Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Incremental Multi-view Support Vector Machine

Peng Zhou*

Abstract

Multi-view classification has received considerable attention in re-
cent years. We observed that the existing multi-view classification
methods learn a consensus result by collecting all views and thus
have two critical limitations. First, it is not scalable. Second, in
many applications views of data are available over time; it is in-
feasible to apply the existing multi-view learning methods to such
streaming views. To address the two limitations, in this paper we
propose a novel incremental multi-view SVM method, i.e., instead
of processing all views simultaneously, we integrate them one by
one in an incremental way. We first learn an initial model from the
first view; next when a new view is available, we update the model
and then apply it to learn a new consensus result. This incremental
method is scalable and applicable to streaming views. We present a
block coordinate descent algorithm whose convergence is theoreti-
cally guaranteed to optimize the induced objective function. Exper-
imental results on several benchmark data sets further demonstrate
the effectiveness of our method.

1 Introduction

Many real-world data sets are represented in multiple views.
For example, images on the web may have two views:
visual information and textual tags; and multilingual data
sets have multiple representations in different languages. In
recent years, different multi-view learning methods, such as
[LL8L 13} 250 [15, 10, 30]], have been proposed to improve the
classification accuracy by making full use of the coherence
of different views.

In particular, the support vector machine (SVM)[2] is
a kernelized classification methodology of machine learning
by utilizing the labeled samples to train a model, and has
been widely applied in machine learning fields. Due to its
effectiveness on classification tasks, many researches have
extended SVM to multi-view setting 128} 14} 13116, |10} [7, [14].
For example, Farquhar et al. and Li et al. presented SVM
methods for two-view data [4} [13]]; Gehler et al. proposed a

*School of Computer Science and Technology, Anhui University, Hefei

230601, China. Email:zhoupeng@ahu.edu.cn

TThe State Key Lab of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing 100190, China. Email:ydshen@ios.ac.cn,
corresponding author.

¥School of Computer and Information Technology, Shanxi University,
Taiyuan 030006, China. Email:csliangdu@gmail.com

§School of Computer Science and Technology, Anhui University, Hefei
230601, China. Email:y fan@ahu.edu.cn, corresponding author.

Yi-Dong Shen'

Liang Du! Fan Ye®

boosting approach for multi-view classification [6].

We observed that these existing multi-view SVM meth-
ods learn a consensus result by collecting all views and thus
have two critical limitations. First, it is not scalable; with
limited computational resources it would be difficult to col-
lect and process a large collection of views together. Second,
in many applications views of data are available over time; it
is infeasible to apply the existing methods to such streaming
views. For example, in dangerous gas detection system [23]],
a number of sensors have been deployed to detect the chem-
ical gas and sample the field data once in a while. In this
application, there are a number of gaseous substances which
need to be classified and each gas substance is continuous-
ly monitored by several sensors. The sampled data at each
time interval constitute a view, so the number of views in-
creases over time. Obviously, none of the above mentioned
multi-view SVM methods are applicable to such streaming
views, because there would be an endless number of views
available and it is too expensive, if not impossible, to store
all historical views in a repository and ensemble all of them.

To address the two limitations, in this paper we propose
a novel incremental multi-view SVM (IMSVM) method, i.e.,
instead of ensembling the collection of all views simultane-
ously, we integrate them one by one in an incremental way.
The basic idea is that, assuming we have already learned a
model from previous views, when a new view is available,
instead of redoing multi-view learning on all views, we only
update the model with the current view and learn a consen-
sus result by applying the updated model. This method is
scalable and suitable for streaming views.

In IMSVM, we keep a model which represents a collec-
tion of previous views. This model consists of a consensus
kernel together with some necessary SVM parameters. Ini-
tially, we construct a Gaussian kernel from the first view and
use it to learn the SVM parameters; next, when a new view is
available, we apply it to update the kernel and SVM param-
eters jointly, for the reason that, on one hand, given a kernel
matrix, we aim to learn SVM parameters which can classify
the instances correctly; on the other hand, given the SVM
parameters, we wish to learn a kernel matrix which can fit
the current classifier better. Different from traditional ker-
nel learning methods which explicitly combine kernels and
optimize structured (e.g. linear, nonnegative, convex) com-
positions of the kernels [11} 27], we learn a non-parametric
kernel in such a way that we can effectively enlarge the re-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

gion from which an optimal kernel can be chosen for classi-
fication, i.e., we have a great chance to learn a better kernel.

However, an obvious problem with non-parametric k-
ernel learning is that we may need to relearn the model to
obtain the kernel values of testing data. To handle this out-
of-sample problem, we enforce a reconstruction property on
the learned kernel to preserve the manifold structure of the
data in the mapping kernel space, so that the kernel values of
new data can be computed efficiently. Thanks to this recon-
struction property, we can also effectively handle new data
and missing data in new views.

We present a block coordinate descent algorithm to
solve the objective function of IMSVM, which is theoreti-
cally guaranteed to converge. To demonstrate the effective-
ness of our IMSVM, we conduct extensive experiments on
benchmark data sets and compare IMSVM with the state-of-
the-art multi-view SVM methods. The experimental results
show that our method significantly outperforms the baseline
methods; not only is it scalable, it also has lower classifica-
tion error rates than the state-of-the-art methods.

2 Related Work

In recent years, SVM [2] has been extended to multi-view
settings many times. For example, Farquhar et al. proposed
an SVM method for two-view data by combining the kernel
canonical correlation analysis (KCCA) [8] and SVM [4].
Li et al. presented a two-view transductive SVM model
which takes advantage of both the abundant amount of
unlabeled data and their multiple representations to improve
the performance [13].

