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A B S T R A C T

Clustering ensemble integrates multiple base clustering results to obtain a consensus result and thus improves
the stability and robustness of the single clustering method. Since it is natural to use a hypergraph to represent
the multiple base clustering results, where instances are represented by nodes and base clusters are represented
by hyperedges, some hypergraph based clustering ensemble methods are proposed. Conventional hypergraph
based methods obtain the final consensus result by partitioning a pre-defined static hypergraph. However, since
base clusters may be imperfect due to the unreliability of base clustering methods, the pre-defined hypergraph
constructed from the base clusters is also unreliable. Therefore, directly obtaining the final clustering result
by partitioning the unreliable hypergraph is inappropriate. To tackle this problem, in this paper, we propose a
clustering ensemble method via structured hypergraph learning, i.e., instead of being constructed directly, the
hypergraph is dynamically learned from base results, which will be more reliable. Moreover, when dynamically
learning the hypergraph, we enforce it to have a clear clustering structure, which will be more appropriate
for clustering tasks, and thus we do not need to perform any uncertain postprocessing, such as hypergraph
partitioning. Extensive experiments show that, our method not only performs better than the conventional
hypergraph based ensemble methods, but also outperforms the state-of-the-art clustering ensemble methods.
. Introduction

Clustering ensemble learns a consensus clustering result from mul-
iple weak base clustering methods [1,2]. Since it can improve the
tability and robustness of single clustering methods, it attracts a lot of
ttention [3–9]. For example, Fern et al. constructed a bipartite graph
o represent multiple base clusters and partitioned such bipartite graph
or clustering ensemble [3]; Zhou et al. proposed an alignment method
o ensemble multiple kmeans clustering results [4].

Among these methods, one kind of the popular methods is the graph
ased clustering ensemble method. It uses an undirect graph to rep-
esent multiple base clusters and learns the final consensus clustering
esult by partitioning the graph. For example, Mimaroglu et al. con-
tructed a similarity graph to combine multiple clustering results [10];
hou et al. proposed a robust clustering ensemble method via multi-
le graph learning [11]. Although the graph has being demonstrated
romising performance in many applications [12,13], the graph struc-
ure sometimes may fail to capture the complex high-order correlation
etween instances. In clustering ensemble tasks, since different base
lustering methods may discover the different structures of data, the
elationship between instances may be too complex to be characterized
y graphs.
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E-mail addresses: zhoupeng@ahu.edu.cn (P. Zhou), e19201043@stu.ahu.edu.cn (X. Wang), duliang@sxu.edu.cn (L. Du), xjli@ahu.edu.cn (X. Li).

To characterize the complex high-order relationship between in-
stances, hypergraph is introduced in the clustering ensemble tasks.
Hypergraph contains a node set and a hyperedge set. Different from
the edge in the graph, where each edge only links two nodes, the
hyperedge can connect any number of nodes, and thus the hypergraph
can easily reveal the high-order correlation between instances [14].
Strehl et al. constructed a hypergraph to represent the multiple base
clusters, where each instance was represented by a node, and each
base cluster was represented by a hyperedge [1]. Then they applied
a hypergraph partitioning algorithm to divide the nodes into some
clusters. However, since the base clustering methods may be weak,
which may lead to unreliable base clusters, the hypergraph constructed
from these unreliable base clusters may also be imperfect. Therefore,
the final results, which are obtained by partitioning the unreliable
hypergraph, may also be undesirable.

To address this issue, in this paper, we propose a novel Clustering
Ensemble method with Structured Hypergraph Learning (CESHL). Dif-
ferent from conventional hypergraph based methods, in our method,
the hypergraph is dynamically learned from data instead of directly
being pre-defined. As mentioned before, some base clusters may be un-
reliable which may be harmful to hypergraph learning. In our method,
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we provide a new method to evaluate the quality of the base clusters,
and learn the hypergraph by considering the quality of each clus-
ter. Therefore, in the learning process, the hypergraph will become
more and more reliable. Moreover, to make the learned hypergraph
more appropriate to the clustering task, we impose some constraints
to make the hypergraph have a clear clustering structure, i.e, if we
want to partition the data into 𝑐 clusters, the hypergraph will have
exact 𝑐 connective components. Then obtaining the final consensus
result is trivial, because we just need to put the instances in the same
connective component into a cluster. Therefore, our method is an end-
to-end clustering ensemble method, which does not need any uncertain
postprocessing, such as kmeans or hypergraph partitioning.

To achieve this, we propose a simple yet effective objective function
to dynamically learn the structured graph. Then we apply an iterative
algorithm to optimize the introduced objective function. At last, we
conduct extensive experiments on the benchmark data sets. When
comparing with conventional hypergraph partition based clustering en-
semble methods, ours achieves better performance which demonstrates
the effectiveness of our structured hypergraph learning strategy. More-
over, when comparing with some state-of-the-art clustering ensemble
methods, ours also often outperforms them which shows the superiority
of the proposed method.

The remaining parts of this paper are organized as follows. Section 2
reviews some related work. Section 3 introduces our CESHL in detail.
Section 4 presents the experimental results. Section 5 concludes this
paper.

2. Related work

In this section, we will introduce some related work about clustering
ensemble and hypergraph learning. Firstly, we introduce some nota-
tions. We use boldface uppercase letter to denote a matrix and boldface
lowercase letter to represent a vector. Given a matrix 𝐀, we use 𝐴𝑖𝑗 to
enote its (𝑖, 𝑗)th element, and use 𝐀𝑖. and 𝐀.𝑖 to denote its 𝑖th row and
th column, respectively. Given a hypergraph with 𝑛 instances and 𝑘
yperedges, a node 𝑣 and a hyperedge 𝑒 in this hypergraph, a matrix

𝐇 ∈ R𝑛×𝑘, diagonal matrix 𝐖 ∈ R𝑘×𝑘 and 𝐃 ∈ R𝑛×𝑛, and a vector
∈ 𝐑𝑛, supposing that 𝑣 is the 𝑝th node and 𝑒 is the 𝑞th hyperedge in

he hypergraph, then we use 𝐇(𝑣, 𝑒) to denote 𝐻𝑝𝑞 , 𝐖(𝑣) to denote 𝑊𝑝𝑝,
(𝑒) to denote 𝐷𝑞𝑞 , 𝐱(𝑣) to denote 𝑥𝑝, respectively, for better readability.
iven a vector 𝐯, we use ‖𝐯‖2 to denote its 𝓁2 norm, and use 𝑑𝑖𝑎𝑔(𝐯) to
enote the diagonal matrix whose diagonal vector is 𝐯. Given a matrix
, we use ‖𝐌‖𝐹 to denote its Frobenius norm, and use 𝑑𝑖𝑎𝑔(𝐌) to

enote its diagonal vector. 𝑟𝑎𝑛𝑘(𝐌) denotes the rank of matrix 𝐌 and
𝑟(𝐌) denotes its trace.

.1. Clustering ensemble

Given a data set with 𝑛 instances  = {𝐱1,… , 𝐱𝑛}, we can obtain
ts 𝑚 base clusterings {1,… ,𝑚}, where the 𝑗th base clustering 𝑗

ontains 𝑘𝑗 base clusters 𝜋𝑗
1,… , 𝜋𝑗

𝑘𝑗
and  =

⋃𝑘𝑗
𝑖=1 𝜋

𝑗
𝑖 . Denoting 𝑘 =

𝑚
𝑗=1 𝑘𝑗 as the total number of all base clusters, in the following, we also

se 𝜋1,… , 𝜋𝑘 to denote all the base clusters of the 𝑚 base clusterings
or simplicity. Clustering ensemble aims to learn a consensus partition

by ensembling the 𝑚 base clusterings {1,… ,𝑚} [2,15].
One most related task is multi-view learning [16–20]. Multi-view

earning integrates the features in multiple views to obtain a consensus
lassification or clustering results. For example, Kang et al. constructed
ultiple graphs from multi-view features and ensembled the multiple

raphs for spectral clustering [18]; Tang et al. integrated multiple
iews by graph diffusion [19]. Different from multi-view learning,
hich fusions information on the feature level, clustering ensemble
ften integrates information on the decision level. Clustering ensemble
irectly fusions the multiple clustering results without accessing the
172

riginal features of data. Therefore, clustering ensemble is a more
hallenging task. Moreover, since clustering ensemble does not need
he original data, it is helpful to protect the privacy of data [8].

