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Abstract—Medical image super-resolution (SR) is an impor-
tant medical image processing task and is often helpful for
downstream medical analysis tasks. Most of the conventional
SR methods tried to generate visually more convincing images
whereas ignoring the following downstream tasks. In this paper,
we take the Alzheimer’s disease diagnosis as the downstream
task and propose a novel diagnosis-guided medical image SR
network, which can make the SR and diagnosis be boosted by
each other. The method contains two sub-networks, i.e., the SR
network and the diagnosis network. To achieve better diagnosis
performance, in the SR network, we apply the deformable
convolution to capture the regions of interest (ROIs) with
different and irregular sizes and shapes, which are important
for diagnosis. Moreover, to integrate the two tasks, i.e., SR and
diagnosis, more profoundly, we design a novel diagnosis-guided
attention module, which makes the key regions for diagnosis can
be reconstructed more clearly by the SR network. The extensive
experiments on medical image data sets show that the proposed
method often outperforms other state-of-the-art SR methods,
which demonstrates its effectiveness. The codes of this paper
are released in https://github.com/WJingwei/SRDA.

Index Terms—Medical image processing, super-resolution,
diagnosis-guided attention module

I. INTRODUCTION

Medical image analysis, such as diagnosis and segmenta-

tion, is an important problem in image processing. However,

due to the hardware devices or image acquisition limitations,

the obtained medical images often have a low resolution.

For example, acquisitions with a high-resolution Magnetic

Resonance Image (MRI) need a long imaging time, which
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China under Grant 62176001, 61806003, and 62106005.

Peng Zhou is the corresponding author.

may increase the potential of subject motion [1]; in Positron

Emission Tomography (PET) image acquisitions, to decrease

the patient radiation exposure, we have to decrease the ra-

diation dosage, often leading to a low-resolution PET image

[2].

One natural way to tackle this problem is to apply super-

resolution methods to obtain high-resolution images before the

medical image analysis. Super-resolution (SR) has been widely

studied in natural image processing [3]–[8]. For example,

Dong et al. applied convolutional neural networks (CNN) to

SR, which was the first deep learning work for SR [3]; Liang

et al. adopted swin transformer to SR [8]. Due to the promising

performance of these super-resolution methods, they are also

widely used in medical image processing [1], [2], [9]–[11].

For example, Sui et al. developed a deep neural network in an

adversarial scheme for SR of MRI [1]; Chen et al. proposed

a joint spatial-wavelet dual stream network for medical image

SR [10].

However, despite the promising performance, since there

are still some essential differences between natural image

processing and medical image processing, the existing SR

methods for natural images may be inappropriate for medical

images. For example, in natural image SR methods, they wish

to generate visually more convincing images [12]. However,

in medical image super-resolution, SR is not our final goal

and is often followed by some downstream medical image

analysis tasks such as diagnosis. Therefore, when we apply SR

to medical images, we should fully consider the downstream

tasks. In this paper, we take the Alzheimer’s disease diagnosis

task as an example of the downstream task, and it is easily

applied to other disease diagnosis tasks. Unfortunately, in
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Fig. 1. The overview of SRDA.

practice, since SR is an ill-posed problem, i.e., the same low-

resolution image can obtain different potential high-solution

images, SR may introduce some artifacts which may mislead

the following diagnosis.

To address this issue, in this paper, we propose a novel

medical image Super-Resolution via Diagnosis-guided Atten-

tion (SRDA). The goal is that the generated SR image should

be helpful to or at least should not mislead the following

diagnosis task. To achieve this, we propose a multi-task

framework for SR and diagnosis, which contains two sub-

networks: the SR network and the diagnosis network. The

overview of the proposed method is shown in Figure 1. We

feed the low-resolution images into the SR network to obtain

the SR images and immediately feed the SR images into the

diagnosis network. The diagnosis network will affect the SR

network in two-fold: firstly, since this is in an end-to-end way,

the diagnosis loss can in turn guide the parameters learning

in the SR network via backpropagation. Secondly, we design

a diagnosis-guided attention module to make the SR network

pay more attention to the important regions in the diagnosis.

In more detail, when designing the SR network, we fully

consider the diagnosis task. In practice, there are some regions

of interest (ROIs) which are important for the diagnosis. For

example, according to previous literature [13], [14], some

regions, such as the middle temporal gyrus and hippocampal

formation, are key regions for Alzheimer’s disease diagnosis.