Besides the above SVM methods for two-view data,
many SVM methods have been extended to the data which
contain more than two views. For example, Gehler et al.
proposed a boosting approach for multi-view classification
by ensembling the classification results in each view [6];
Sun et al. and Xie et al. presented multi-view SVMs
for semi-supervised learning which integrated the manifold
regularization into their SVM formulations [[19, 24]]; Huang
et al. provided a multi-view L2- SVM method which utilized
the core vector machine (CVM) [21] for the purpose of
efficiency [10]. Houthuys et al. proposed a least squares
SVM which combines the benefits from both early and late
fusion of multiple views [9]]. Tang et al. presented a multi-
view SVM method using the privileged information [20].

Since SVM is a kernelized method, some multiple ker-
nel learning methods can be used for multi-view data. Kloft
et al. presented an SVM based multiple kernel learning
method whose kernel combination coefficients p are opti-
mized under the constraint |||, < 1 with p > 1 [11]. Xu et
al. presented a hinge loss soft margin multiple kernel SVM
method whose kernel combination coefficients are optimized
by solving a hinge loss [27]].

All above multi-view SVM methods and SVM based

multiple kernel learning methods learn a consensus result
by applying an ensemble algorithm over the collection of all
views. So they have two limitations: they are not scalable
and hard to handle streaming views data.

3 Preliminaries about Single-view Multi-class SVM

In this section, we provide some background knowledge of
single-view multi-class SVM. Throughout the paper, we use
boldface uppercase and lowercase letters to denote matrices
and vectors, respectively, unless otherwise specified. We use
lowercase letters to denote the scalars. The (3, j)-th element
of a matrix A is denoted by A;; and the i-th column of a
matrix A is denoted by A;.

Let D = {(x1,41), .-y (Xn, Yn)} be a single-view data
set of n training instances. Each instance x; is a d-dimension
vector from the domain X C R? and each label y; 1s an
integer from the set Y = {1, 2, ..., ¢} where c is the number
of classes. A multi-class classifier is a function C : X —)
that maps an instance x; to an element y; €).

According to [3]], one formulation of multi-class SVM
is as follows:

. B 5 -
3.1 %1? §||A||F+;§i

st. Yie{l,..,n},je{l, .., c}:
AyiTXi + 0y, — AjTXi >1-&, &=>0

where Aj is the j-th column of the d x ¢ weight matrix A,
&; is a slack variable, 3 is a balancing parameter, and d; ; is
a Kronecker symbol, i.e., §;; = 1if ¢ = jand d;; = 0
otherwise.

In the training phase, we learn A by optimizing E-
q.(3I). In the testing phase, given a testing instance x, we
predict the label of x as follows:

(3.2) C(x) = argmax A; .
j=1

To handle the non-linear data, we need to apply kernel
trick to this multi-class SVM (Eq.(3.I)). Introducing the
dual variables 7 € R“*"™ and the kernel function K (-, -) that
satisfies Mercer’s conditions, the dual program of Eq.(3.1))
using kernel functions is:

,j=1

(3.3) min Z Kjm' 't — 627';1%
i=1
st. Vie{l,.,n}: 7 <1,, 71 =0.

where K;; is the (i, j)-th element of the Gram Matrix K of
the kernel function K (-, -), 7; is the i-th column of 7, 1,, is
a vector whose components are all zeros except for the y;-th
component which is equal to one and 1 is a vector whose
components are all one.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

In the training phase, we learn the dual variables T by
optimizing Eq.(33). Eq.(3:3) can be efficiently optimized
by a sequential minimal optimization method, i.e., in each
iteration we choose one column in 7 to be optimized. The
detailed algorithm can be found in Algorithm 3 in [3].

After obtaining 7, we can use the following equation to
predict the label of a testing instance x:

3.4) C(x) = argnax Z Ti; K (%, %5).

i=1 =1

where 7;; is the (4, j)-th element of matrix 7.

4 Incremental Multi-view SVM

In this section, we will introduce the formulation of our
IMSVM and provide a block coordinate descent algorithm
to solve the optimization problem.

The basic idea is that, we learn an initial model from
the first view, and when a new view is available, we apply
it to update the existing model, and learn a new consensus
result from the updated model. Since our method extends
the multi-class SVM introduced in the previous section into
multi-view data, the model contains a consensus kernel
matrix K and the SVM dual variables 7. Note that in the
dual program of the original multi-class SVM (Eq.(3.3)), the
kernel matrix K is given as an input and the target is only
to learn the model parameter 7. However, in our multi-
view setting, since we need to integrate the kernel matrices
incrementally, the kernel matrix is also a parameter we need
to learn. On one hand, given a kernel matrix, we aim to learn
an SVM model T to classify the instances correctly; on the
other hand, given the SVM model, we wish to learn a kernel
matrix K which can fit the current classifier better. So in
our method, we learn the kernel and the SVM model jointly.
In the next subsection, we will introduce how to learn the
consensus kernel and dual variables jointly.

4.1 Formulation When handling the first view (t = 1),
we learn a standard single-view SVM classifier. In more
details, we first generate the Gaussian kernel of this view
and then use Eq.(3.3) to learn 7. In the following, we focus
on the case t > 1.