To ensemble multiple base clusterings, there are some representa-
ive strategies. One popular strategy is that it reformulates the clus-
ering ensemble problem to a new clustering problem, where each
nstance is represented by its assignment in the base clustering results
nstead of its original features. Therefore, it is a clustering problem on
he categorical data. For example, Topchy et al. proposed an expec-
ation maximization clustering method for the categorical data [21];
guyen et al. applied kmodes method to partition the categorical
ata [22]; Bai et al. proposed an information theoretical framework
or clustering ensemble [23].

Another strategy is to relabel each data by the label alignment
ethods based on the multiple clustering results. For example, Hore

t al. proposed a scalable relabel method for clustering ensemble which
s appropriate for big data [24]; Li et al. provided a label alignment
ethod based on Dempster–Shafer evidence theory [25].

Since the clustering results can be represented by graphs or similar-
ty matrix, many methods obtain the final consensus results based on
raphs. For example, Fern et al. and Zhou et al. constructed bipartite
raphs for clustering ensemble in [3] and [26], respectively; Iam-
n et al. proposed a similarity metric based on the link of instances

or ensemble [27,28]. Some work constructed a co-association matrix
o represent the relationship between instances. For example, Tao
t al. applied spectral clustering on the co-association matrix [12,29,
0]; Huang et al. proposed a scalable spectral clustering on the co-
ssociation matrix [31]; Tao et al. applied adversarial learning on
he graph for clustering ensemble [32]. Among these graph based
ethods, Strehl et al. proposed a hypergraph based ensemble method
GPA (HyperGraph Partitioning Algorithm) [1]. It constructed hy-
ergraph from base clusterings, where each node represented an in-
tance and each hypergraph represented a base cluster. Then it applied
METIS algorithm [33] to partition the hypergraph to obtain the final
lusterings.

Different from this hypergraph partitioning algorithm, which pre-
efines a static hypergraph from base clusterings, our proposed method
ynamically learns a structured hypergraph for clustering ensemble.
he benefits are two folds. On one hand, due to the low quality of base
lusters, the static hypergraph may also be unreliable. However, our
ynamically learned hypergraph can become more and more reliable
n the process of ensemble learning. On the other hand, the hypergraph
e learned has a clearer cluster structure, i.e., it contains exact 𝑐

connective components, and thus we do not need the postprocess like
hypergraph partitioning.

2.2. Hypergraph learning

Given a data set with 𝑛 instances  = {𝐱1,… , 𝐱𝑛}, a hypergraph 
can be represented as  = ( ,  ,𝐖).  is the node set which contains
𝑛 nodes and each node represents an instance.  is the hyperedge set
which contains 𝑘 hyperedges, where each hyperedge links multiple in-
stances to represent some relationship among instances. The hyperedge
weight matrix 𝐖 ∈ R𝑘×𝑘 is a diagonal matrix where each diagonal
element represents the weight of each hyperedge.

Then, we can construct its incidence matrix 𝐇 ∈ R𝑛×𝑘. For any node
𝑣 ∈  and any hyperedge 𝑒 ∈  , 𝐇(𝑣, 𝑒) shows the connection between
the node 𝑣 and hyperedge 𝑒. The node degree matrix 𝐃𝑣 ∈ R𝑛×𝑛 is a
diagonal matrix whose diagonal element is the degree of each instance,
and it can be formally defined as 𝐃𝑣 = 𝑑𝑖𝑎𝑔(𝐇𝐖𝟏), where 𝟏 is a vector
whose elements are all 1’s. The hyperedge degree matrix 𝐃𝑒 ∈ R𝑘×𝑘 is
lso a diagonal matrix and its diagonal element is the degree of each
yperedges. 𝐃𝑒 can be formally defined as 𝐃𝑒 = 𝑑𝑖𝑎𝑔(𝟏𝑇𝐇). Then we

an define its Laplacian matrix as 𝐋 = 𝐈 − 𝐃
− 1

2
𝑣 𝐇𝐖𝐃−1

𝑒 𝐇𝑇𝐃
− 1

2
𝑣 , where 𝐈

is the identity matrix.
Since hypergraph can characterize the high-order relationship

among instances, it has attracted much attention in recent years [14,
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Table 1
Main notations and descriptions used in CESHL.
Notation Description

𝑛 Number of instances.
𝑘 Number of base clusters.
𝐇 ∈ R𝑛×𝑘 The incidence matrix of the initial hypergraph.
𝐖 ∈ R𝑘×𝑘 The diagonal matrix whose diagonal elements are the weights of the hyperedges.
𝐘 ∈ R𝑛×𝑘 The incidence matrix of the structured hypergraph.
𝐃𝑣 ∈ R𝑛×𝑛 The node degree matrix of the structured hypergraph.
𝐃𝑒 ∈ R𝑘×𝑘 The hyperedge degree matrix of the structured hypergraph.
𝐋 ∈ R𝑛×𝑛 The Laplacian matrix of the structured hypergraph.
34–37]. Among them, many works propagate information on hy-
pergraphs to fulfill some machine learning and pattern recognition
tasks. For example, Yu et al. used hypergraph to characterize the
high-order information among instances and applied it to the image
classification task [16]; Purkait et al. applied hypergraph to clustering
on large scale data [38]; Zhao et al. used hypergraph for social network
embedding [37].

The above-mentioned methods just apply hypergraph to some tasks,
and do not learn the structure of hypergraph. Different from these
works, few works pay attention to how to learn such hypergraph.
For example, Gao et al. learned the hyperedge weight matrix 𝐖 and
applied it to 3-D object retrieval [39]; Zhang et al. learned the inci-
dence matrix 𝐇 for a semi-supervised embedding task [36]; Yu et al.
applied hypergraph learning to the supervised scenario such as image
classification [40]; Yu et al. further extended the hypergraph learning
to multi-view scenario to handle image re-ranking task [41]; Tang et al.
learned an adaptive hypergraph for semi-supervised multi-label image
annotation [42].

Our proposed work also dynamically learns the incidence matrix 𝐇.
Different from the previous works, we learn a structured hypergraph,
whereas previous works do not impose any constraints on the structure
of hypergraphs. Moreover, the goal of the previous works is to learn
some embedding of the hypergraph. However, our method just aims
to learn the hypergraph itself, since the final clustering results can be
trivially obtained from the structured hypergraph.

3. Clustering ensemble via structured hypergraph learning

In this section, we will introduce our CESHL in more detail. We first
introduce some main notations of CESHL in Table 1.

3.1. Constructing the initial hypergraph

Given multiple base clustering results 1,… ,𝑚 of 𝑛 instances,
where base clustering result 𝑗 contains 𝑘𝑗 clusters (𝜋𝑗

1,… , 𝜋𝑗
𝑘𝑗

), we
first construct an initial hypergraph  = { ,  ,𝐖} from them. In more
detail, in the node set  , each node represents an instance, and thus
there are 𝑛 nodes totally. Each hyperedge in  represents a base cluster
𝜋𝑗
𝑖 . Therefore, there are 𝑘 =

∑𝑚
𝑗=1 𝑘𝑗 hyperedges in total. The edge

weight matrix 𝐖 ∈ R𝑘×𝑘 is a diagonal matrix whose diagonal element
𝑊𝑖𝑖 denotes the weight of the 𝑖th hyperedge. We will introduce how to
construct 𝐖 later.

Fig. 1 shows a simple example. In this example, there are 5 instances
(𝐱1,… , 𝐱5) and 3 base clustering results (1,2,3). The left side of
Fig. 1 shows the base clustering results. For example, in the first base
clustering 1, 𝐱1, 𝐱2 and 𝐱3 belong to the first cluster, and 𝐱4 and
𝐱5 belong to the second cluster. The right side of Fig. 1 shows the
corresponding hypergraph, which has 5 nodes (blue circles) and 6
hyperedges (closed curves with different colors). The two blue closed
curves denote the two hyperedges generated from 1, the red ones
denote the two hyperedges generated from 2, and the greens represent
the two hyperedges generated from 3.