These regions often have different and irregular sizes and

shapes, which are hard to be captured by the fixed-size

convolution kernels used in conventional CNNs. To tackle this

problem, our SR network applies the deformable convolution

[15] to extract features. Due to the deformable convolution,

it can capture ROIs with various scales and shapes, which

is helpful to the diagnosis. Besides, the attention mechanism

is another important tool for diagnosis which can make the

model focus on the ROIs. In our method, we propose a novel

diagnosis-guided attention for both SR and diagnosis. The

basic idea is that the ROIs which are important for diagnosis

are also worth being paid attention to when doing SR. For

example, since the hippocampal formation is a key region for

Alzheimer’s disease diagnosis, the SR network should also

pay more attention to the hippocampal formation. To achieve

this, we impose two same-structured attention networks on

the SR and diagnosis networks, and force the attention maps

obtained by the two attention networks to be close to each

other, and thus the SR network and diagnosis network can

pay attention to the similar regions. Due to the diagnosis-

guided attention, the SR network and diagnosis network are

seamlessly integrated into one unified framework. Notice that,

different from other conventional SR methods which apply SR

to enhance diagnosis, such as [11], which just combines the

SR and diagnosis and lets the SR be affected by diagnosis only

through backpropagation, in the proposed method, the diagno-

sis can guide the SR process more profoundly. In the proposed

method, we carefully design and adjust the SR network to fit

the diagnosis by introducing the deformable convolution and

designing the diagnosis-guided attention, which makes the two

tasks boosted by each other. On one hand, the ROIs in the SR

images obtained by the SR network can be reconstructed more

clearly which is more helpful for the diagnosis task; on the

other hand, the diagnosis network finds the important ROIs

which can in turn guide the SR network to obtain clearer and

more useful SR images.

The main contributions are summarized as follows:

• We propose a novel framework for medical image SR,

which applies the diagnosis to guide the SR. It can

make the SR images more appropriate for the following

diagnosis task.

• We carefully design a diagnosis-guided attention module

that can make the SR and diagnosis network focus on

similar regions. It makes sure that the key regions for

diagnosis can be reconstructed more clearly.

• The experimental results on some medical image data sets

show the effectiveness and superiority of the proposed

method.

II. METHOD

In this section, we introduce our SRDA in more de-

tail. Figure 2 shows the architecture of SRDA. It consists

of two sub-networks: the SR network to obtain the high-

resolution images and the diagnosis network to classify the

high-resolution images. To integrate the two sub-networks into

a unified framework, we also propose the diagnosis-guided

attention module to characterize the ROIs. In this model, the

SR and diagnosis can be boosted by each other. Notice that the

influence from SR to diagnosis is in the forward propagation

along the network, and the influence from diagnosis to SR is

in the backpropagation of diagnosis loss. In the following,

we will introduce the two sub-networks and the attention

module in more detail. Here we take ×4 super-resolution as an

example, and it can easily be extended to other magnifications.

A. SR Network

In the SR network, we extract the features from the low-

resolution images and apply the upsampling to obtain the high-

resolution images. Since residual networks (ResNet) [16] has
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Fig. 2. The architecture of SRDA. It contains the SR and diagnosis networks. The influence from SR to diagnosis is in the forward propagation along the
network, and the influence from diagnosis to SR is in the backpropagation of diagnosis loss.

demonstrated promising performance in SR tasks [6], [17],

[18], we also apply ResNet to extract features in SR network

as shown in Figure 2.

Different from natural image SR tasks, in real medical

image processing tasks, SR is often followed by a down-

stream diagnosis task, and thus when extracting features, we

should also consider the diagnosis task. In diagnosis tasks,

we often pay more attention to some important ROIs, e.g.

the hippocampal formation in Alzheimer’s disease diagnosis.

Therefore, these ROIs should also be specially handled in the

SR network. Moreover, in real medical image analysis tasks,

we observe that the ROIs often have different and irregular

sizes and shapes. To tackle this problem, different from the

conventional ResNet-based SR methods, which apply stan-

dard convolution operation to extract features, we adopt the

deformable convolution [15] to extract features. Deformable

convolution, as shown in Figure 2(a), augments the spatial

sampling regions with learnable additional offsets, and thus

can capture the ROIs with different and irregular sizes and

shapes. Denoting Ilr ∈ R
C×H×W as the images of the input

low resolutions where C, H , and W are the number of

channels, height, and width, respectively, and fdconv(·) as the

deformable convolution operation, we obtain the feature maps

Fdconv ∈ R
C×H×W as Fdconv = fdconv(Ilr). The detailed

structure of deformable convolution can be found in [15].