When we handle the ¢-th view (f > 1), we have the
learned consensus kernel K(*~1) of the first ¢ — 1 views and
the Gaussian kernel of the current view K. on hand. The
target is to learn the consensus kernel K*) of all the ¢ views.
Intuitively, we expect the model to be stable in the sense
that the learned kernel K should be as close as possible
to K=V This can be achieved by minimizing a smooth
term || K™ — K¢-D||%.

Moreover, since the learned kernel K(*) integrates the
current kernel K, into KD K® is expected to be as
close as possible to the current kernel K, i.e., the difference

|[K® — KCHi should be minimized. Thus we get the
following kernel integration formula:

@5 min KO =KD+ 0 [KY - K [[F
Kt
st. KO =0, KO =K®T

where the constraints guarantee that K*) is a valid kernel
matrix, i.e., it is symmetric and positive semi-definite.

Combining Eq.(3:3) and Eq.(.3)), we obtain a unified
formula which learns the SVM parameters and the consen-
sus kernel jointly. However, in this formula, it is hard to han-
dle the out-of-sample problem. More specifically, when we
obtain a new testing instance Xtest, We need the kernel val-
ues K (X¢est, X1), ooy KM (Xgest, Xn), Where K () -
X x X — R is a kernel function whose Gram matrix is
the learned K®. So we should relearn K®) with x¢est. S-
ince Eq.(4.5) contains positive semi-definite constraint, the
relearning process may involve eigenvalue decomposition.
Obviously, it is unpractical.

To tackle this problem, we impose a reconstruction
property on the learned kernel K*) to make sure that the
manifold structure of the data can be preserved in the map-
ping kernel space, so that we can learn the kernel values of
new testing instances efficiently.

In more details, according to the definition of the ker-
nel function, for any instances x; and x;, K ® (x1,%x5) =
(p(x1), d(x3)) where ¢ : X — H is a map function and H
is a Reproducing Kernel Hilbert Space (RKHS), and (-,)
is the inner product. For an instance x;, we choose a k-
element subset {x;,,Xi,, ..., Xi, } from the training set as
landmarks. Then we use these k& landmarks to reconstruc-
t x;, i.e., we learn the linear coefficient w; which satisfies
X; ~ Zle w;;X;; where w;; is the j-th element of wj.
Here, we choose the landmarks and learn w; by a similar
way in Locally Linear Embedding (LLE) [[17].

In more details, for an instance x;, we choose its k-
NN points {Xj, , ..., X, } as its landmark points. Here we
follow the assumption of LLE [[17]]: for neighboring points,
Euclidean distance provides a good approximation to real
distance. Therefore, finding k-NN points by Euclidean
distance is feasible. Then we learn w; as follows:

(4.6)

2
k

: k
II‘}VI‘D Xj — Zwijxij + %HWiH%, s.t. Zwu =1.
j=1) j=1

The first term is to minimize the linear reconstruction error,
the second term is an {5 regularization term and the con-
straint is to normalize w;; so that they sum up to 1. Taking
the constraint into the objective function, we obtain

k 2 a k k «
xiwaijxij +§HWi”§ :ZZszwijwiz+§\|WiH§
J=1 2

=1 =1

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

where Qj; = (x; — x3,)T(x; — x;,). Let us define a k x k
matrix Q whose (j,)-th element is Q);; and define a k x k
matrix R as R = (Q + aI)~! where I is an identity matrix.
It is easy to obtain the optima of Eq.(4.6):

k
4.7 wij = —kzlzlkRﬂ :
Zp:l Zq:l qu

where R, is the (p, ¢)-th element in R.. Here, for simplicity,
we empirically set « = 1073 x tr(Q).

Note that although we involve matrix inverse when
constructing R, since the size of R is k x k and k is often
very small in practice (we fix £ = 10 in our experiments),
the time complexity is O(k?), which is acceptable.

After obtaining the reconstruction coefficients of all da-
ta points, to preserve the manifold structure in the mapping
space, the mapped values should also follow the reconstruc-
tion coefficients, i.e., ¢(x;) =~ Z?Zl w;;¢(xj;). Based on
this condition, we can easily compute the kernel value of any
two instances as following.

According to Eq.(@.7), we construct an n X n sparse
matrix W) for the ¢-th view, whose (4, j)-th element Wi(jt)
is computed as Eq.(.7) if x; is a landmark of x; in the ¢-th

view, and is O otherwise. Then for any K Z(,Z), we have

(¢(xp), d(xq))

~ <Z WO s(xe), S W§§)¢<XJ>>

i=1 j=1

(4.8) KD =K (xp,%xq) =

If x,, and x4 are not in the training set, we can also compute
K®(xp,%q) in a similar way. We only need to find the -

NN points of x;, and X4 in the training set, compute W;?

and W(? by Eq.(7) and then compute K*)(xp,x4) by
Eq. .

Thus to make the learned K () have this reconstruction
property, we minimize the following term based on Eq.(@.8):

(49) min Z Z Z Z wOw g

p=1qg=1 i=1 j=1

KO = KOT

2

sit. KO =0,

which leads to the following formulation:

(4.10) min HK
K@

st. KO =0, KO =KOT,

<t>K<t>W<t>TH2
F

Combining Eq.(3.3), Eq.@.5) and Eq.(4.10), we get the
final objective function of our Incremental Multi-view SVM:

@11

1 n n
. t
min A\ [= E Ki(z)TiTTj -5 E Tilei
KO, T 2 £ J ,
’ 3,j=1 i=1

o (o -] - xc)
F F

g HKa) _ W(t)K(t)W(t)TH2
F

st. Vie{l,.,n}: m<1l,, 7'1=0,
K® =0, K®=K®OT,

where \; and A3 are balancing parameters.