Then we can construct the incidence matrix 𝐇 ∈ R𝑛×𝑘 from . Since
it is just an initial hypergraph, and we will relearn it in the following
steps, we can initialize 𝐇 very easily as 𝐇(𝑣, 𝑒) = 1 if 𝑣 ∈ 𝑒 and
173
Fig. 1. An illustration of constructing initial hypergraph from base clusterings.

𝐇(𝑣, 𝑒) = 0 otherwise. Taking Fig. 1 as an example, the incidence matrix
𝐇 of the hypergraph in Fig. 1 is

𝐇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0 1 0
1 0 1 0 1 0
1 0 0 1 0 1
0 1 0 1 0 1
0 1 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

.

3.2. Evaluating the edge weight matrix 𝐖

Now we will focus on how to construct the edge weight matrix 𝐖.
As introduced before, 𝐖 is a diagonal matrix. For simplicity, we denote
the diagonal vector of 𝐖 as 𝐰 ∈ R𝑘, where 𝑤𝑖 denotes the weight of
the 𝑖th hyperedge.

Since each hyperedge represents a cluster in base clusterings, to
evaluate the weight of the hyperedge is equivalent to evaluate the
quality of each base cluster. Therefore, we focus on how to evaluate
the quality of each base cluster (𝜋1,… , 𝜋𝑘). Since we do not access
the original data, we can only evaluate the quality of clusters via the
consistency of the base clusterings. In more details, if one base cluster
is consistent with many other base clusters, then we believe its quality
is high. Therefore, given a base cluster, we check the appearance of all
pairs (𝐱𝑝, 𝐱𝑞) in the cluster. The more times the pairs appear in other
base clusters, the more consistent the base cluster is with others, and
thus the higher the quality of this cluster is. More formally, we define
the co-association matrix 𝐔 as 𝐔 = 1

𝑚𝐇𝐇𝑇 . Then, for any pair (𝐱𝑝, 𝐱𝑞),
the larger 𝑈𝑝𝑞 is, the more times it appears in base clusters. For any
base cluster 𝜋𝑖, we can compute its initial quality score, denoted by 𝑠𝑖,
by computing the mean of all 𝑈𝑝𝑞 in 𝜋𝑖, i.e.,

𝑠𝑖 =
1
𝑛2𝑖

∑

𝐱𝑝∈𝜋𝑖 ,𝐱𝑞∈𝜋𝑖
𝑈𝑝𝑞 , (1)

where 𝑛𝑖 is the number of instances in the cluster 𝜋𝑖.
Of course, we can use 𝐬 = [𝑠1,… , 𝑠𝑘]𝑇 as the quality vector, i.e., 𝐰 =

𝐬. However, this score considers each base cluster independently and
ignores the relativity between two clusters. For example, if 𝜋𝑖 has a
very high quality and 𝜋 is very similar to 𝜋 , then 𝜋 should also have
𝑗 𝑖 𝑗
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a high quality. To this end, we need a simple cluster-wise similarity
matrix 𝐂 ∈ R𝑘×𝑘 defined as 𝐂 = 𝐇𝑇𝐇.

Inspired by the famous manifold ranking [43], we have that, on
one hand, 𝐰 should be consistent with 𝐬, and thus we need to min-
imize ‖𝐰 − 𝐬‖22; on the other hand, if 𝜋𝑖 is similar to 𝜋𝑗 , (i.e., 𝐶𝑖𝑗
is large), then 𝑤𝑖 should be close to 𝑤𝑗 , and thus we can minimize
𝐶𝑖𝑗
2

(

𝑤𝑖
√

∑𝑘
𝑝=1 𝐶𝑖𝑝

− 𝑤𝑗
√

∑𝑘
𝑝=1 𝐶𝑗𝑝

)2

to achieve this. The denominators are the

normalization to eliminate the differences caused by the different scales
of 𝐂 as suggested in [43]. Thus the objective function of learning 𝐰 is:

min
𝐰

𝑘
∑

𝑖,𝑗=1

𝐶𝑖𝑗

2

⎛

⎜

⎜

⎜

⎝

𝑤𝑖
√

∑𝑘
𝑝=1 𝐶𝑖𝑝

−
𝑤𝑗

√

∑𝑘
𝑝=1 𝐶𝑗𝑝

⎞

⎟

⎟

⎟

⎠

2

+ 𝜆‖𝐰 − 𝐬‖22, (2)

𝑠.𝑡. ∀𝑖 ∶ 0 ≤ 𝑤𝑖 ≤ 1.

where 𝜆 is a balanced hyper-parameter. The constraint is to make sure
that the weight is in the range [0, 1]. To optimize Eq. (2), we can
reformulate the first term as:

𝑘
∑

𝑖,𝑗=1

𝐶𝑖𝑗

2

⎛

⎜

⎜

⎜

⎝

𝑤𝑖
√

∑𝑘
𝑝=1 𝐶𝑖𝑝

−
𝑤𝑗

√

∑𝑘
𝑝=1 𝐶𝑗𝑝

⎞

⎟

⎟

⎟

⎠

2

=
𝑘
∑

𝑖,𝑗=1

𝐶𝑖𝑗𝑤2
𝑖

∑𝑘
𝑝=1 𝐶𝑖𝑝

−
𝑘
∑

𝑖,𝑗=1

𝐶𝑖𝑗𝑤𝑖𝑤𝑗
√

∑𝑘
𝑝=1 𝐶𝑖𝑝

∑𝑘
𝑝−1 𝐶𝑗𝑝

=
𝑘
∑

𝑖=1
𝑤2

𝑖 −
𝑘
∑

𝑖,𝑗=1
𝑤𝑖

1
√

∑𝑘
𝑝=1 𝐶𝑖𝑝

× 𝐶𝑖𝑗
1

√

∑𝑘
𝑝=1 𝐶𝑗𝑝

𝑤𝑗

= 𝐰𝑇 (𝐈 − 𝐃− 1
2 𝐂𝐃− 1

2 )𝐰 (3)

where 𝐃 is a diagonal matrix whose diagonal element 𝐷𝑖𝑖 =
∑𝑘

𝑝=1 𝐶𝑖𝑝.
Then Eq. (2) can be reformulate as:

min
𝐰

𝐰𝑇 (𝐈 − 𝐃− 1
2 𝐂𝐃− 1

2 )𝐰 + 𝜆‖𝐰 − 𝐬‖22, (4)

𝑠.𝑡. ∀𝑖 ∶ 0 ≤ 𝑤𝑖 ≤ 1.

It is easy to verify that Eq. (4) is a convex quadratic programming
problem and can be optimized by some standard methods, such as
trust region reflective algorithm. In our implication, we use quadprog
function provided in Matlab. The time complexity of solving this prob-
lem is 𝑂(𝑘3). After obtaining 𝐰 by optimizing Eq. (4), we construct
𝐖 = 𝑑𝑖𝑎𝑔(𝐰).

3.3. Learning the structured hypergraph

After obtaining 𝐇 and 𝐖, we obtain the initial hypergraph  com-
pletely. Then, we aim to learn the final consensus clustering result from
the hypergraph. Ideally, if we want to partition the data into 𝑐 clusters,
we wish the hypergraph contains exact 𝑐 connective components, and
we just need to put all instances in one connective component into a
cluster. However, in real applications, due to the low quality of base
clustering results, the numbers of connective components of the initial
hypergraph will not be exact 𝑐. Take Fig. 1 as an example again, assume
that we wish to partition the data into 2 clusters, but we find that the
hypergraph only contains one connective component, i.e., all instances
are entangled together because some base clusters may contain noises.
To learn the structured hypergraph, we need to adjust the incidence
matrix 𝐇 to reveal the clustering structure. Fig. 2 is an illustration of
the structured hypergraph learning. In Fig. 2, the left side is the initial
hypergraph constructed in Fig. 1, and the right side is the structured
hypergraph ′. We find that we just need to adjust 2 hyperedges
174
Fig. 2. An illustration of constructing structured hypergraph.