Then, we design a diagnosis-guided attention module to

assign a weight to each pixel in the feature map Fdconv . This

attention is a kind of spatial attention and the output attention

map is a weight matrix Wsr ∈ R
H×W . In Section II-C we

will introduce how to obtain it in more detail. Here we suppose

we have already obtain such Wsr, and then we obtain the

weighted feature map Fatten ∈ R
C×H×W as:

Fatten = Fdconv ∗Wsr, (1)

where ∗ is the element-wise production in each channel.

After obtaining the weighted feature map Fatten, we feed it

into 32 residual blocks as many other ResNet-based methods

did. The structure of the residual block is shown in Figure

2(b). Then we obtain the high-resolution images with a ×4
upsample layer with pixel shuffle, followed by a convolution

layer which compresses the feature maps to three-channel or

one-channel super-resolution images Isr ∈ R
C×4H×4W .

B. Diagnosis Network

After obtaining the SR images Isr, we feed them into the

diagnosis network. The diagnosis network is a classification

network. Here we use ResNet50 [16] as its backbone.

After the first 7× 7 convolution layer and the max pooling

layer of the ResNet50, we obtain the feature maps Fconv1 ∈
R

C1×H×W where C1 is the current number of channels, H
and W are the same with those of the original low-resolution

images. Different from the vanilla ResNet50, which directly

feeds Fconv1 into the next 1 × 1 convolution layer, we also

impose the diagnosis-guided attention on such feature map

Fconv1. The attention network has the same structure as that

in the SR network but has different network parameters,

which will be introduced in Section II-C in more detail.

Denote Wdiag ∈ R
H×W as the output attention map of the

attention module. Then, we obtain the weighted feature map

Fatten
conv1 ∈ R

C′×H×W as: Fatten
conv1 = Fconv1 ∗Wdiag , which is

similar to Eq.(1).

Then, we feed Fatten
conv1 into the remaining parts of ResNet50

for diagnosis.
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C. Diagnosis-guided Attention Module
To make the SR network and the diagnosis network pay

attention to similar regions, we propose a diagnosis-guided

attention module. This attention module is a kind of spatial

attention and is used in both the SR network and the diagnosis

network. The attention networks in the two sub-networks have

the same structure but different network parameters, whose

architecture is shown in Figure 3. Given a feature map F ∈
R

C2×H×W (i.e., F = Fdconv in the SR network and F =
Fconv1 in the diagnosis network), similar to [19], we first apply

the average pooling and the max pooling on F across the

channel to obtain Favg ∈ R
1×H×W and Fmax ∈ R

1×H×W ,

respectively. Then we concatenate Favg and Fmax along the

channel to obtain F′ = [Favg;Fmax] ∈ R
2×H×W . After that,

we apply a 7× 7 convolution layer on F′ to obtain new one-

channel feature map F′′ ∈ R
1×H×W . At last we obtain the

final attention map W ∈ R
H×W (i.e., Wsr = W in SR

network and Wdiag = W in diagnosis network) by feeding

F′′ into a sigmoid function.

Fig. 3. The diagnosis-guided attention module.

Since we wish the key regions for diagnosis can be re-

constructed more clearly by the SR network, we enforce the

two attention networks to pay attention to similar regions.

Therefore, we should make the outputs of the two attention

networks (i.e., Wsr and Wdiag) be close to each other by

minimizing the following diagnosis-guided attention loss:

LAtten = ‖Wsr −Wdiag‖2F (2)

Due to this loss, although the SR network and the diagnosis

network have different attention networks, they can still pay

attention to similar regions, which can make the two tasks

(i.e., SR and diagnosis) be boosted by each other.

D. Loss Function
The total loss function contains the SR loss, the diagnosis

loss, and the diagnosis-guided attention loss. In the SR net-

work, we compute the pixel-wise loss between the SR image

Isr and the ground truth high-resolution images Igt with

LSR =
1

N

N∑

i=1

∥∥∥I(i)sr − I
(i)
gt

∥∥∥
1
, (3)

where I
(i)
sr and I

(i)
gt are the SR image and the ground truth

high-resolution image of the i-th image in the training set,

respectively. N is the number of images in the training set.