Note that in Eq.(@.11), instead of explicitly combining
kernels and optimizing structured compositions of the ker-
nels as traditional methods [11} 27]], which may limit their
capacity of fitting diverse patterns in real complex applica-
tions, we learn a non-parametric kernel which aims to learn
a positive semi-definite kernel matrix directly from the data
such that the learned kernel can be as flexible as possible to
fit the complex data. In other words, we can effectively en-
large the region from which an optimal kernel can be chosen,
and learn a more suitable kernel for classification.

4.2 Optimization Since Eq.(@.11) contains variables K(*)
and 7, we present a block coordinate descent scheme to
optimize it. In particular, we optimize the objective function
with respect to one variable while fixing the other variables.

4.2.1 Optimize 7 by Fixing K(*) When K® is fixed,
Eq.@11) degenerates into Eq.(3.3) which is a standard
single-view multi-class SVM. It can be solved efficiently
by Algorithm 3 in [3]] and it is easy to verify that the
time complexity of this algorithm is O(ncs) where n is the
number of instances, ¢ is the number of classes and s is the
number of iterations.

4.2.2 Optimize K® by Fixing 7 When 7 is fixed, we
rewrite Eq.(@.1T) as following,

(4.12)
min HK“LK“ UH +A2HKtLK H
K1)

W ’Ku) W(t)K(t)W(t)TH Ay (KO7T)

st. KO =0, KO =K®OT

Since Eq.(#.12) involves positive semi-definite constraint, it
is hard to find the closed-form solution. To solve it efficient-
ly, we make a low rank approximation on kernels. More-
over, according to [29]], a low rank kernel often improves the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

learning performance. We assume that the rank of K(*) is
r (r < n), then we can rewrite K = HOTH® where
H® ¢ R™" since K*) is symmetric and positive semi-
definite. For the current kernel K, there are many methods
to obtain its low rank approximation. For example, if n is
small, we can directly compute the Singular Value Decom-
position (SVD) of K. and set all the singular values to 0 ex-
cept for the largest r singular values. If n is large, in which
case computing the SVD directly is very time-consuming,
we can use random Fourier features method [16]] to approx-
imate the Gaussian kernel. In more details, we first sample
7/2 vectors wy, ..., w, /o from zero means and 1/o variances
Gaussian distribution, where ¢ is the bandwidth parameter in
the original Gaussian kernel. Then we construct H, € R™*"™
which satisfies HEFHC ~ K. as follows:

(4.13) H. = [h(z1)7, ..., h(z,)T]
where h(x) = ﬁ[cos(wfx), o cos(wzﬁx),
(4.14) sin(w] z), ..., sin(wﬁQx)]

Taking H®) and H.. into Eq.(#.12)), we need to minimize

the following formula:

(4.15)

min 7 = [HOTH® - HODTROY ’
H(®) F

2
+%||tr(H(t)TH<t)TTT)+>\2 HH“”H“) _HTH.

F
Y HH(”TH(” _ W(t>H<t>TH<t>W<t>TH2

F

Note that Eq.@.13) is an unconstrained optimization prob-
lem and we can solve it by the standard Quasi-Newton
method. To apply the Quasi-Newton method, we first com-
pute the partial derivative of 7 w.r.t. H®):

(4.16)
73?{{0 =(4 4 422 + 23 HOVHOTH® —4qOH-DTHOD

—4HYHIH. — 4\ ;HOWOHOTHOWOT
—aHOWOTHOTHOW® Loy HO 7T
+4)\3H(t)W(t)Tw(t)H(t)TH(t)W(t)Tw(t)

Since we use low rank representation H(®) instead of kernel
matrix K*), we reduce the space complexity from O(n?)
to O(nr + nc + nk), where k is the k&-NN number in W)
and r, ¢,k < n. Eq.@.16) only involves matrix multiplica-
tions. The time complexity of computing HOH®OTH®),
HOHCDTHED and HOHIH, is all O(nr?); the
time complexity of computing H® 7T 7 is O(nrc). Since
W® is a sparse matrix and each row of it contains O(k)
non-zero elements, the time complexity of computing

HOWOHOTHOWMBOT —~— HOWOTHOTHOW®)
and HOWOTWOHOTHOWOTW® s all
O(nr? + nrk).

According to [3]], optimizing T can make the objec-
tive function Eq.(3.3) decrease monotonically. In addition,
Quasi-Newton method can also decrease Eq.(4.15). There-
fore, whether optimizing 7 or K(*) decreases the objective
function Eq.(4.T1)) monotonically and the objective is lower
bounded. So this block coordinate descent algorithm con-
verges. Algorithm [T]summarizes the whole process.

Algorithm 1 Training phase of IMSVM

Input: A multi-view data set D = {(X),), ..., (X,))},
parameters A1, A2, A3, 3, and rank r of H®,
Output: low rank approximation H®, sVvM parameter T
1: Construct HY of the Gaussian kernel of the first view.
2: Optimize the initial 7 by Algorithm 3 in [3].
3: fort =2,3,--- ,vdo
4: Construct the low rank approximation H. of the Gaussian
kernel of the ¢-th view.

5. Construct W® by Eq.[@7).

6: while not converge do

7: Optimize T by Algorithm 3 in [3].

