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ABSTRACT
Multi-view clustering is an important machine learning task for

multi-media data. Recently, graph filter based multi-view clustering

achieves promising performance and attracts much attention. How-

ever, the conventional graph filter based methods only use a pre-

defined graph filter for each view and the used graph filters ignore

the rich information among all views. Different from the conven-

tional methods, in this paper, we aim to tackle a new problem, i.e.,

instead of using the pre-defined graph filters, how to construct an

appropriate consensus graph filter by considering the information

in all views. To achieve this, we propose a novel multi-view cluster-

ing method with graph filter learning. In our method, we learn an

appropriate consensus graph filter from all views of data with multi-

ple graph learning rather than directly pre-defining it. Then, we pro-

vide an iterative algorithm to obtain the consensus graph filter and

analyze why it can lead to better clustering results. The extensive

experiments on benchmark data sets demonstrate the effectiveness

and superiority of the proposed method. The codes of this article

are released in http://Doctor-Nobody.github.io/codes/MCLGF.zip.
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1 INTRODUCTION
In real-world multi-media applications, many data are represented

in multiple views, which are called multi-view data. For example,

a web page may contain several views of content such as texts,

images, and videos. To handle these multi-view data, multi-view

learning is proposed and becomes an important field of research in
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the multi-media and machine learning community [9, 17, 37, 38, 48–

51]. Among them, multi-view clustering attracts increasingly more

attention because it does not need any annotations or labels, which

makes it more easily used in real-world applications.

Multi-view clustering adopts the consensus and complementary

information among multiple views to learn a consensus clustering

result. For example, Kumar et al. learned the consensus result by

applying the co-regularized term in multi-view spectral clustering

[15]; Huang et al. designed non-linear fusion method for multi-

view clustering with self-paced learning [11]; Wen et al. discovered

the consensus and complementary information in the graphs of

all views and proposed a multi-view clustering method to handle

incomplete multi-view data [35]. Among them, graph filter based

multi-view clustering is one of the new and promising methods

[10, 12, 18]. These methods first obtain more cluster-friendly repre-

sentations of multi-views with the graph filters and then learn a

consensus result on these cluster-friendly representations.

Although the graph filter based methods achieve promising per-

formance, they still have two limitations. Firstly, their graph filters

are often pre-defined or designed manually. As we know, the effect
of the graph filter depends on the quality of the corresponding

graph. However, unfortunately, it is difficult to tell which graph

is appropriate for a given data or a given view in advance. The

pre-defined graph filters constructed from an inappropriate graph

may not improve or even deteriorate the clustering performance.

Secondly, the previous works design the filters for each view inde-
pendently, which means the filters cannot adopt the rich consensus

and complementary information among different views. Therefore,

to further improve the performance, we should be more careful to

design the graph filters for multi-view clustering.

To address these issues, in this paper, instead of directly applying

the graph filter to do multi-view clustering, we focus on an alter-

native question, i.e., how to learn an appropriate graph filter for

multi-view clustering. To this end, we propose a novel Multi-view

Clustering method based on Learnable Graph Filter (MCLGF). Dif-

ferent from conventional methods which construct the graph filter

for each view independently, we aim to learn one consensus graph

filter for all views so that the filter may consider the consensus and

complementary information among all views. To achieve this, we

learn the appropriate graph filter in a multiple graph learning frame-

work, which can effectively ensemble the information in all views.

Although the introduced objective function seems complicated, we

provide an ADMM method [2] which can effectively optimize it to

learn the consensus graph filter. We also provide some theoretical

analysis to show that with the learned graph filter, we can indeed

obtain a more cluster-friendly representation. The extensive ex-

periments on multi-view data show that the proposed method can

outperform the compared multi-view clustering methods and even

the state-of-the-art graph filter based methods.
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We summarize the main contributions of this paper as follows:

• Different from conventional methods, which only directly

apply the graph filter to improve the clustering performance,

we focus on answering a new question which is how to learn

an appropriate graph filter for multi-view data.

• We propose a novel multi-view clustering method with a

learnable graph filter via multiple graph learning. With mul-

tiple graph learning, the learned graph filter can effectively

adopt rich information in all views.

• We conduct extensive experiments on benchmark data sets

to demonstrate the effectiveness of the proposed multi-view

clustering method.

2 RELATEDWORK AND PRELIMINARIES
In this section, we briefly introduce some related works and pre-

liminaries of the multi-view clustering and graph filter.

2.1 Multi-view Clustering
Multi-view clustering often learns a consensus clustering result

frommultiple views by extending some single-view clusteringmeth-

ods with considering the consensus and complementary in all views.