In the diagnosis network, we adopt the cross-entropy loss

between the predicted label (denoted as ŷic) and the ground

truth label (denoted as yic), where i denotes the i-th image

and c denotes the c-th class. The diagnosis loss LDiag is:

LDiag =
1

N

N∑

i=1

M∑

c=1

yiclog(ŷic), (4)

where M is the number of classes of the data set.

The diagnosis-guided attention loss is defined as Eq.(2). To

sum up, the total loss Ltotal is defined as:

Ltotal = LSR + λ1LDiag + λ2LAtten, (5)

where λ1 and λ2 are two balancing hyperparameters.

III. EXPERIMENTS

A. Data Sets

In this paper, we focus on the SR for Alzheimer’s disease

diagnosis. We use three public data sets: ADNI-MRI, ADNI-

PET, and Demented-MRI. ADNI-MRI and ADNI-PET contain

MRI and PET images of brains for Alzheimer’s Disease

diagnosis collected by The Alzheimer‘s Disease Neuroimag-

ing Initiative (ADNI) 1, respectively. The original images of

ADNI-MRI and ADNI-PET are both 3D brain images, and we

slice each 3D image into multiple 2D images. We slice them

along the axial plane with 0.01 mm intervals. We randomly

divide the data into the training, validation, and testing set in

the ratio of 8:1:1. In more detail, for ADNI-MRI, the training

set contains 4080 2D images, both the validation set and

testing set contain 510 2D images. For ADNI-PET, the training

set contains 9600 2D images, and the validation set and

testing set contain 1200 2D images, respectively. Demented-

MRI contains the 2D MRI images of brains for Alzheimer’s

disease diagnosis collected by Haywhale Community2. We use

three classes (i.e., non-demented, mild-demented, and very-

mild-demented) in Demented-MRI, where each class contains

890 MRI images. Therefore, it contains 2670 images in total.

We randomly use 2136 images, 267 images, and 267 images

as training data, validation data, and testing data, respectively.

B. Experimental Setup and Implementation Details

We use bicubic interpolation (denoted as Bicubic) as a

baseline method. Moreover, we also compare with the fol-

lowing state-of-the-art SR methods: RCAN [20], IMDN [21],

SWD [10], SwinIR [8], SRD [11], A2F [22], ELAN [23]. We

adopt Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-

ilarity Index Measure (SSIM) to evaluate the reconstruction

quality. For both metrics, the larger values mean the better

performance. Since most SR methods (including ours) need

pairs of the low-resolution image and its ground-truth high-

resolution image for training but the used data does not have

such pairs, we use the original data as the ground-truth images

1https://adni.loni.usc.edu/
2https://www.heywhale.com/mw/dataset/6245d687e1d37c0017029c05/

content

465

Authorized licensed use limited to: Anhui University. Downloaded on August 27,2023 at 08:12:39 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
QUANTITATIVE COMPARISON (AVERAGE PSNR AND SSIM) WITH

STATE-OF-THE-ART SR METHODS. THE BEST AND RESULTS ARE MARKED

IN BOLD FONTS.

Methods
ADNI-MRI ADNI-PET Demented-MRI

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 26.76 0.8153 27.55 0.8352 22.95 0.7954

RCAN [20] 34.02 0.9465 32.97 0.9437 30.30 0.9533

IMDN [21] 32.83 0.9338 31.23 0.9257 27.22 0.9216

A2F [22] 34.39 0.9500 32.27 0.9384 28.89 0.9423

SWD [10] 31.70 0.9151 31.31 0.9272 27.15 0.9213

SwinIR [8] 32.74 0.9328 31.88 0.9331 28.83 0.9417

SRD [11] 32.83 0.9306 31.55 0.9305 27.19 0.9235

ELAN [23] 31.95 0.9231 31.00 0.9179 27.08 0.9192

SRDA 35.56 0.9595 33.89 0.9487 30.69 0.9567

and generate the low-resolution images by ×4 downsampling

from the original data.

The experiments are conducted with Pytorch on a PC with

an NVIDIA GeForce RTX 3090 Ti GPU. In our method, we

use Adam as the optimizer with a learning rate of 0.0001. We

set the batch size as 128, 64, and 8 on the ADNI-MRI, ADNI-

PET, and Demented-MRI, respectively. For all data sets, the

number of epochs is fixed to 1000, and λ1 and λ2 are fixed as

0.0006 and 0.0001, respectively. For all compared methods, we

use the codes released by the authors with the hyper-parameter

setting suggested in the corresponding literature.