8: Optimize H® by Quasi-Newton method.
9: end while
10: end for

4.3 Testing Phase Algorithm[I|shows the process of train-
ing phase, and in this subsection, we present how to classify
a data point in the testing set. When we get a testing point
Xiest 1N the t-th view, we need the kernel values ktest(t) =
[K® (Xtest, X1); - KU (X¢est, Xn)]. Since we impose the
reconstruction property on the learned kernels, we can com-
pute these kernel values efficiently. In more details, we first
find the k-NN pointsﬂ of Xtest in the training set and learn
the sparse reconstruction weights Wtest(t) € R'X" by E-
q.@7). Then we take Wiest) into Eq.(@.11) and obtain:

4.17)

2 2
min Hktest(t) - ktest(til) H + A2 Hktest(t) - kc7test ‘
keest™® 2 2

2
2 [[Kiest? = Wiest KOWO||

where kc,test = [Kc(xtest7 Xl), veey Kc(xtesta Xn)] is the k-
ernel values of the current view. Since Xiest 1S not in the
training set, we omit the SVM loss of Eq.@.T1) here. If
the testing data Xiest 1S new in this view, i.e., it did not
appear in previous views, we can easily omit the first ter-

2
m Hktest(t) — ktest(t_l)‘ . However, in traditional multi-
2

TIf the number of instances or dimensions is too large, so that it is
difficult to find the exact k-NN points, we can use some fast nearest
neighbor algorithm to obtain the approximate k-NN points, e.g. [1].

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

view SVM methods which collect all views to learn a classi-
fier, it is hard to handle this missing data case.
Eq.(.17) has a closed-form solution:

(4.18)
1

T (Koest 7 + Azke tost + AsWiest K OW)

ktest ®)

After obtaining kiest (t), take it into our classifier:

n

4.19) C(Xtest) = argfnax E Tin(t) (Xtest, Xj)
i=1 *“
j=1

Since the number of support vectors [is often very small, 7
is sparse and we just need to compute K ®) (Xtests xj) where
x; is a support vector. So the time complexity of Eq.(4.19)
is O(lc). Note that in Eq.@I38), Wioet DKOW® =
Wiest VHOTHOW®), in which HOW) which costs
O(nkr) time can be calculated beforehand and only calcu-
lated once. Wiest PH®T costs O(kr) time and multiply-
ing Wiess VH®OT by HOW costs O(rl) time since we just
need to use the support vectors in Eq.@.19). Thus although
we learn a non-parametric kernel in our method, the testing
time is comparable with the standard SVM.

4.4 Handling New Data and Missing Data In the stream-
ing view setting, it often happens that there are a small quan-
tity of new data or missing data in the new view. In tradition-
al multi-view SVM methods which collect all views for clas-
sification, it is hard to handle this incomplete data setting.
Fortunately, since our method learns H® which can be re-
garded as an embedding of instances in the kernel space and
imposes the reconstruction property on kernels, this problem
can be solved naturally.

The essential problem is that when optimizing E-
q.@.15), H(~1 and H, are not aligned, i.e., some instances
appear in H(*~1) while are absence in H, and vice versa.
A natural way to solve it is filling H(*~Y and H, before
optimizing Eq.@.13). Since we enforce the reconstruction
property on kernels, the filling step is easy. For an instance
x which is in the H¢=1 while is absence in H_, we denote
h, ™Y as the corresponding column of x in H(~1. We
first find its k-NN instances in the common instances (ap-
pearing in H*~1) and H_ both), and learn the linear coeffi-
cient by Eq.@7) such that h, =Y ~ E?zlehj(t_l) where
hj(t_l) is a k-NN instance of x represented in H(*~1) and
wyj s the linear coefficient. Then in H., we reconstruct the
corresponding instance by h,© = Z;‘-’:le h;“ where hy“ is
the estimated x in H, and h;“ is the A-NN instance of x rep-
resented in H.. For the instances that appear in H, while
absence in H(*=1) | we can handle them similarly.

5 Experience

In this section, we empirically evaluate the effectiveness of
the proposed IMSVM on benchmark multi-view data sets.

Table 1: Description of the data sets.

#instances #features #classes
UCI Digit 2000 216,76,64,6,240,47 10
Corel 3400 64,9, 128, 10, 8, 104, 15 34
4096, 2688, 2000, 252
AwA 30475 2000, 2000, 2000, 40960 30
Gas Sensor 17922 72 features x 100 views 11

5.1 Data Sets We use benchmark multi-view data sets to
evaluate the effectiveness of our method, including UCI Dig-
it data selE] [22], Corel data seﬂS], and Animal with At-
tributes (AwA) data seﬂ12]. Moreover, to evaluate the ef-
fectiveness of our method on streaming view date set, we
conduct the experiences on Gas sensor data setE] [23]]. This
data set contains time-series measurement recordings col-
lected from an array of 72 metal-oxide gas sensors utilized
in the detection of dangerous chemical gaseous substances.
Since the data set is a time-series recording, we sample 100
views from 100 time points, and in each view the recordings
of the 72 sensors are the features. By this way, we obtain a
100-view data set. The important statistics of these data sets
are summarized in Table [T}

5.2 Baseline Methods To evaluate the effectiveness of our
method, we compare it with the following methods:

o Single-view SVM [3]], which is a standard single-view
multi-class SVM introduced in Section[3

e Lp-boost SVM [6], which is a multi-view SVM using
boosting approach to mix multiple views.

e LpMKL [11]], which is a multiple kernel SVM method
whose kernel combination coefficients p are optimized
under the constraint ||p||, <1 with p > 1.

o SMMKL [27], which is a hinge loss soft margin multi-
ple kernel SVM method whose kernel combination co-
efficients are optimized by solving a hinge loss.

e MvCVM [10], which is a multi-view SVM utilizing
CVM method [21]].