(i.e., 𝑒1 and 𝑒2 in ), and we can obtain structured hypergraph ′ which
contains 2 connective components.

Denote 𝐘 ∈ [0, 1]𝑛×𝑘 as the incidence matrix of the structured
hypergraph ′. We need to learn 𝐘 from the initial incidence matrix
𝐇 and edge weight matrix 𝐖. For the structured hypergraph, we can
compute its node degree matrix 𝐃𝑣 = 𝑑𝑖𝑎𝑔(𝐘𝐖𝟏) and edge degree
matrix 𝐃𝑒 = 𝑑𝑖𝑎𝑔(𝟏𝑇𝐘). Then, we define the Laplacian matrix

𝐋 = 𝐈 − 𝐃
− 1

2
𝑣 𝐘𝐖𝐃−1

𝑒 𝐘𝑇𝐃
− 1

2
𝑣 . (5)

The following Theorem shows the relation between the rank of Lapla-
cian matrix and the number of connective components.

Theorem 1. Given any hypergraph  = { ,  ,𝐖} with 𝑛 nodes, if the
rank of its Laplacian matrix 𝐋, which is defined as Eq. (5), is 𝑛− 𝑐, then 
contains exact 𝑐 connective components.

Proof. See Appendix A. □

According to Theorem 1, to make ′ contain 𝑐 connective compo-
nents, we just need a constraint that 𝑟𝑎𝑛𝑘(𝐋) = 𝑛− 𝑐. Therefore, we can
learn its incidence matrix 𝐘 by the following objective function:

min
𝐘

‖𝐘 −𝐇‖

2
𝐹 , (6)

𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐, ∀𝑖, 𝑗 ∶ 0 ≤ 𝑌𝑖𝑗 ≤ 1.

The loss function is to make 𝐘 fit the initial incidence matrix 𝐇.
However, this loss function treats all hyperedges (or equivalently speak-
ing, base clusters) the same, which may be inappropriate, because
some unreliable base clusters may mislead the hypergraph learning.
Intuitively, some hyperedges in 𝐇 are good and 𝐘 should prone to fit
them; and some hyperedges have low quality and thus 𝐘 does not need
to fit them. Therefore, we can use 𝐖 learned by previous subsection to
weight the loss function Eq. (6), and obtain our final formula:

min
𝐘

‖(𝐘 −𝐇)𝐖‖

2
𝐹 , (7)

𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐, ∀𝑖, 𝑗 ∶ 0 ≤ 𝑌𝑖𝑗 ≤ 1.

Note that 𝐖 is a diagonal matrix, and thus Eq. (7) is equivalent to
impose weight 𝑤𝑖 on the 𝑖th column of 𝐘 −𝐇. Large 𝑤𝑖, which means
the 𝑖th hyperedge has a high quality, will force that 𝐘.𝑖 should be close
to 𝐇.𝑖.

3.4. Optimization

Now we introduce how to optimize objective function Eq. (7).
Firstly, we need to handle the rank constraint. Since the rank of 𝐋 is
𝑛−𝑐, the 𝑐 smallest eigenvalues of 𝐋 should be zeros. To achieve this, we
minimize ∑𝑐

𝑖=1 𝜎𝑖(𝐋), where 𝜎𝑖(𝐋) denotes the 𝑖th smallest eigenvalues
of 𝐋. According to Ky Fan Theorem [44], by introducing an orthogonal
auxiliary matrix 𝐅 ∈ R𝑛×𝑐 , we have ∑𝑐

𝑖=1 𝜎𝑖(𝐋) = min𝐅𝑇 𝐅=𝐈 𝑡𝑟(𝐅𝑇𝐋𝐅).
Therefore, Eq. (7) can be rewritten as the following form:

min ‖(𝐘 −𝐇)𝐖‖

2 + 𝜌𝑡𝑟(𝐅𝑇𝐋𝐅), (8)

𝐘,𝐅 𝐹
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𝑠.𝑡. 𝐅𝑇𝐅 = 𝐈, ∀𝑖, 𝑗 ∶ 0 ≤ 𝑌𝑖𝑗 ≤ 1,

where 𝜌 is a large enough parameter to control the rank of 𝐋. Then
we will optimize Eq. (8) instead. Since Eq. (8) contains two variables
𝐘 and 𝐅, we optimize one of them respectively while fixing the other
one.

3.4.1. Optimize 𝐅
When optimizing 𝐅, Eq. (8) can be simplified as

min
𝐅

𝑡𝑟(𝐅𝑇𝐋𝐅), (9)

𝑠.𝑡. 𝐅𝑇𝐅 = 𝐈.

It can be optimized by Ky Fan Theorem. 𝐅 contains the 𝑐 eigenvectors
corresponding to the smallest 𝑐 eigenvalues of 𝐋.

3.4.2. Optimize 𝐘
When optimizing 𝐘, we need to take Eq. (5) into Eq. (8), and obtain

he following subproblem:

min
𝐘

 = ‖(𝐘 −𝐇)𝐖‖

2
𝐹 − 𝜌𝑡𝑟(𝐅𝑇𝐃

− 1
2

𝑣 𝐘𝐖𝐃−1
𝑒 𝐘𝑇𝐃

− 1
2

𝑣 𝐅), (10)

𝑠.𝑡. ∀𝑖, 𝑗 ∶ 0 ≤ 𝑌𝑖𝑗 ≤ 1.

Note that 𝐃𝑣 and 𝐃𝑒 depend on 𝐘, and thus Eq. (10) is complex. We
pply Quasi-Newton method to optimize it. We first need to compute
he partial derivative of  w.r.t. 𝐘. Denote that 𝐃

− 1
2

𝑣 = 𝑑𝑖𝑎𝑔([𝑑𝑣1 ,… , 𝑑𝑣𝑛 ])
and 𝐃−1

𝑒 = 𝑑𝑖𝑎𝑔([𝑑𝑒1 ,… , 𝑑𝑒𝑛]), we have

𝜕𝑑𝑣𝑖
𝜕𝑌𝑝𝑞

=
𝜕
(

∑𝑘
𝑗=1 𝑌𝑖𝑗𝑤𝑗

)− 1
2

𝜕𝑌𝑝𝑞
= −1

2
(𝑑𝑣𝑖 )

3𝛿𝑖𝑝𝑤𝑞 , (11)

and
𝜕𝑑𝑒𝑗
𝜕𝑌𝑝𝑞

=
𝜕
(
∑𝑛

𝑖=1 𝑌𝑖𝑗
)−1

𝜕𝑌𝑝𝑞
= −(𝑑𝑒𝑗 )

2𝛿𝑗𝑞 , (12)

where 𝛿 is the Kronecker delta, i.e., 𝛿𝑖𝑝 = 1 if 𝑖 = 𝑝 and 𝛿𝑖𝑝 = 0 otherwise.
Taking Eqs. (11) and (12) into the partial derivative of  w.r.t. 𝐘, and
according to the chain rule, we have

𝜕
𝜕𝐘

=2(𝐘 −𝐇)𝐖2 + 𝜌𝐉𝑑𝑖𝑎𝑔
(

𝐘𝑇𝐃
− 1

2
𝑣 𝐅𝐅𝑇𝐃

− 1
2

𝑣 𝐘𝐖𝐃−2
𝑒

)

(13)

+𝜌𝐃
− 3

2
𝑣 𝑑𝑖𝑎𝑔

(

𝐘𝐖𝐃−1
𝑒 𝐘𝑇𝐃

− 1
2

𝑣 𝐅𝐅𝑇
)

𝐉𝐖 − 2𝜌𝐃
− 1

2
𝑣 𝐅𝐅𝑇𝐃

− 1
2

𝑣 𝐘𝐖𝐃−1
𝑒

where 𝐉 is a matrix whose elements are all 1’s. Although Eq. (13)
seems complex, since 𝐃𝑣, 𝐃𝑒 and 𝐖 are diagonal matrices, it can be
computed in 𝑂(𝑛𝑘𝑐) time by appropriately using the associative law of
matrix multiplication. At the end of each iteration in the Quasi-Newton
method, if 𝑌𝑖𝑗 is not in the range [0, 1], we project it into the range [0, 1]
by 𝑌𝑖𝑗 = min(max(𝑌𝑖𝑗 , 0), 1).

