Appendix of "Partial Clustering Ensemble”

Appendix A: Proof of Theorem 1
The H-subproblem is:

i tr(HTDH) — 2tr(HTC 1
Join -t ) — 2tr(H”C), M

where D = V2 4+ 4T and C = Y YRT + V237" o, YOR®. Let H! denote the
value of H in the ¢-th iteration. Given a step size 7 > 0, we denote M = [n(DH* —
C),—nH!] and N = [H', DH' — C]T. The following Theorem provides an update
formula of H!*1:

Theorem 1. Suppose H?, M and N be defined as before, if H!TH? = I, update Ht !
as follows:

H*!' = H' - MNH' — M(I+ NM) }(NH’ - NMNH"). Q)

Then, HHTHA = I, and this updating is in a descent direction of Eq.(1). Since
Eq.(1) has a lower bound, the iteration method converges. Moreover, it can converge
to a stable point.

Proof. According to Woodbury identity, we have

H'T!' =H' - MNH' - M(I + NM) 'NH' + M(I+ NM) 'NMNH' (3)
=(I-M(I+NM) 'N)(I-MN)H'
=(I+MN) (I - MN)H*

Let Q = %MN, we have
H* = (14+9Q) " (I-1Q)H' )
We first prove that FHt+1T H!*+! = I. Let us take a closer look at Q:

Q= %MN =DH'HT — CH'T - H'(DH' — C)T (5)



It is easy to verify that Q is a skew-symmetric matrix, i.e., Q = —QT. Then, we
compute Ht+1THHL:

HOTHS HT (1) (49Q)") (14 9Q)™! (1 7Q) B
=H'" (I+7Q)I-7Q) ' (I+7Q)~' (I-»Q)H' (6)
=H" (1+1Q) (I1+7Q)(I-7Q)) " (I-7Q)H".

Furthermore, we have

IT+7Q) (I-7Q) =1-7’QQ=(1-71Q) (I+1Q). (7
Taking it back to Eq.(6), we have

HHTHA =HT (T+9Q) (1-7Q) (1+27Q)) ™ (I- Q) H!
=H'" (1+7Q)(I+7Q) ' 1-7Q) " (I-7Q)H!
:HtTHt
=I.

Then we prove that updating H!*! by Eq.(2) is in a descent direction. To prove it,
we first provide the following lemma:

Lemma 1. Given the objective function J (H!+1) = tr(H!+1 DH!+1) —2tr (H*+" C)
defined in Eq.(1), if we update H'* by Eq.(2), we have:
8J(Ht+1)

_ 2
o = -2[Q[lr <0. ®)

n=0

Proof. According to the chain rule, we have

3J(Ht+1) _, aj(HtH) T OH!H! ©
an SHIH an
Whenn = 0, H+! = HY, and 22411 ,_, = 2DH'-C), 2 ’n:o — —2QH!.
On one hand, we have
Ht+1
% = —4tr (DH' — C)"QH') (10)
n n=0

= —4tr (DH' — C)"(DH' - C) — (DH' — C)"H'(DH' — C)"H)
On the other hand, we have
QI =tr(Q" Q) (11)
—tr (((DHt ~- C)H'" - H'(DH' - C)7)" ((DH' - C)H'T — H!(DH' — C)T))
=2tr (DH' — C)"(DH' - C) — (DH' — C)"H'(DH' — C)"H')

Therefore, we have LNA¢: ] = -2|Q|% <. 0

on n=0



Lemma 1 shows that if H moves a small step Anp > 0 in the update direction,
the objective function J will have a change —2||Q||%An and since —2||Q||% < 0,
the objective function J will decrease. Thus the update direction is a descent direc-
tion. Moreover, since H is an orthogonal matrix whose elements are all bounded, the
objective function Eq.(1) has a lower bound, and the algorithm will converge.