For example, Cai et al. extended the kmeans from single view to

multi-view data leading to the multi-view kmeans method [3]; Liu

et al. proposed the multi-view non-negative matrix factorization

method for multi-view data [7].

Since spectral clustering is one of the most famous clustering

methods, many works extend spectral clustering to the multi-view

setting. For example, Xia et al. provided a robust multi-view spec-

tral clustering method with low-rank and sparse decomposition

[36]; Nie et al. proposed some parameter-free and auto-weighted

multi-view spectral clustering methods [24–26]; Tao et al. designed

some robust multi-view spectral clustering methods with ensemble

clustering [30, 31]; Zhou et al. proposed an incremental multi-view

spectral clustering method which can handle the data with large

number of views [52]; Li et al. applied the spectral clustering on the

consensus graph learned from the multiple views [16]; Zong et al.

designed the multi-view spectral clustering based on the spectral

perturbation [53].

Another popular clustering method is subspace clustering and

thus many multi-view subspace clustering methods are proposed.

For example, Zhang et al. learned the latent representations of the

data formulti-view subspace clustering [41, 42]; Kang et al. designed

a large scale multi-view subspace clustering method in linear time

with bipartite graph [13]; Zhao et al. presented a robust multi-view

subspace clustering method by learning the consensus represen-

tation [45]; Zhang et al. designed a one-step multi-view subspace

clustering method without any postprocessing [44]; Zhang et al.

proposed a multi-view subspace clustering method by considering

the low-rank structure [43].

This paper proposes a spectral-basedmulti-view clusteringmethod

by learning an appropriate consensus graph filter.

2.2 Graph Filter
Considering an undirectedweighted graphGwith𝑛 vertices {𝑣1, · · · , 𝑣𝑛},
its adjacency matrix is W ∈ R𝑛×𝑛 where W is symmetric and

𝑊𝑖 𝑗 ≥ 0. Then, we can construct its normalized Laplacian matrix

L = I−D−
1

2 WD−
1

2 , where I is an identity matrix and D is a diagonal

matrix whose diagonal elements are the summation of the rows of

W. Consider the eigenvalue decomposition of L: L = UΣU𝑇 , where
U ∈ R𝑛×𝑛 is composed of 𝑛 eigenvectors of L and Σ ∈ R𝑛×𝑛 is a

diagonal matrix whose diagonal elements are 𝑛 eigenvalues of L.
From the perspective of spectral graph theory, the eigenvectors of

L are the Fourier bases of the graph and the eigenvalues are the

associated frequencies [28].

Now, given a graph signal s = [𝑠 (𝑣1), · · · , 𝑠 (𝑣𝑛)]𝑇 on the graph

G, the graph filter is a transform or an operation F on the graph

signal s. In the clustering task, the data feature matrix X ∈ R𝑛×𝑑
with 𝑛 instances and 𝑑 features can be regarded as 𝑑 graph signals.

If data X has a clearer clustering structure, it should follow the

cluster and manifold assumption, which is that the data in the same

cluster should be close to each other.

Previous works [23, 27] show that smoother signals X will have a

clearer clustering structure which follows the cluster and manifold

assumption. Therefore, to obtain better clustering performance,

we should use a graph filter on the signals X to make it smoother.

According to [18, 23], smooth signals should contain more low-

frequency bases than high-frequency bases. Therefore, one popular

graph filter is defined as :

F (s) = U
(
I − Σ

2

)𝑟
U𝑇 s =

(
I − L

2

)𝑟
s, (1)

where 𝑟 is a positive integer to capture the 𝑟 -hop neighborhood

high-order relation. Notice that small eigenvalues in L, which cor-

responds to the low-frequency parts, lead to large eigenvalues in(
I − L

2

)𝑟
, and thus the graph filter can preserve the low-frequency

parts and suppress the high-frequency parts. Here we use

(
I − L

2

)𝑟
instead of directly use (I − L)𝑟 because all the eigenvalues in L are in

the range [0, 2]. By the filter

(
I − L

2

)𝑟
, the transformed eigenvalues

are in the range [0, 1]. If we use the filter (I − L)𝑟 , the transformed

eigenvalues may be smaller than 0.

Since the graph filter can lead to a smoother signal which is a

kind of cluster-friendly embedding of the original data, it is applied

in multi-view clustering and obtains promising performance. For

example, Ma et al. and Huang et al. applied the graph filter to multi-

view subspace clustering method [10, 23]; Pan et al. used it in the

multi-view clustering with contrastive graph learning [27]; Lin

et al. and Hang et al. proposed the graph filter based multi-view

attributed graph clustering [12, 18].