Note that although LpMKL and SMMKL are multiple
kernel learning methods, they use SVM loss function, so we
regard them as SVM based methods and compare with them.
All methods, including our method and all compared meth-
ods, use multiple Gaussian kernels as input data. Single-view

" Znttp://archive.ics.uci.edu/ml/datasets/
Multiple+tFeatures
Jhttp://www.cs.virginia.edu/%7exj3a/research/
CBIR/Download.htm
*http://attributes.kyb.tuebingen.mpg.de/
Shttp://archive.ics.uci.edu/ml/datasets/Gas+
sensor+tarrayst+intopent+sampling+settings

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cs.virginia.edu/%7exj3a/research/CBIR/Download.htm
http://www.cs.virginia.edu/%7exj3a/research/CBIR/Download.htm
http://attributes.kyb.tuebingen.mpg.de/
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

5 03]
5

©

1

g 02

2 0.15]

0.35

0.25

01
0.05

 —

——IMSVM

A~ MvCVM

——IMSVM

error

Classification

——IMSVM
09 Single-view
—— Lp-boost

&
£
2
H

2

3

2
Views

5

2
Views.

Classification error

o o

——IMSVM
Single-view
LpMKL
SMMKL
-4 MvCVM

(a) Error rates on UCI Digit (b) Error rates on UCI Digit
(without Single-view SVM)

(¢) Error rates on Corel

10 20 30 40 50 60 70 80 90 100
Views Views Views

(d) Error rates on AWA (e) Error rates on Gas Sensor

Figure 1: Error rates on multi-view data sets.

SVM is a weak baseline as it only uses the current view; the
other four methods are strong baselines as they make use of
all available views. Since our method is in an incremental
scheme, it only uses the current view to update the model
and learn a new result with the updated model.

5.3 Experimental Setup In our experiments, on all data
sets, we start incremental multi-view learning with the sec-
ond view. When the t¢-th view (¢ > 2) is available, we run
our method and the baseline methods and report the classifi-
cation error rates on the testing set as [26] did. We randomly
select 3/4 instances as the training set and the rest 1/4 in-
stances as the testing set. We repeat this process 5 times and
report the average results.

We fix the rank of kernel matrix » = 100 and the k-NN
parameter £ = 10 on all data sets. We fix A3 = 0.1, 5 = 0.1
and tune A; and Ay by 5-fold cross validation in the range
[1073,10%]. We tune the parameters of the baseline methods
as suggested in their papers.

All experiments are conducted using Matlab on a PC
computer with Windows 7, 3.4GHz CPU and 32GB memory.

5.4 Experimental Results Figure |l| shows the classifica-
tion error rates of our method and the baseline methods on
the benchmark data sets. We see that the error rates of our
method keep decreasing with the increasing of the number of
views on all data sets. This indicates that using a new view
to update the current model can indeed improve the perfor-
mance of the model.

The classification results also clearly demonstrate that
our method significantly outperforms the single-view SVM.
Note that on the UCI Digit data set (Figure 1(a)), since
the performance of single-view SVM on the fourth view is
too bad, it is hard to distinguish the results of our method
and the other baseline methods. We redisplay the results of
our method and the baseline methods except the single-view
SVM on Figure 1(b). We can also see that, on most data sets,
our method can even outperform the state-of-the-art multi-
view SVM methods which collect all views for classification.
The major reason is that our method learns a non-parametric
kernel in which way we enlarge the region from which an

optimal kernel can be chosen, and have a great chance to
learn a more suitable kernel.

Note that on AwA data set, we only show the results of
our method, Single-view SVM and MvCVM because Lp-
boost SVM, LpMKL, and SMMKL run out of memory.
These methods need to handle kernel matrices which need
O(n?) space and will fail when n is large. MVCVM can
only handle 5 views on this data set, and run out of memory
when the 6-th view is available. Although MvCVM uses
sampling technique to handle the case that n is large, the
space complexity is square in the number of views v. On
Gas Sensor data set, Lp-boost SVM cannot run a result
in an acceptable time since it needs to solve a quadratic
programming which contains O(n+v) variables and O(cn+
v) constraints. Moreover, with the increasing of the views,
our method always works. However, LpMKL, SMMKL
and MvCVM can only work on the first 6, 6, and 11 views
respectively. When one more view comes, they run out of
memory. It demonstrates that those methods which collect
all views to learn a consensus result are not scalable. Since
our method is in an incremental scheme, the memory it uses
is independent of the number of views, and it can always
work no matter how many views there are.

5.5 Running Time on Streaming Views Figure [2] shows
the running time on the streaming views data set Gas Sensor.
In this setting, the views are available one by one and we
show the training and testing time of our method and the
other baseline methods when a new view arrives.

As introduced in previous subsection, LpMKL and S-
MMKL can only work on the first 6 views and MvCVM
can only work on the first 11 views. Since our method is
an incremental method, i.e., when a new view arrives, we
just need to handle the current view, the running time of our
method is relatively stable with the number of views. There-
fore, when the number of views is large, our method is sig-
nificantly faster than Lp)MKL and SMMKL. Since MvCVM
uses CVM to speed up the method, it is fast when the number
of views is small. However, when the number of views in-
creases, it also slows down significantly and when handling
more than 10 views, it is slower than ours in training phase.

