
Appendix of ”Partial Clustering Ensemble”

Appendix A: Proof of Theorem 1
The H-subproblem is:

min
HTH=I

tr(HTDH)− 2tr(HTC), (1)

where D = V2 + γI and C = γYRT + V2
∑m
i=1 αiY

(i)R(i). Let Ht denote the
value of H in the t-th iteration. Given a step size η > 0, we denote M = [η(DHt −
C),−ηHt] and N = [Ht,DHt − C]T . The following Theorem provides an update
formula of Ht+1:

Theorem 1. Suppose Ht, M and N be defined as before, if HtTHt = I, update Ht+1

as follows:

Ht+1 = Ht −MNHt −M(I + NM)−1(NHt −NMNHt). (2)

Then, Ht+1THt+1 = I, and this updating is in a descent direction of Eq.(1). Since
Eq.(1) has a lower bound, the iteration method converges. Moreover, it can converge
to a stable point.

Proof. According to Woodbury identity, we have

Ht+1 =Ht −MNHt −M(I + NM)−1NHt + M(I + NM)−1NMNHt (3)

=(I−M(I + NM)−1N)(I−MN)Ht

=(I + MN)−1(I−MN)Ht

Let Q = 1
ηMN, we have

Ht+1 = (I + ηQ)
−1

(I− ηQ) Ht (4)

We first prove that Ht+1THt+1 = I. Let us take a closer look at Q:

Q =
1

η
MN = DHtHtT −CHtT −Ht(DHt −C)T (5)
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It is easy to verify that Q is a skew-symmetric matrix, i.e., Q = −QT . Then, we
compute Ht+1THt+1:

Ht+1THt+1 =HtT (I− ηQ)
T
(

(I + ηQ)
T
)−1

(I + ηQ)
−1

(I− ηQ) Ht

=HtT (I + ηQ) (I− ηQ)
−1

(I + ηQ)
−1

(I− ηQ) Ht (6)

=HtT (I + ηQ) ((I + ηQ) (I− ηQ))
−1

(I− ηQ) Ht.

Furthermore, we have

(I + ηQ) (I− ηQ) = I− η2QQ = (I− ηQ) (I + ηQ) . (7)

Taking it back to Eq.(6), we have

Ht+1THt+1 =HtT (I + ηQ) ((I− ηQ) (I + ηQ))
−1

(I− ηQ) Ht

=HtT (I + ηQ) (I + ηQ)
−1

(I− ηQ)
−1

(I− ηQ) Ht

=HtTHt

=I.

Then we prove that updating Ht+1 by Eq.(2) is in a descent direction. To prove it,
we first provide the following lemma:

Lemma 1. Given the objective functionJ (Ht+1) = tr(Ht+1TDHt+1)−2tr(Ht+1TC)
defined in Eq.(1), if we update Ht+1 by Eq.(2), we have:

∂J (Ht+1)

∂η

∣∣∣∣
η=0

= −2‖Q‖2F ≤ 0. (8)

Proof. According to the chain rule, we have

∂J (Ht+1)

∂η
= tr

((
∂J (Ht+1)

∂Ht+1

)T
∂Ht+1

∂η

)
(9)

When η = 0, Ht+1 = Ht, and ∂J (Ht+1)
∂Ht+1

∣∣∣
η=0

= 2(DHt−C), ∂H
t+1

∂η

∣∣∣
η=0

= −2QHt.

On one hand, we have

∂J (Ht+1)

∂η

∣∣∣∣
η=0

=− 4tr
(
(DHt −C)TQHt

)
(10)

=− 4tr
(
(DHt −C)T (DHt −C)− (DHt −C)THt(DHt −C)THt

)
On the other hand, we have

‖Q‖2F =tr(QTQ) (11)

=tr
((

(DHt −C)HtT −Ht(DHt −C)T
)T (

(DHt −C)HtT −Ht(DHt −C)T
))

=2tr
(
(DHt −C)T (DHt −C)− (DHt −C)THt(DHt −C)THt

)
Therefore, we have ∂J (Ht+1)

∂η

∣∣∣
η=0

= −2‖Q‖2F ≤ 0.

2



Lemma 1 shows that if H moves a small step ∆η > 0 in the update direction,
the objective function J will have a change −2‖Q‖2F∆η and since −2‖Q‖2F ≤ 0,
the objective function J will decrease. Thus the update direction is a descent direc-
tion. Moreover, since H is an orthogonal matrix whose elements are all bounded, the
objective function Eq.(1) has a lower bound, and the algorithm will converge.