Note that there is a hyper-parameter 𝜌 which controls the rank of
𝐋. We initialize 𝜌 = 100 and adjust 𝜌 by observing the rank of 𝐋. If
𝑟𝑎𝑛𝑘(𝐿) > 𝑛 − 𝑐, which means the constraint is a little too weak, we
increase 𝜌 ← 2𝜌; and if 𝑟𝑎𝑛𝑘(𝐿) < 𝑛 − 𝑐, which means the constraint is
too strong, we decrease it by 𝜌 ← 𝜌∕2.

Algorithm 1 summarizes the whole process of our CESHL.

3.5. Complexity analysis

Constructing the co-association matrix 𝐔 costs 𝑂(𝑛2𝑚) time and
computing 𝐬 costs 𝑂(𝑛2𝑘∕𝑐) time. It takes 𝑂(𝑘2𝑛) time to compute the
cluster-wise similarity matrix 𝐂. Then, solving the convex quadratic
programming problem Eq. (4) takes 𝑂(𝑘3) time as introduced before.
When iteratively optimizing Eq. (8), we use L-BFGS algorithm [45]
(one of the most popular kinds of Quasi-Newton method) whose time
complexity in each iteration is 𝑂(𝑛𝑟), where 𝑟 is the number of steps
stored in memory which can be viewed as a constant. Computing
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Algorithm 1: CESHL Algorithm.
Input: 𝑚 base clustering results 1,⋯ ,𝑚, the number 𝑐 of clusters, and

hyper-parameter 𝜆.
Output: Final consensus clustering result.
1: Construct initial incidence matrix 𝐇.
2: Compute the initial quality scores 𝐬 of base clusters by Eq. (1).
3: Compute the cluster-wise similarity matrix 𝐂 by 𝐂 = 𝐇𝑇𝐇.
4: Compute the weight matrix of hyperedges 𝐖 by solving Eq. (4).
5: //Iteratively optimizing Eq. (8).
6: while not converge do
7: Optimize 𝐅 by solving Eq. (9) with eigenvalue decomposition of

𝐋.
8: Optimize 𝐘 by solving Eq. (10) with Quasi-Newton method.
9: end while
0: Obtain the final clusters from the 𝑐 connective component in 𝐘.

Table 2
Description of the data sets.

# of instances # of features # of classes

Arcene 200 10000 2
Glioma 50 4434 4
K1b 2340 21839 6
Lung 203 3312 5
MNIST4000 4000 784 10
ORL 400 1024 40
Orlraws 100 10304 10
Tr41 878 7454 10

the gradient in each iteration costs 𝑂(𝑛𝑘𝑐) time as introduced before.
Therefore, the time complexity of solving Eq. (10) is 𝑂(𝑡1(𝑛𝑟 + 𝑛𝑘𝑐)),
where 𝑡1 is the number of iterations in L-BFGS algorithm. Solving
Eq. (9) by eigenvalue decomposition costs 𝑂(𝑛2𝑐) time. Assuming the
number of iterations of lines 6–9 in Algorithm 1 is 𝑡2, the whole time
omplexity of Algorithm 1 is 𝑂(𝑛2𝑚 + 𝑘2𝑛 + 𝑘3 + 𝑡2(𝑡1𝑛𝑘𝑐 + 𝑛2𝑐)). Note
hat, in the real applications, we often have 𝑛 ≫ 𝑘, and thus the time
omplexity is often quadratic in 𝑛, which is comparable with many
ther clustering ensemble methods such as [30,46–48]. In addition, our
lgorithm converges very quickly (often within 20 iterations).

. Experiments

In this section, we compare our CESHL with some state-of-the-art
lustering ensemble methods on benchmark data sets.

.1. Data sets

We use 8 data sets, including Arcene,1 Glioma,1 K1b [49], Lung,1
NIST4000,2 ORL,1 Orlraws,1 Tr41 [49], whose detailed information

s shown in Table 2.

.2. Experimental setup

Following the similar experimental setting in [46], we run kmeans
n each data set 200 times to obtain 200 base clustering results. Then
e divide them into 10 subsets, where each subset contains 20 base

esults. Then we run the ensemble methods on each subset (i.e., we
nsemble 20 base results each time) and obtain 10 ensemble results.
e report the average result of the 10 ensemble results. We compare

ur CESHL with the following methods:

• KM(avg.). It is the average result of the base kmeans results.

1 https://jundongl.github.io/scikit-feature/datasets.html
2 http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

https://jundongl.github.io/scikit-feature/datasets.html
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Table 3
ACC results on all the data sets.
Methods Arcene GLIOMA K1b Lung MNIST4000 ORL Orlraws Tr41

KM(avg.) 0.6215 0.4260 0.6551 0.5430 0.5101 0.5034 0.6485 0.5424
±0.0123 ±0.0092 ±0.0334 ±0.0162 ±0.0065 ±0.0103 ±0.0452 ±0.0286

KM(best) 0.6500 0.4900 0.7944 0.6453 0.5544 0.5583 0.7810 0.6630
±0.0000 ±0.0302 ±0.0370 ±0.0310 ±0.0128 ±0.0124 ±0.0509 ±0.0415

CSPA [1] 0.6395 0.4160 0.4550 0.4837 0.5226 0.5727 0.7660 0.5059
±0.0076 ±0.0280 ±0.0052 ±0.0031 ±0.0264 ±0.0292 ±0.0534 ±0.0249

HGPA [1] 0.5100 0.4400 0.4984 0.4690 0.1027 0.6010 0.7950 0.4926
±0.0000 ±0.0462 ±0.0810 ±0.0500 ±0.0000 ±0.0245 ±0.0467 ±0.0530

MCLA [1] 0.6410 0.4260 0.6777 0.5438 0.5127 0.5935 0.7930 0.5677
±0.0248 ±0.0190 ±0.0843 ±0.0153 ±0.0181 ±0.0288 ±0.0302 ±0.0451

NMFC [50] 0.6260 0.4240 0.6453 0.5581 0.5152 0.5818 0.7690 0.5961
±0.0310 ±0.0227 ±0.0566 ±0.0427 ±0.0153 ±0.0267 ±0.0559 ±0.0416

RCE [46] 0.6440 0.4100 0.6810 0.5325 0.5272 0.6075 0.7974 0.6216
±0.0190 ±0.0216 ±0.0604 ±0.0230 ±0.0081 ±0.0146 ±0.0282 ±0.0197

LWEA [51] 0.6080 0.4200 0.7977 0.5084 0.5174 0.5670 0.7570 0.6562
±0.0290 ±0.0231 ±0.0653 ±0.0387 ±0.0359 ±0.0195 ±0.0531 ±0.0375

LWGP [51] 0.6140 0.4380 0.7109 0.5281 0.5197 0.5935 0.7750 0.6379
±0.0310 ±0.0290 ±0.0782 ±0.0148 ±0.0157 ±0.0106 ±0.0272 ±0.0238

RSEC [30] 0.6045 0.4260 0.7468 0.5719 0.2612 0.4508 0.6110 0.4141
±0.0332 ±0.0443 ±0.0761 ±0.0664 ±0.0659 ±0.0231 ±0.0674 ±0.0497

DREC [47] 0.6320 0.4220 0.6063 0.5271 0.5297 0.5973 0.7880 0.6246
±0.0290 ±0.0239 ±0.0665 ±0.0374 ±0.0246 ±0.0124 ±0.0282 ±0.0416

SPCE [48] 0.6440 0.4160 0.8120 0.7340 0.1822 0.5558 0.7750 0.6603
±0.0359 ±0.0519 ±0.0337 ±0.0630 ±0.0621 ±0.0529 ±0.1084 ±0.1485

SCCBG [26] 0.5470 0.4160 0.8429 0.6483 0.4591 0.5627 0.7690 0.6129
±0.0747 ±0.1770 ±0.0921 ±0.1001 ±0.0754 ±0.0352 ±0.0681 ±0.0687