Copyright © 2019 by SIAM
7 Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

In the testing phase, the running time on the whole
testing set of our method is stable in about 5 seconds, while
the time of other methods increases with the increasing of
the number of views. When the number of views is large, our
method is also significantly faster than the baseline methods
in the testing phase.

1
——IMSVM ——IMSVM

1200 LpMKL LpMKL
_ SMMKL 20 SMMKL
3 1000 -4~ MVCVM 3 -5~ MVCVM
2)

315

2 800 o
E £ £
g o0 2iof| 2
£ Z
) AOOW% " }

200; 4 1

i

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Views Views

(b) Testing time (on all testing in-
stances)

(a) Training time

Figure 2: Running time on Gas Sensor data set.

5.6 Evaluation on Sensitivity to the Order of Views An
important property of our IMSVM is that it is not sensitive
to the order of views. We empirically evaluate this property
by randomly shuffling the views of each data set 5 times.
Table[2| shows the results under 5 different order of views. It
is easy to check that the 5 results in each row are similar
and most results are better than the result of the second
best method, meaning that our incremental method produces
similar results under whatever order of views.

Table 2: Classification error rates of IMSVM under 5 differ-
ent order of views.

Data sets . 5 Different gllew orderz . S%%%? d

UCI Digit 0.0058 | 0.0081 0.0097 | 0.0081 0.0077 0.0083

Corel 0.3352 | 0.3320 | 0.3361 0.3379 0.3344 0.3811
AwA 0.4352 | 0.4422 | 0.4131 0.4665 0.4623 -
Gas Sensor 0.1263 | 0.1192 | 0.1556 | 0.1443 | 0.12437 -

5.7 Handling New Data and Missing Data We evaluate
the ability of our method to handle new data and missing
data. Given a data set, in the first view, we randomly remove
p% of data as missing data. Then, in following each view,
we add p/(v — 1)% of data as new data and simultaneously
remove p/(v — 1)% of data as missing data, where v is the
number of views. Thus in each view, the ratio of missing
data is p%. We show the classification results in Figure

In Figure [3] we show the results of missing data from
10% to 70%. Here p = 0 means that the data set is complete
without missing data. As expected, the performance is
degraded with the increasing of missing data. Despite all
this, the performance of our method on the data whose ratio
of missing data is lower than 30% is close to it on the

o 07
065
° OQSW
- _ 08
s s
3 3
0.0 A 0. 55\’—/\/
g "—p0 — X § [—p=0
g p=10[\, \ g 05 p=10
00151 ——p=20 F —p=20
ki ——p=30\ L R | B I
o p=40 © 04 p=40 A
001 p=50 p=50
p=60 035 p=60
——p=70 ——p=70
0.00
2 3 4 5 6 2 3 4 5 6 7
Views Views
(a) UCI Digit (b) Corel
o 0

0.2

0.15)

0.1

——p=70

Classification error
o
2
IS
® /
<
® K
Classification error
o
5
]

5 0'0 10 20 30 40 50 60 70 80 90
Views Views

(c) AWA (d) Gas Sensor

Figure 3: Classification results in the incomplete data.

complete data. It demonstrates that our method can handle
the case with a small quantity of missing and new data well.

—a—1,=0.001 ot —a—1,=0.001 ‘

03(| 42,001 0.08l| =—2,70.01 I
0.25(| ——A,=0.1 —— 2,701 /’/\
02 A=t 06| AL

A,=10 2,710
015 27100 o 2,7100
0.1[| 2271000 1‘ ——1,=1000

\/ 0.02§
oo | T%%

4 5 6

Views Views

(a) A1 on UCI Digit (b) A2 on UCI Digit

o

o

Classification error
Classification error

1l|——p=0.1
——p=1
B=10
B=100

&
i
S
S
2
o

0. 0.1
—a—1,=0.001 I[=s=p=0.01 |

o
3
2

o
s
e

Classification error
>
I
L
o
Classification error
o
9
3

o b

1

0.054

N

|

3 4 5 6 3 5 6
Views Views

(c) A3 on UCI Digit (d) 8 on UCI Digit

g

Figure 4: Classification error w.r.t. A1, A2, A3, and 5 on UCI
Digit data set.

5.8 Parameter Study We test different parameter settings
for IMSVM to see the performance variation. We tune Ay,
A2 and A3 in (1073, 10%] and tune 3 in [10~2,102]. Figure[4]
shows the results on the UCI Digit data set, and the results
on other data sets are similar. From Figure [d] we see that the
performance is stable across a wide range of the parameters.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/06/19 to 210.45.209.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

6 Conclusion

We presented a novel incremental multi-view SVM method
(IMSVM). In IMSVM, we keep a consensus kernel together
with some SVM parameters as a model, and when a new
view is available, we update the model and apply it to learn
a consensus result. This essentially differs from the existing
multi-view SVM methods and is scalable and ready to handle
streaming views data. In order to obtain a more suitable
kernel, we learn a non-parametric kernel instead of explicitly
combining all kernels. Although learning non-parametric
kernel leads to the out-of-sample problem, we handle it by
enforcing a reconstruction property on the learned kernels.
Experimental results shows its effectiveness; not only is it
scalable, it also has better classification performance.

7 Acknowledgments

This work is supported by the National Natural Science
Fund of China grants 61806003, and 61502289, the China
National 973 program 2014CB340301, and the Key Natural
Science Project of Anhui Provincial Education Department
KJ2018A0010.

References

[1] Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approximate
knn graph construction for high dimensional data via recur-
sive lanczos bisection. JMLR, 10(Sep):1989-2012, 2009.