To prove that it will converge to a stable point, we introduce the following lemma
which shows the first-order optimality condition of the objective function:

Lemma 2. Let L = tr(HTDH)−2tr(HTC)− tr(Λ(HTH− I)) be the Lagrangian
function of our objective function, where Λ is the Lagrangian multiplier, then ∂L

∂H = 0
if and only if Q = 0, so Q = 0 is the first-order optimality condition of our objective
function.

Proof. Set the partial derivative of L w.r.t. H to zero:

∂L
∂H

= 2 (DH−C−HΛ) = 0. (12)

By multiplying both sides of Eq.(12) by HT and applying the constraint HTH =
I, we can solve Λ as Λ = HT (DH − C). Note that HTH is symmetric, and its
corresponding Lagrangian multiplier Λ is also symmetric. So we rewrite Λ as Λ =
(DH−C)TH. Putting it back into Eq.(12), we obtain

∂L
∂H

= 2
(
DHHT −CHT −H(DH−C)T

)
H = 2QH. (13)

On one hand, we have ∂L
∂H = 2QH, so if Q = 0, then ∂L

∂H = 0.
On the other hand, if ∂L

∂H = 0, i.e.,
(
DHHT −CHT −H(DH−C)T

)
H = 0.

Let Z = DH−C, then we have Z = HZTH due to HTH = I. Thus,

Z = HZTH = H(HZTH)TH = HHTZ (14)

Taking the transposition of both sides, we have ZT = ZTHHT . Then we obtain

HZT = HZTHHT = ZHT (15)

which means ZHT −HZT = 0. Note that Q = ZHT −HZT , so Q = 0. In summary,
Q = 0 is the first-order optimality condition.

Now, get back to Theorem 1. The algorithm converges when ∂J (Ht+1)
∂η

∣∣∣
η=0

= 0,

which means H cannot move a small step in the descent direction to make the objective
function decreases. Since ∂J (Ht+1)

∂η

∣∣∣
η=0

= −2‖Q‖2F , ‖Q‖2F = 0, i.e., Q = 0. Due to

Lemma 2, it satisfies the first-order optimality condition, so the algorithm converges to
a stable point.
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Appendix B: Proof of Theorem 2
The α-subproblem is:

min
α

αTGα− 2fTα, (16)

s.t. 0 ≤ αi ≤ 1,

m∑
i=1

αi = 1.

where the (i, j)-th element of G is Gij = tr(R(i)TY(i)TV2Y(j)R(j)) and the i-
th element of vector f is fi = tr(R(i)TY(i)TV2H). Then, we have the following
Theorem about its convexity:

Theorem 2. Eq.(16) is a convex quadratic programming.

Proof. Obviously, Eq.(16) is a quadratic programming, and the constraint is a convex
set. To prove it is a convex quadratic programming, we just need to prove that G is a
positive semi-definite matrix. Given any non-zero vector x ∈ Rm, we compute:

xTGx =

m∑
i,j=1

xiGijxj (17)

=

m∑
i,j=1

xixjtr(R
(i)TY(i)TV2Y(j)R(j))

=tr

 m∑
i=1

xiR
(i)TY(i)TV2

m∑
j=1

xjY
(j)R(j)


=tr

( m∑
i=1

xiY
(i)R(i)

)(
m∑
i=1

xiY
(i)R(i)

)T
V2


Denoting A =

∑m
i=1 xiY

(i)R(i), we have

xTGx = tr(AAT diag(v)2) =

m∑
p=1

v2p‖Ap.‖22 ≥ 0. (18)

Therefore, G is a positive semi-definite matrix, and thus Eq.(16) is convex quadratic
programming.

Appendix C: Proof of Theorem 3
The R(i)-subproblem is:

min
R(i)TR(i)=I

tr(KR(i)), (19)

where K =
∑
j:j 6=i αjR

(j)TY(j)TV2Y(i) −HTV2Y(i).
The following Theorem provides its global optima:
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Theorem 3. Supposing the singular value decomposition (SVD) of −KT is −KT =
UΣST , then the global optima of Eq.(19) is R(i) = UST .

Proof. Denote W = −KT and we have its SVD is W = UΣST . Notice that to min-
imize tr(KR(i)) is equivalent to maximize tr(WTR(i)). Since R(i) is an orthogonal
matrix, its SVD is R(i) = R(i) ∗ I ∗ I.

According to Von Neumanns trace inequality, we have

tr(WTR(i)) ≤tr(ΣI) (20)

=tr(ΣUTUSTS)

=tr(SΣUTUST )

=tr(WTUST )

Obviously, the equality holds when R(i) = UST . Therefore, the global optima of
Eq.(19) is R(i) = UST .
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