 0.0444 0.5414 0.6563 0.2551 0.0348 0.0484
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

LRPFS [80] 0.0629 0.2320 0.2641 0.5976 0.6386 0.1908 0.1959 0.0785
(0.0000) (0.0000) (0.0000) (0.0004) (0.0000) (0.0000) (0.0000) (0.0000)

URAFS [14] 0.2427 0.3178 0.2808 0.5805 0.7387 0.4355 0.4751 0.4187
(0.0155) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0009) (0.0000)

CGUFS [45] 0.0523 0.3005 0.3288 0.6339 0.6559 0.3578 0.3609 0.3524
(0.0000) (0.0000) (0.0000) (0.0448) (0.0000) (0.0000) (0.0000) (0.0000)

NSSLFS [38] 0.0275 0.0496 0.0448 0.5967 0.6187 0.3901 0.0211 0.0230
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000)

FSE [18] 0.2512 0.4227 0.3566 0.6274 0.7993 0.4368 0.4973 0.4355
(0.0064) (0.0002) (0.0000) (0.0001) (0.0000) (0.0000) (0.6360) (0.0000)

HEFS [71] 0.2597 0.4528 0.4343 0.6026 0.7869 0.4531 0.3165 0.3399
(0.0406) (0.0177) (0.0336) (0.0005) (0.0000) (0.5787) (0.0000) (0.0000)

AEFS [46] 0.0194 0.1472 0.1425 0.6167 0.6561 0.2888 0.0610 0.0910
(0.0000) (0.0000) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

LDSSL [81] 0.2075 0.4592 0.3699 0.6265 0.7695 0.4334 0.4885 0.4372
(0.0004) (0.0293) (0.0000) (0.0200) (0.0000) (0.0006) (0.1040) (0.0000)

SLSDR [82] 0.1458 0.0489 0.4105 0.5977 0.6976 0.2584 0.1346 0.0798
(0.0000) (0.0000) (0.0010) (0.0004) (0.0000) (0.0000) (0.0000) (0.0000)

DUFS [83] 0.2444 0.4714 0.3337 0.6214 0.6321 0.3601 0.4836 0.4200
(0.0109) (0.0450) (0.0000) (0.0100) (0.0000) (0.0000) (0.0382) (0.0000)

UFSTAE [49] – 0.1182 0.0786 0.6067 0.7154 0.3695 0.0952 0.1836
– (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

BSFS [43] 0.2538 0.4691 0.4470 0.5683 0.7645 0.4422 0.4701 0.4147
(0.0431) (0.0460) (0.1964) (0.0000) (0.0000) (0.0089) (0.0027) (0.0000)

BLFSE 0.2870 0.5012 0.4701 0.6523 0.8152 0.4559 0.5000 0.4797
– – – – – – – –
Table 5
Clustering results compared with single base feature selection result.

Data sets Metrics R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 BLFSE

20NG ACC 0.4837 0.4764 0.4879 0.4915 0.4840 0.4816 0.4804 0.4813 0.4809 0.4327 0.5239
NMI 0.2495 0.2447 0.2663 0.2561 0.2483 0.2412 0.2461 0.2571 0.2478 0.1899 0.2870

BBC ACC 0.5548 0.5936 0.4685 0.6222 0.4646 0.6485 0.5040 0.4823 0.6643 0.5568 0.6936
NMI 0.3977 0.3800 0.2999 0.3918 0.2737 0.4152 0.3246 0.3249 0.4599 0.3664 0.5012

CSTR ACC 0.5644 0.5106 0.5418 0.4744 0.5243 0.4907 0.4935 0.4995 0.5583 0.4572 0.6451
NMI 0.2611 0.2685 0.2792 0.2701 0.2948 0.2706 0.2907 0.2376 0.2874 0.2359 0.4701

Isolet ACC 0.4715 0.4840 0.4832 0.4866 0.4927 0.4918 0.4856 0.4710 0.4778 0.4848 0.5006
NMI 0.6257 0.6333 0.6376 0.6402 0.6492 0.6455 0.6363 0.6328 0.6354 0.6409 0.6523

PIE ACC 0.5499 0.5830 0.5642 0.4929 0.5346 0.5877 0.5350 0.5312 0.5425 0.5827 0.6325
NMI 0.7733 0.8092 0.7830 0.7475 0.7764 0.7947 0.7656 0.7629 0.7626 0.7881 0.8152

WEBACE ACC 0.3313 0.3982 0.3722 0.3750 0.3599 0.3946 0.3601 0.3324 0.3619 0.3519 0.4075
NMI 0.3695 0.4162 0.3976 0.4096 0.4072 0.4302 0.3782 0.3806 0.4046 0.4024 0.4559

Tr11 ACC 0.4496 0.4460 0.4832 0.4762 0.4612 0.4632 0.4673 0.4256 0.4565 0.4467 0.5013
NMI 0.4540 0.4448 0.4898 0.4606 0.4436 0.4659 0.4649 0.4275 0.4460 0.4494 0.5000

Tr12 ACC 0.5250 0.4617 0.5137 0.5045 0.4974 0.5187 0.4850 0.4401 0.4973 0.4674 0.5450
NMI 0.4476 0.3898 0.4452 0.4489 0.4394 0.4541 0.4256 0.3891 0.4312 0.4118 0.4797
12
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Fig. 6. Convergence curves of BLFSE.
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Table 6
Clustering results compared with three degenerated versions of BLFSE.