To prove that it will converge to a stable point, we introduce the following lemma
which shows the first-order optimality condition of the objective function:
Lemma 2. Let £ = tr(HT'DH) — 2tr(H” C) — tr(A(HTH — 1)) be the Lagrangian
Sfunction of our objective function, where A is the Lagrangian multiplier, then gﬁ =0
if and only if Q = 0, so Q = 0 is the first-order optimality condition of our objective
function.

Proof. Set the partial derivative of £ w.r.t. H to zero:

oL

o5 = 2(DH-C - HA) = (12)

By multiplying both sides of Eq.(12) by H” and applying the constraint H'H =
I, we can solve A as A = HT(DH — C). Note that HTH is symmetric, and its
corresponding Lagrangian multiplier A is also symmetric. So we rewrite A as A =
(DH — C)TH. Putting it back into Eq.(12), we obtain

oL

o5 =2 (DHHT — CH” - H(DH — C)T) H - 2QH. (13)
On one hand, we have =2QH, soif Q = 0, then 6‘: =0.
On the other hand, if gﬁ =0,ie, (DHH” — CHT H(DH ~CO)TYH =0.

Let Z = DH — C, then we have Z = HZTH due to HTH = I. Thus,
Z=HZ"H=HHZ'H)'H=HH"Z (14)
Taking the transposition of both sides, we have Z” = ZT"HH'. Then we obtain
HZ" = HZ"HH" = zZH" (15)
which means ZHT —HZ7T = 0. Note that Q= ZHT —HZT, so Q = 0. In summary,
Q = 0 is the first-order optimality condition. O
0T (;it“) -0,

n=0
which means H cannot move a small step in the descent direction to make the objective

function decreases. Since %ﬁwl) = -2||Q|%, IQ||% = 0, i.e., Q = 0. Due to
n=0

Lemma 2, it satisfies the first-order optimality condition, so the algorithm converges to
a stable point. O

Now, get back to Theorem 1. The algorithm converges when



Appendix B: Proof of Theorem 2

The a-subproblem is:

min a’Ga —2fTa, (16)
m

st. 0<a; <1, Zai =1
=1

where the (i, )-th element of G is G;; = tr(ROTYOTV2YRG)) and the i-
th element of vector f is f; = tr(ROTYOTV2H). Then, we have the following
Theorem about its convexity:

Theorem 2. Eq.(16) is a convex quadratic programming.

Proof. Obviously, Eq.(16) is a quadratic programming, and the constraint is a convex
set. To prove it is a convex quadratic programming, we just need to prove that G is a
positive semi-definite matrix. Given any non-zero vector x € R™, we compute:

XTGX = Z l'iGijxj (17)

ij=1

= Z mixjtr(R(i)TY(i)TV2y(j) R )

i,j=1
=tr [ Y a;ROTYOTV2Y ", yORO)
i=1 j=1

m m T
—tr (Z :ciY(“R(“) (Z xiY“)R(”) v?
=1 =1
Denoting A = Y"1 | 2, Y OR®, we have
x"Gx = tr(AA" diag(v)®) = > _v2[|A, |3 > 0. (18)
p=1

Therefore, G is a positive semi-definite matrix, and thus Eq.(16) is convex quadratic
programming. O

Appendix C: Proof of Theorem 3

The R®)-subproblem is:

i (1)
ROTRO T tr(KR™), (19)

where K = 7. ., @, ROTYDTV2Y () - HTV2Y (),
The following Theorem provides its global optima:



Theorem 3. Supposing the singular value decomposition (SVD) of — KT is — KT =
UXST, then the global optima of Eq.(19) is R() = UST.

Proof. Denote W = —K7 and we have its SVD is W = UXS7'. Notice that to min-
imize tr(KR®) is equivalent to maximize tr(WTR(?). Since R(*) is an orthogonal
matrix, its SVD is R®) = R() « I« L

According to Von Neumanns trace inequality, we have

tr(WTRW) <tr(=I) (20)

Obviously, the equality holds when R(?) = UST”. Therefore, the global optima of
Eq.(19)is R® = UST. O