[2] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine learning, 20(3):273-297, 1995.

[3] Koby Crammer and Yoram Singer. On the algorithmic imple-
mentation of multiclass kernel-based vector machines. Jour-
nal of machine learning research, 2(Dec):265-292, 2001.

[4] Jason Farquhar, David Hardoon, Hongying Meng, John S
Shawe-taylor, and Sandor Szedmak. Two view learning:
Svm-2k, theory and practice. In NIPS, pages 355-362, 2005.

[5] James C French, James VS Watson, Xiangyu Jin, and
WN Martin. Integrating multiple multi-channel cbir systems.
In Workshop on MIS. Citeseer, 2003.

[6] Peter Gehler and Sebastian Nowozin. On feature combination
for multiclass object classification. In /ICCV, 2009.

[7] Zhenfeng Gu, Zhao Zhang, Jiabao Sun, and Bing Li. Robust
image recognition by 11-norm twin-projection support vector
machine. Neurocomputing, 223:1-11, 2017.

[8] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor.
Canonical correlation analysis: An overview with application
to learning methods. Neural computation, 16(12):2639—
2664, 2004.

[9] Lynn Houthuys, Rocco Langone, and Johan A.K. Suykens.
Multi-view least squares support vector machines classifica-
tion. Neurocomputing, 282:78 — 88, 2018.

[10] Chengquan Huang, Fu-lai Chung, and Shitong Wang. Multi-
view 12-svm and its multi-view core vector machine. Neural
Networks, 75:110-125, 2016.

[11] Marius Kloft, Ulf Brefeld, Séren Sonnenburg, and Alexander

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]
[26]
(27]

(28]

[29]

(30]

Zien. Lp-norm multiple kernel learning. Journal of Machine
Learning Research, 12(Mar):953-997, 2011.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Learning to detect unseen object classes by between-
class attribute transfer. In CVPR, pages 951-958. IEEE, 2009.
Guangxia Li, Steven CH Hoi, and Kuiyu Chang. Two-view
transductive support vector machines. In SDM, pages 235—
244. SIAM, 2010.

Vasileios Mygdalis, Anastasios Tefas, and loannis Pitas. Ex-
ploiting multiplex data relationships in support vector ma-
chines. Pattern Recognition, 85:70-77, 2019.

Minh Ha Quang, Loris Bazzani, and Vittorio Murino. A
unifying framework for vector-valued manifold regularization
and multi-view learning. In /ICML, pages 100-108, 2013.

Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. In NIPS, pages 1177-1184, 2007.
Sam T Roweis and Lawrence K Saul. Nonlinear dimen-
sionality reduction by locally linear embedding. Science,
290(5500):2323-2326, 2000.

Vikas Sindhwani and David S Rosenberg. An rkhs for multi-
view learning and manifold co-regularization. In ICML,
pages 976-983, 2008.

Shiliang Sun. Multi-view laplacian support vector machines.
In International Conference on Advanced Data Mining and
Applications, pages 209-222. Springer, 2011.

Jingjing Tang, Yingjie Tian, Xiaohui Liu, Dewei Li, Jia Lv,
and Gang Kou. Improved multi-view privileged support
vector machine. Neural Networks, 106:96 — 109, 2018.
IW-H Tsang, JT-Y Kwok, and Jacek M Zurada. Generalized
core vector machines. [EEE Transactions on Neural Net-
works, 17(5):1126-1140, 2006.

M Van Breukelen, Robert PW Duin, David MJ Tax, and
JE Den Hartog. Handwritten digit recognition by combined
classifiers. Kybernetika, 34(4):381-386, 1998.

Alexander Vergara, Jordi Fonollosa, Jonas Mahiques, Marco
Trincavelli, Nikolai Rulkov, and Ramén Huerta. On the per-
formance of gas sensor arrays in open sampling systems using
inhibitory support vector machines. Sensors and Actuators B:
Chemical, 185:462-477, 2013.

Xijiong Xie and Shiliang Sun. Multi-view laplacian twin
support vector machines. Applied Intelligence, 41(4):1059—
1068, 2014.

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-
view learning. arXiv: Learning, 2013.

Chang Xu, Dacheng Tao, and Chao Xu. Streaming view
learning. arXiv: Machine Learning, 2016.

Xinxing Xu, Ivor W Tsang, and Dong Xu. Soft margin
multiple kernel learning. /EEE TNNLS, 24(5):749-761, 2013.
Zhao Zhang and Tommy W S Chow. Maximum margin
multisurface support tensor machines with application to
image classification and segmentation. Expert Systems With
Applications, 39(1):849-860, 2012.

Peng Zhou, Liang Du, Lei Shi, Hanmo Wang, and Yi-Dong
Shen. Recovery of corrupted multiple kernels for clustering.
In IJCAI pages 41054111, 2015.

Yao Zhou and Jingrui He. A randomized approach for
crowdsourcing in the presence of multiple views. In ICDM,
pages 685-694, 2017.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related Work
	Preliminaries about Single-view Multi-class SVM
	Incremental Multi-view SVM
	Formulation
	Optimization
	Optimize by Fixing K(t)
	Optimize K(t) by Fixing

	Testing Phase
	Handling New Data and Missing Data

	Experience
	Data Sets
	Baseline Methods
	Experimental Setup
	Experimental Results
	Running Time on Streaming Views
	Evaluation on Sensitivity to the Order of Views
	Handling New Data and Missing Data
	Parameter Study

	Conclusion
	Acknowledgments