As introduced before, the above-mentioned methods often use

an independent pre-defined graph filter for each view to transform

each view of the data to a cluster-friendly embedding and learn

the consensus clustering result from the multiple embeddings. In

this paper, we aim to learn a more appropriate consensus graph

filter by considering the information of all views, which can further

improve the clustering performance.

3 METHOD
Wefirst introduce some notations.We use boldface uppercase letters

to denote the matrices and use boldface lowercase letters to denote

the vectors. Given a matrix M, we use𝑀𝑖 . and𝑀.𝑖 to denote its 𝑖-th
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row vector and column vector, respectively. We use𝑀𝑖 𝑗 to denote

its (𝑖, 𝑗)-th element.

Given a multi-view data setX = {X(1) , · · · ,X(𝑚) } with𝑚 views,

X(𝑣) ∈ R𝑛×𝑑𝑣 is the 𝑣-th view of X, where 𝑛 is the number of

instances and 𝑑𝑣 is the number of features in the 𝑣-th view. Then

we can construct the 𝑘-nn graph for each view. In more detail,

taking the 𝑣-th view as example, we first compute its similar matrix

S(𝑣) ∈ R𝑛×𝑛 with heat kernel as follows:

𝑆
(𝑣)
𝑖 𝑗

= 𝑒
−
∥X(𝑣)
𝑖 .
−X(𝑣)
𝑗 .
∥2
2

2𝜎2 , (2)

where 𝜎 is the bandwidth parameter and we set it as the median

of the Euclidean distances of all pairs. Then we construct the 𝑘-nn

graph G (𝑣) whose adjacency matrix is W(𝑣) from S(𝑣) . If X(𝑣)
𝑖 .

is

one of the 𝑘 neighbors of X(𝑣)
𝑗 .

or X(𝑣)
𝑗 .

is one of the 𝑘 neighbors

of X(𝑣)
𝑖 .

, then𝑊
(𝑣)
𝑖 𝑗

= 𝑆
(𝑣)
𝑖 𝑗

, or otherwise𝑊
(𝑣)
𝑖 𝑗

= 0. Specially, we

set the diagonal elements of W(𝑣) to all 1s. In our implementation,

we fix the numbers of neighbors 𝑘 = 10 for simplicity. Obviously,

W(𝑣) is symmetric and non-negative. After constructing multiple

graphs from multiple views, we can learn a consensus graph for

the graph filter.

3.1 Multiple Graph Learning
After obtainingW(1) , · · · ,W(𝑚) , we aim to learn a consensus graph

G whose adjacency matrix is W ∈ R𝑛×𝑛 . Since the quality of each

view differs, we impose a weight 0 ≤ 𝛼𝑣 ≤ 1 for each view and

wish the better view has a larger weight. Then, we can obtain the

following loss function:

min

W,𝜶

𝑚∑︁
𝑣=1

𝛼2𝑣 ∥W −W(𝑣) ∥2𝐹 , (3)

𝑠 .𝑡 . W = W𝑇 , 0 ≤𝑊𝑖 𝑗 ≤ 1,

𝑛∑︁
𝑗=1

𝑊𝑖 𝑗 = 1,

0 ≤ 𝛼𝑣 ≤ 1,

𝑚∑︁
𝑣=1

𝛼𝑣 = 1,

where the first constraint on W ensures that the adjacency matrix is

symmetric, and the second constraint makes the adjacency matrix

bounded and non-negative. The third constraint on W is a row

normalization to make the summation of each row to be 1. Since

this constraint works like an ℓ1 norm on each row of W, it can make

the learned graph more sparse. With the consensus graph G, we
can learn a consensus graph filter for all views.

3.2 Graph Filter Learning
As introduced before, the graph filter can lead to a cluster-friendly

embedding of the data, and thus we will learn an appropriate filter

on X to make the data more easily for clustering. Since we aim

to learn a consensus graph filter for all views, we will learn the

filter with consensus W used in Eq.(3). Given W, its normalized

Laplacian is L = I−D−1/2WD−1/2 = I−W because D = I as shown
in the third constraint on W in Eq.(3). Then the graph filter can be

defined as

(
I − L

2

)𝑟
=

(
I+W
2

)𝑟
.

Given the 𝑣-th view, we regard the feature matrix of the 𝑣-th view

X(𝑣) as the graph signals, and then we operate the above-mentioned

graph filter on the signals X(𝑣) to obtain a more cluster-friendly

embedding F (X(𝑣) ) as follows:

F (X(𝑣) ) =
(

I +W
2

)𝑟
X(𝑣) . (4)

Here, the 𝑖-th row of F (X(𝑣) ) (which we denote as F (X(𝑣) )𝑖 .) is
the embedding of the 𝑖-th instance in the 𝑣-th view.