Data sets Metrics Fea Clu woSP BLFSE

20NG ACC 0.4565 0.3546 0.4585 0.5239
NMI 0.2421 0.1101 0.2311 0.2870

BBC ACC 0.5785 0.4155 0.6335 0.6936
NMI 0.4225 0.1607 0.4752 0.5012

CSTR ACC 0.5605 0.4686 0.6000 0.6451
NMI 0.3464 0.2381 0.4134 0.4701

Isolet ACC 0.4608 0.4853 0.4886 0.5006
NMI 0.6238 0.6187 0.6479 0.6523

PIE ACC 0.5928 0.4025 0.6100 0.6325
NMI 0.8013 0.6735 0.8076 0.8152

WEBACE ACC 0.3875 0.3374 0.4026 0.4075
NMI 0.4401 0.3580 0.4461 0.4559

Tr11 ACC 0.4822 0.2838 0.4874 0.5013
NMI 0.4828 0.1235 0.4928 0.5000

Tr12 ACC 0.5022 0.2757 0.5315 0.5450
NMI 0.4416 0.1253 0.4825 0.4797

4.5. Results of running time

In this subsection, we report the running time of our method and
other compared methods. The results are shown in Fig. 7. The right-
most black bar indicates our proposed method. Although the proposed
method involves two levels of the ensemble, which increases the com-
putation costs, it is still comparable with other compared methods on
many data sets. The proposed one is even faster than some methods,
such as SOGFS, LRPFS, NSSFLS, and AEFS, on most data sets.

4.6. Ablation study

Since our method involves two levels of the ensemble, in this
subsection, we compare with two degenerated versions which only
use one level of the ensemble. Moreover, we also compare with the
degenerated version without the self-paced learning approach to show
13
the effectiveness of self-paced learning. In more detail, we compare
with the following three degenerated versions:

• Fea, which is our method only ensembles on the feature level.
• Clu, which is our method only ensembles on the clustering level.
• woSP, which is our method without the self-paced learning, i.e., it

fixes the weight 𝐖 as an all-ones matrix.

Table 6 shows the ACC and NMI results of the three degenerated
ersions. From Table 6, we find that Fea often outperforms Clu, which
eans feature level ensemble is more important than the clustering

evel. The reason may be that the clustering level ensemble discards the
riginal feature selection information, and is only based on the multiple
lustering results. Notice that the base clustering results come from
nreliable base feature selection methods and unreliable base clustering
ethods, and the unreliability diffuses in the process, which leads to
oor performance of clustering level ensemble. That can also explain
hy most of the existing feature selection ensemble methods are on

he feature level ensemble. Compared with Fea and Clu, the bi-level
ethod BLFSE can outperform both single-level ensemble methods,
hich demonstrates the effectiveness of the bi-level ensemble. When

ompared with woSP, which is the one without self-paced learning, our
LFSE often achieves better performance, demonstrating that self-paced

earning can indeed further improve performance.

. Conclusion

In this paper, we proposed a novel bi-level feature selection en-
emble method, which ensembled on both the feature and clustering
evels by fully considering the downstream clustering task. On the
lustering level ensemble, to alleviate the unreliability diffusion in the
nsupervised model, we plugged it into a self-paced learning frame-
ork that used data for consensus learning in order of reliability. Then
e proposed an iterative algorithm to optimize it and provided some

heoretical analysis of hyper-parameters to make the model easy to
se. At last, extensive experiments were conducted on benchmark data
ets, and the results demonstrated that the proposed ensemble method
utperformed all base results or at least was comparable with the best
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Fig. 7. Running time of our method and other compared methods.
one. Moreover, when compared with the state-of-the-art unsupervised
feature selection methods, the proposed BLFSE also performed better.
Even compared with feature selection ensemble methods, ours could
still achieve better performance.

Although the ensemble schema improves the feature selection per-
formance, since it involves two levels of the ensemble, it increases the
computation costs. In the future, we will study some approximation
and accelerated methods to reduce the time complexity and speed up
the method. In addition, there are many other unsupervised learning
downstream tasks like outlier detection and so on. In this paper, we use
the clustering assumption in the BLFSE, and thus it is appropriate for
the clustering task. If we handle some other downstream tasks such as
outlier detection and visualization, we should redesign other strategies
by fully considering the specific tasks. Therefore, in the future, we will
design new algorithms to tackle other specific downstream tasks.
14
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