CESHL 0.6450 0.4660 0.8544 0.8020 0.5341 0.6120 0.8250 0.6845
±0.0196 ±0.0267 ±0.0505 ±0.0252 ±0.0088 ±0.0121 ±0.0299 ±0.0511
Table 4
NMI results on all the data sets.
Methods Arcene GLIOMA K1b Lung MNIST4000 ORL Orlraws Tr41

KM(avg.) 0.0512 0.1643 0.5358 0.3910 0.4741 0.7148 0.7382 0.5667
±0.0118 ±0.0072 ±0.0210 ±0.0144 ±0.0026 ±0.0082 ±0.0308 ±0.0253

KM(best) 0.0818 0.2456 0.6322 0.4458 0.5061 0.7468 0.8194 0.6490
±0.0281 ±0.0000 ±0.0312 ±0.0306 ±0.0088 ±0.0072 ±0.0356 ±0.0361

CSPA [1] 0.0584 0.1804 0.4045 0.3336 0.4461 0.7609 0.8082 0.5856
±0.0066 ±0.0470 ±0.0066 ±0.0064 ±0.0125 ±0.0118 ±0.0457 ±0.0201

HGPA [1] 0.0003 0.1647 0.3285 0.3060 0.0000 0.7788 0.8297 0.4731
±0.0000 ±0.0424 ±0.1013 ±0.0488 ±0.0000 ±0.0093 ±0.0291 ±0.0452

MCLA [1] 0.0718 0.1747 0.5643 0.3866 0.4619 0.7683 0.8295 0.6001
±0.0248 ±0.0310 ±0.0536 ±0.0152 ±0.0117 ±0.0179 ±0.0207 ±0.0225

NMFC [50] 0.0557 0.1681 0.5213 0.4024 0.4695 0.7675 0.8253 0.6329
±0.0337 ±0.0267 ±0.0244 ±0.0223 ±0.0251 ±0.0099 ±0.0235 ±0.0309

RCE [46] 0.0752 0.1650 0.5792 0.3902 0.4863 0.7798 0.8445 0.6441
±0.0206 ±0.0344 ±0.0391 ±0.0216 ±0.0094 ±0.0044 ±0.0200 ±0.0209

LWEA [51] 0.0361 0.1466 0.6578 0.3482 0.4463 0.7707 0.8221 0.6524
±0.0315 ±0.0140 ±0.0610 ±0.0242 ±0.1032 ±0.0084 ±0.0203 ±0.0193

LWGP [51] 0.0426 0.1774 0.6009 0.3774 0.4523 0.7792 0.8230 0.6577
±0.0337 ±0.0268 ±0.0442 ±0.0164 ±0.0838 ±0.0074 ±0.0229 ±0.0248

RSEC [30] 0.0349 0.1513 0.4909 0.3778 0.1907 0.6605 0.6736 0.3418
±0.0325 ±0.0345 ±0.0986 ±0.0643 ±0.0774 ±0.0142 ±0.0502 ±0.0741

DREC [47] 0.0622 0.1740 0.5512 0.3709 0.4756 0.7764 0.8409 0.6505
±0.0315 ±0.0354 ±0.0530 ±0.0114 ±0.0189 ±0.0069 ±0.0179 ±0.0306

SPCE [48] 0.0752 0.2649 0.6434 0.4489 0.0968 0.7863 0.8336 0.6292
±0.0317 ±0.0189 ±0.0833 ±0.1736 ±0.0850 ±0.0691 ±0.0779 ±0.2116

SCCBG [26] 0.0761 0.1770 0.6384 0.4463 0.4379 0.7415 0.8131 0.6280
±0.0211 ±0.0435 ±0.2086 ±0.0714 ±0.0790 ±0.0243 ±0.0479 ±0.0421

CESHL 0.0761 0.1938 0.6793 0.5458 0.4905 0.7880 0.8476 0.6630
±0.0211 ±0.0317 ±0.1271 ±0.0363 ±0.0046 ±0.019 ±0.0200 ±0.0433
176
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Fig. 3. Convergence curves of CESHL on Glioma, Lung, ORL, and Orlraws.

• KM(best). It is the best result among the 20 base kmeans results.
• CSPA [1]. It constructs a pairwise similarity based on the relation

between the instances in the same cluster.
• HGPA [1]. It is a hypergraph partitioning method for clustering

ensemble.
• MCLA [1]. It transforms the clustering ensemble problem into a

cluster correspondence problem.
• NMFC [50]. It is a nonnegative matrix factorization based ensem-

ble method.
• RCE [46]. It is a robust clustering ensemble method with connec-

tive matrices.
• LWEA [51]. It is a hierarchical agglomerative clustering ensemble

method with locally weighting.
• LWGP [51]. It is a graph partitioning based clustering ensemble

method with locally weighting.
• RSEC [30]. It is a robust spectral clustering ensemble method.
• DREC [47]. It is a clustering ensemble method based on dense

representation.
• SPCE [48]. It is a self-paced clustering ensemble method.
• SCCBG [26]. It is a clustering ensemble method with bipartite

graph learning.

We use Accuracy (ACC) and Normalized Mutual Information (NMI),
hich are widely used in clustering tasks, to evaluate the ensemble

esults. For all methods and all data sets, we set the number of clus-
ers 𝑐 as the true number of classes. In our method, we tune the

hyper-parameter 𝜆 in the range {10−3, 10−2,… , 103}.

.3. Experimental results

Tables 3 and 4 show the ACC and NMI results of our method and
ther compared ensemble methods on all data sets. The tables show
he average results and the standard deviation over the 10 subsets. The
est results of ensemble methods (i.e., except KM(avg.) and KM(best))
re in boldface. From Tables 3 and 4, we find some interesting points:

• Compared with HGPA, which is a hypergraph partitioning based
clustering ensemble method, our CESHL outperforms it signifi-
cantly on all data sets. HGPA constructs a static hypergraph from
multiple based results directly, and thus unreliable base results
may lead to the poor quality of the hypergraph. Different from
177
Fig. 4. ACC and NMI with respect to 𝜆 on Arcene and ORL.

HGPA, our method dynamically learns a structured hypergraph,
in which way the hypergraph may be more appropriate for the
clustering task. That is why our method can easily outperform
this static hypergraph partitioning method.

• Besides HGPA, our CESHL also performs better than other state-
of-the-art clustering ensemble methods on most data sets. It well
demonstrates the effectiveness and superiority of our structured
hypergraph learning strategy. Especially compared with the graph
based or co-association matrix based methods, such as RCE,
LWGP, RSEC, SPCE, our hypergraph based method often achieves
better results. The reason may be that the hypergraph can bet-
ter characterize the complex high-order relation between data
compared with the normal graph.

• CESHL outperforms KM(avg.) on all data sets, which shows the
benefit of clustering ensemble. Many ensemble methods cannot
outperform KM(best). It may be because that among the base clus-
tering results, there are many unreliable base results, which may
mislead the ensemble learning. However, our CESHL is usually
closed to or even better than KM(best) on most data sets. The
reason may be that, in our method we evaluate the quality of each
base clusters and in the dynamical hypergraph learning process,
we lower the weights of the base clusters with poor quality.
The side effect of the unreliable results may be reduced in our
method. Note that, CESHL does not need to perform an exhaustive
search on the predefined pool of base clusterings, which shows its
superiority.

Fig. 3 shows the convergence curves of CESHL on Glioma, Lung,
ORL, and Orlraws. The results on other data sets are similar. From
Fig. 3, we can see that CESHL often converges within 20 iterations,
which demonstrates the claim in Section 3.5.

4.4. Ablation study

To show the effectiveness of the strategy of evaluating the quality of
base clusters, we compare CESHL with the following two degenerated
versions:

• CESHL-W. It drops the edge weight matrix 𝐖 (or equivalently
speaking, it sets 𝐖 = 𝐈).