C. Experimental Results

Table I shows the PSNR and SSIM results of our method

and other state-of-the-art SR methods on the three data sets.

From Table I, we can see that our method achieves the

best performance on all data sets. It well demonstrates the

effectiveness of the proposed method.

Figures 4-6 show the qualitative comparison of all methods

on all data sets. From these figures, we can find that the

SR image obtained by our method contains more details

compared with other methods. Such details may be important

for diagnosis. Our method can reconstruct the details more

clearly and thus the SR images of our method may be more

helpful for the downstream diagnosis task.

D. Ablation Study

To show the effectiveness of each part in our network, we

also conduct the ablation study. We use SR to denote the

base model, which only contains the SR network without

the deformable convolution, diagnosis-guided attention, and

the diagnosis network. SR+Dconv denotes the SR network

with deformable convolution but without diagnosis-guided

attention and the diagnosis network. SR+Dconv+Diag denotes

the SR network with deformable convolution and the diagnosis

network but without the attention. SR+Dconv+Diag+Atten

denotes the complete SRDA model with all parts.

Table II shows the results. Compared with the base model

SR, deformable convolution can improve the performance

to some extent. Then, by adding the diagnosis network, it

achieves a better performance, which shows that the diagnosis

can indeed guide the SR. Moreover, with diagnosis-guided

Fig. 4. Qualitative comparison on ADNI-PET data set (PSNR/SSIM).

Fig. 5. Qualitative comparison on Demented-MRI data set (PSNR/SSIM).

Fig. 6. Qualitative comparison on ADNI-MRI data set (PSNR/SSIM).
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TABLE II
ABLATION STUDY.

Methods
ADNI-MRI ADNI-PET Demented-MRI

PSNR SSIM PSNR SSIM PSNR SSIM

SR 32.42 0.9290 33.12 0.9444 30.14 0.9525

SR+Dconv 32.56 0.9321 33.16 0.9449 30.34 0.9540

SR+Dconv
34.17 0.9491 33.19 0.9452 30.44 0.9547

+Diag

SR+Dconv 35.56 0.9595 33.89 0.9487 30.69 0.9567
+Diag+Atten

TABLE III
TEST ACCURACY (ACC) FOR DIAGNOSIS TASK.

Methods ADNI-MRI ADNI-PET Demented-MRI

LR 0.5863 0.6400 0.6515

RCAN [20] 0.7118 0.7158 0.7083

IMDN [21] 0.6039 0.6967 0.7083

A2F [22] 0.6980 0.7433 0.6970

SWD [10] 0.6902 0.6692 0.6932

SwinIR [8] 0.7098 0.7558 0.6970

SRD [11] 0.6568 0.6225 0.6894

ELAN [23] 0.6902 0.7212 0.7008

SRDA 0.8706 0.8292 0.7348

attention, the performance is further improved, demonstrating

the effectiveness of the attention module.

E. Diagnosis Experiments

To demonstrate that the proposed SRDA method is helpful

for the diagnosis task, we also conduct the diagnosis exper-

iments. In more detail, firstly, we apply SRDA and all other

compared methods to generate the SR images respectively.

Then, we train the ResNet50 [16] on each SR data set obtained

by each SR method, and report the test accuracy (ACC) on

the testing set in Table III. LR represents the classification

results directly on the low-resolution images. We can see that

the diagnosis accuracy on SR images is much higher than LR,

which shows that SR is helpful for the diagnosis. Moreover,

the accuracy of SRDA outperforms other SR methods signif-

icantly, which means that the SR images obtained by SRDA

are easier to diagnose. It is consistent with our motivation that

the SR images should be more helpful for diagnosis.

IV. CONCLUSION

In this paper, we proposed a novel diagnosis-guided SR

method. To make the SR and diagnosis be boosted by each

other, we carefully designed a diagnosis-guided attention mod-

ule, which can make the SR network and the diagnosis network

pay the attention to similar ROIs. Due to the diagnosis-guided

attention module, the ROIs of diagnosis are reconstructed

more clearly in the SR network, and thus the SR method

is more appropriate for the following downstream diagnosis

task. We conducted extensive experiments on image data sets

for Alzheimer’s disease diagnosis, and the experimental results

demonstrated the effectiveness and superiority of the proposed

method.
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