• CESHL-s. It sets 𝐖 = 𝑑𝑖𝑎𝑔(𝐬), i.e., we use the initial quality score
𝐬 as the weights of base clusters without the propagation process.
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Table 5
Clustering results compared with degenerated versions.
Methods Metric Arcene GLIOMA K1b Lung MNIST4000 ORL Orlraws Tr41

CESHL-W
ACC 0.6390 0.3900 0.8070 0.6158 0.5272 0.5355 0.7440 0.5927

±0348 ±0.0368 ±0.1066 ±0.1140 ±0.0115 ±0.0515 ±0.0975 ±0.0758

NMI 0.0753 0.1247 0.5706 0.4404 0.4845 0.7131 0.7915 0.5512
±0.0204 ±0.0527 ±0.2534 ±0.0656 ±0.0102 ±0.0504 ±0.0747 ±0.1405

CESHL-s
ACC 0.6440 0.4260 0.7960 0.5202 0.5300 0.5973 0.7660 0.6303

±0.0190 ±0.0378 ±0.1095 ±0.0261 ±0.0087 ±0.0277 ±0.0554 ±0.0579

NMI 0.0752 0.1565 0.5573 0.3568 0.4830 0.7792 0.8192 0.6141
±0.0206 ±0.0365 ±0.2763 ±0.0381 ±0.0079 ±0.0143 ±0.0165 ±0.0874

CESHL
ACC 0.6450 0.4660 0.8544 0.8020 0.5341 0.6120 0.8250 0.6845

±0.0196 ±0.0267 ±0.0505 ±0.0252 ±0.0088 ±0.0121 ±0.0299 ±0.0511

NMI 0.0761 0.1938 0.6793 0.5458 0.4905 0.7880 0.8476 0.6630
±0.0211 ±0.0317 ±0.1271 ±0.0363 ±0.0046 ±0.019 ±0.0200 ±0.0433
Table 5 shows the results of this ablation study. From Table 5,
e find that CESHL-s outperforms CESHL-W on most data sets which
emonstrates that the initial quality score is helpful to the ensemble
earning. Moreover, CESHL outperforms CESHL-s, which means the
ropagation process can further improve the performance of clustering
nsemble. Therefore, the results demonstrate the effectiveness of our
trategy of evaluating the weights of base clusters.

.5. Parameter study

In this subsection, we show the affect of the hyper-parameter 𝜆.
Fig. 4 shows the ACC and NMI results on Arcene and ORL data set.
Results on other data sets are similar. We can find that our method is
insensitive w.r.t. 𝜆 in the range [100, 103], and thus we can achieve a
good performance by setting 𝜆 as a value in [100, 103].

5. Conclusion

In this paper, we proposed a novel clustering ensemble method
via structured hypergraph learning. Different from conventional hyper-
graph based clustering ensemble methods which apply the hypergraph
partitioning algorithm on a static hypergraph, the proposed one dynam-
ically learned a structured hypergraph for clustering ensemble. It first
evaluated the quality of each base cluster and then learned a structured
hypergraph based on such cluster quality. The learned hypergraph had
a clear clustering structure, i.e., it contained exact 𝑐 connective com-
ponents, and thus we can easily obtain the final consensus clustering
results from it. We conducted experiments by comparing with the state-
of-the-art clustering ensemble methods on benchmark data sets. The
experimental results showed that the proposed method outperformed
both the conventional hypergraph based methods and the state-of-the-
art clustering ensemble methods, which demonstrated the effectiveness
and superiority of the proposed method.

Although the time complexity of CESHL is comparable with other
clustering ensemble methods, it is still quadratic in the number of
instances. It will limit the applications on the large scale data sets. In
the future, we will study how to address this scalable issue by speeding
up CESHL.

CRediT authorship contribution statement

Peng Zhou: Conceptualization, Formal analysis, Methodology, Soft-
ware, Writing – original draft. Xia Wang: Methodology, Software.
iang Du: Writing – review & editing. Xuejun Li: Writing – review
editing, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
178
Acknowledgments

This work is supported by the National Natural Science Foundation
of China grants 62176001, 61806003, 61976129, and 61972001; the
Natural Science Foundation of Anhui Province, China grant
1908085MF188; the Key Natural Science Project of Anhui Provincial
Education Department, China KJ2020A0041.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.inffus.2021.09.003.

References

[1] A. Strehl, J. Ghosh, Cluster ensembles — A knowledge reuse framework for
combining multiple partitions, J. Mach. Learn. Res. 3 (3) (2003) 583–617.

[2] A. Topchy, A.K. Jain, W.F. Punch, Combining multiple weak clusterings, in:
ICDM, 2003, pp. 331–338.

[3] X.Z. Fern, C.E. Brodley, Solving cluster ensemble problems by bipartite graph
partitioning, in: ICML, 2004, p. 36.

[4] Z. Zhou, W. Tang, Clusterer ensemble, Knowl. Based Syst. 19 (1) (2006) 77–83.
[5] H. Liu, T. Liu, J. Wu, D. Tao, Y. Fu, Spectral ensemble clustering, in: SIGKDD,

2015, pp. 715–724.
[6] D. Huang, J. Lai, C. Wang, Robust ensemble clustering using probability

trajectories, IEEE Trans. Knowl. Data Eng. 28 (5) (2016) 1312–1326.
[7] X. Liu, X. Zhu, M. Li, L. Wang, C. Tang, J. Yin, D. Shen, H. Wang, W. Gao, Late

fusion incomplete multi-view clustering, IEEE Trans. Pattern Anal. Mach. Intell.
41 (10) (2019) 2410–2423.

[8] F. Li, Y. Qian, J. Wang, C. Dang, L. Jing, Clustering ensemble based on sample’s
stability, Artificial Intelligence 273 (2019) 37–55.

[9] L. Bai, J. Liang, F. Cao, A multiple k-means clustering ensemble algorithm to
find nonlinearly separable clusters, Inf. Fusion 61 (2020) 36–47.

[10] S. Mimaroglu, E. Erdil, Combining multiple clusterings using similarity graph,
Pattern Recognit. 44 (3) (2011) 694–703.

[11] P. Zhou, L. Du, Y.-D. Shen, X. Li, Tri-level robust clustering ensemble with mul-
tiple graph learning, in: Thirty-Fifth AAAI Conference on Artificial Intelligence,
2021, pp. 11125–11133.

[12] Z. Tao, H. Liu, Y. Fu, Simultaneous clustering and ensemble, in: AAAI, 2017,
pp. 1546–1552.

[13] C. Tang, X. Liu, X. Zhu, J. Xiong, M. Li, J. Xia, X. Wang, L. Wang, Feature
selective projection with low-rank embedding and dual Laplacian regularization,
IEEE Trans. Knowl. Data Eng. 32 (9) (2020) 1747–1760.

[14] D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering, classifi-
cation, and embedding, in: Proceedings of the 19th International Conference on
Neural Information Processing Systems, in: NIPS’06, MIT Press, Cambridge, MA,
USA, 2006, pp. 1601–1608.

[15] A. Topchy, A.K. Jain, W.F. Punch, A mixture model for clustering ensembles, in:
SDM, 2004, pp. 379–390.

[16] J. Yu, Y. Rui, Y.Y. Tang, D. Tao, High-order distance-based multiview stochastic
learning in image classification, IEEE Trans. Cybern. 44 (12) (2014) 2431–2442.

[17] P. Zhou, Y.-D. Shen, L. Du, F. Ye, X. Li, Incremental multi-view spectral
clustering, Knowl.-Based Syst. 174 (2019) 73–86.

[18] Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J.T. Zhou, Z. Xu, Multi-graph fusion
for multi-view spectral clustering, Knowl. Based Syst. 189 (2020).

[19] C. Tang, X. Liu, X. Zhu, E. Zhu, Z. Luo, L. Wang, W. Gao, CGD: Multi-view
clustering via cross-view graph diffusion, in: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, 2020, pp. 5924–5931.

https://doi.org/10.1016/j.inffus.2021.09.003
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb1
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb1
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb1
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb2
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb2
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb2
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb3
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb3
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb3
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb4
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb5
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb5
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb5
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb6
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb6
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb6
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb7
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb7
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb7
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb7
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb7
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb8
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb8
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb8
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb9
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb9
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb9
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb10
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb10
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb10
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb12
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb12
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb12
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb13
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb13
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb13
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb13
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb13
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb14
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb15
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb15
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb15
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb16
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb16
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb16
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb17
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb17
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb17
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb18
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb18
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb18


Information Fusion 78 (2022) 171–179P. Zhou et al.
[20] C. Tang, X. Zheng, X. Liu, W. Zhang, J. Zhang, J. Xiong, L. Wang, Cross-view
locality preserved diversity and consensus learning for multi-view unsupervised
feature selection, IEEE Trans. Knowl. Data Eng. (2021) 1–12.

[21] A.P. Topchy, A.K. Jain, W.F. Punch, Clustering ensembles: Models of consensus
and weak partitions, IEEE Trans. Pattern Anal. Mach. Intell. 27 (12) (2005)
1866–1881.

[22] N. Nguyen, R. Caruana, Consensus clusterings, in: Proceedings of the 7th IEEE
International Conference on Data Mining (ICDM 2007), October 28-31, 2007,
Omaha, Nebraska, USA, IEEE Computer Society, 2007, pp. 607–612.

[23] L. Bai, J. Liang, H. Du, Y. Guo, An information-theoretical framework for cluster
ensemble, IEEE Trans. Knowl. Data Eng. 31 (8) (2019) 1464–1477.

[24] P. Hore, L.O. Hall, D.B. Goldgof, A scalable framework for cluster ensembles,
Pattern Recognit. 42 (5) (2009) 676–688.

[25] F. Li, Y. Qian, J. Wang, J. Liang, Multigranulation information fusion: A
Dempster-Shafer evidence theory-based clustering ensemble method, Inform. Sci.
378 (2017) 389–409.

[26] P. Zhou, L. Du, X. Li, Self-paced consensus clustering with bipartite graph, in: C.
Bessiere (Ed.), Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, ijcai.org, 2020, pp. 2133–2139.

[27] N. Iam-on, T. Boongoen, S.M. Garrett, C.J. Price, A link-based approach to the
cluster ensemble problem, IEEE Trans. Pattern Anal. Mach. Intell. 33 (12) (2011)
2396–2409.

[28] N. Iam-on, T. Boongoen, S.M. Garrett, C.J. Price, A link-based cluster ensemble
approach for categorical data clustering, IEEE Trans. Knowl. Data Eng. 24 (3)
(2012) 413–425.

[29] Z. Tao, H. Liu, S. Li, Y. Fu, Robust spectral ensemble clustering, in: CIKM, 2016,
pp. 367–376.

[30] Z. Tao, H. Liu, S. Li, Z. Ding, Y. Fu, Robust spectral ensemble clustering via rank
minimization, ACM Trans. Knowl. Discov. Data 13 (1) (2019) 1–25.

[31] D. Huang, C. Wang, J. Wu, J. Lai, C. Kwoh, Ultra-scalable spectral clustering and
ensemble clustering, IEEE Trans. Knowl. Data Eng. 32 (6) (2020) 1212–1226.

[32] Z. Tao, H. Liu, J. Li, Z. Wang, Y. Fu, Adversarial graph embedding for ensemble
clustering, in: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI, 2019, pp. 3562–3568.

[33] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partition-
ing: applications in VLSI domain, IEEE Trans. Very Large Scale Integr. Syst. 7
(1) (1999) 69–79.

[34] L. Zhu, J. Shen, L. Xie, Z. Cheng, Unsupervised topic hypergraph hashing for
efficient mobile image retrieval, IEEE Trans. Cybern. 47 (11) (2017) 3941–3954.
179
[35] X. Zhu, Y. Zhu, S. Zhang, R. Hu, W. He, Adaptive hypergraph learning for
unsupervised feature selection, in: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI, 2017, pp. 3581–3587.

[36] Z. Zhang, H. Lin, Y. Gao, Dynamic hypergraph structure learning, in: Jérôme
Lang(Ed.), Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, 2018, pp. 3162–3169.

[37] W. Zhao, S. Tan, Z. Guan, B. Zhang, M. Gong, Z. Cao, Q. Wang, Learning to
map social network users by unified manifold alignment on hypergraph, IEEE
Trans. Neural Netw. Learn. Syst. 29 (12) (2018) 5834–5846.

[38] P. Purkait, T. Chin, A. Sadri, D. Suter, Clustering with hypergraphs: The case
for large hyperedges, IEEE Trans. Pattern Anal. Mach. Intell. 39 (9) (2017)
1697–1711.

[39] Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with
hypergraph analysis, IEEE Trans. Image Process. 21 (9) (2012) 4290–4303.

[40] J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its application in
image classification, IEEE Trans. Image Process. 21 (7) (2012) 3262–3272.

[41] J. Yu, Y. Rui, B. Chen, Exploiting click constraints and multi-view features for
image re-ranking, IEEE Trans. Multimed. 16 (1) (2014) 159–168.

[42] C. Tang, X. Liu, P. Wang, C. Zhang, M. Li, L. Wang, Adaptive hypergraph
embedded semi-supervised multi-label image annotation, IEEE Trans. Multimed.
21 (11) (2019) 2837–2849.

[43] D. Zhou, J. Weston, A. Gretton, O. Bousquet, B. Schölkopf, Ranking on data
manifolds, in: Advances in Neural Information Processing Systems, Vol. 16, NIPS
2003, MIT Press, 2003, pp. 169–176.

[44] K. Fan, On a theorem of weyl concerning eigenvalues of linear transformations:
Ii*, Proc. Natl. Acad. Sci. USA 36 (1) (1949) 31–35.

[45] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale
optimization, Math. Program. 45 (1–3) (1989) 503–528.

[46] P. Zhou, L. Du, H. Wang, L. Shi, Y. Shen, Learning a robust consensus matrix
for clustering ensemble via Kullback-Leibler divergence minimization, in: IJCAI,
2015, pp. 4112–4118.

[47] J. Zhou, H. Zheng, L. Pan, Ensemble clustering based on dense representation,
Neurocomputing 357 (2019) 66–76.

[48] P. Zhou, L. Du, X. Liu, Y. Shen, M. Fan, X. Li, Self-paced clustering ensemble,
IEEE Trans. Neural Netw. Learn. Syst. 32 (4) (2021) 1497–1511.

[49] Y. Zhao, G. Karypis, Empirical and theoretical comparisons of selected criterion
functions for document clustering, Mach. Learn. 55 (3) (2004) 311–331.

[50] T. Li, C.H.Q. Ding, Weighted consensus clustering, in: SDM, 2008, pp. 798–809.
[51] D. Huang, C. Wang, J. Lai, Locally weighted ensemble clustering, IEEE Trans.

Syst. Man Cybern. 48 (5) (2018) 1460–1473.

http://refhub.elsevier.com/S1566-2535(21)00181-0/sb20
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb20
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb20
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb20
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb20
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb21
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb21
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb21
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb21
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb21
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb22
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb22
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb22
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb22
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb22
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb23
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb23
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb23
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb24
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb24
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb24
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb25
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb25
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb25
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb25
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb25
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb26
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb26
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb26
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb26
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb26
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb27
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb27
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb27
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb27
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb27
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb28
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb28
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb28
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb28
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb28
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb29
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb29
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb29
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb30
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb30
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb30
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb31
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb31
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb31
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb33
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb33
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb33
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb33
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb33
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb34
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb34
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb34
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb37
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb37
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb37
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb37
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb37
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb38
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb38
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb38
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb38
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb38
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb39
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb39
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb39
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb40
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb40
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb40
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb41
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb41
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb41
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb42
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb42
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb42
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb42
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb42
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb43
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb43
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb43
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb43
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb43
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb44
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb44
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb44
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb45
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb45
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb45
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb46
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb46
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb46
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb46
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb46
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb47
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb47
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb47
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb48
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb48
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb48
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb49
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb49
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb49
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb50
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb51
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb51
http://refhub.elsevier.com/S1566-2535(21)00181-0/sb51

	Clustering ensemble via structured hypergraph learning
	Introduction
	Related work
	Clustering ensemble
	Hypergraph learning

	Clustering ensemble via structured hypergraph learning
	Constructing the initial hypergraph
	Evaluating the edge weight matrix W
	Learning the structured hypergraph
	Optimization
	Optimize F
	Optimize Y

	Complexity analysis

	Experiments
	Data sets
	Experimental setup
	Experimental results
	Ablation study
	Parameter study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