With these embeddings, we can construct the objective function

to learn an appropriate adjacency matrix W for the graph filter.

We wish that the embeddings F (X(𝑣) ) can preserve the manifold

structure of the 𝑣-th view. In more detail, given 𝑖-th and 𝑗-th in-

stances X(𝑣)
𝑖 .

and X(𝑣)
𝑗 .

in the 𝑣-th view, if 𝑊
(𝑣)
𝑖 𝑗

is large, which

means in the 𝑣-th view, X(𝑣)
𝑖 .

and X(𝑣)
𝑗 .

are similar, then we wish

the embeddings F (X(𝑣) )𝑖 . and F (X(𝑣) ) 𝑗 . also be similar. It can be

achieved by minimizing
1

2

∑𝑛
𝑖,𝑗=1𝑊

(𝑣)
𝑖 𝑗
∥F (X(𝑣) )𝑖 . − F (X(𝑣) ) 𝑗 .∥2

2
.

Taking the definition of F (·) (i.e., Eq.(4)) into it, we obtain the

following objective function:

min

W

1

2

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑊
(𝑣)
𝑖 𝑗

(( I +W
2

)𝑟
X(𝑣)

)
𝑖 .

−
((

I +W
2

)𝑟
X(𝑣)

)
𝑗 .

2
2

. (5)

Combining Eq.(3) and Eq.(5), we obtain our final objective func-

tion:

min

W,𝜶

1

2

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑊
(𝑣)
𝑖 𝑗

(( I +W
2

)𝑟
X(𝑣)

)
𝑖 .

−
((

I +W
2

)𝑟
X(𝑣)

)
𝑗 .

2
2

+ 𝜆
𝑚∑︁
𝑣=1

𝛼2𝑣 ∥W −W(𝑣) ∥2𝐹 , (6)

𝑠 .𝑡 . W = W𝑇 , 0 ≤𝑊𝑖 𝑗 ≤ 1,

𝑛∑︁
𝑗=1

𝑊𝑖 𝑗 = 1,

0 ≤ 𝛼𝑣 ≤ 1,

𝑚∑︁
𝑣=1

𝛼𝑣 = 1,

where 𝜆 is a balanced hyper-parameter. Notice that, different from

the conventional graph filter based multi-view clustering methods,

which operate a pre-defined graph filter on each view of the data

matrix independently to obtain the embedding and do the multi-

view clustering on the embedding, our formula Eq.(6) focuses on

learning an appropriate consensus graph filter for all views. Since

the graph filter in our method is learned from all views of data, it

can be more appropriate for the multi-view clustering task.

3.3 Optimization
Before optimizing Eq.(6), we first reformulate it to make it more

easily for optimization. By expanding the first term in Eq.(6), we

can rewrite it as:

1

2

𝑛∑︁
𝑖, 𝑗=1

𝑊
(𝑣)
𝑖 𝑗

(( I +W
2

)𝑟
X(𝑣)

)
𝑖 .

−
((

I +W
2

)𝑟
X(𝑣)

)
𝑗 .

2
2

(7)

=𝑡𝑟

(
X(𝑣)𝑇

(
I +W
2

)𝑟𝑇
(D(𝑣) −W(𝑣) )

(
I +W
2

)𝑟
X(𝑣)

)
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where D(𝑣) is a diagonal matrix whose diagonal elements 𝐷
(𝑣)
𝑖𝑖

=∑𝑛
𝑗=1𝑊

(𝑣)
𝑖 𝑗

. Then we can take Eq.(7) into Eq.(6). However, since the

objective function and the constraints w.r.t. W are very compli-

cated, we apply ADMM [2] to optimize it. In more detail, we first

introduce two auxiliary variables B = I+W
2

and V = W, and obtain

the following equivalent objective function:

min

W,𝜶 ,B,V
𝑡𝑟

(
X(𝑣)𝑇B𝑟𝑇 (D(𝑣) −W(𝑣) )B𝑟X(𝑣)

)
+𝜆

𝑚∑︁
𝑣=1

𝛼2𝑣 ∥W −W(𝑣) ∥2𝐹 ,

𝑠 .𝑡 . V = W, 0 ≤𝑊𝑖 𝑗 ≤ 1,

𝑛∑︁
𝑗=1

𝑊𝑖 𝑗 = 1,

B =
I +W
2

, V = V𝑇 , 0 ≤ 𝛼𝑣 ≤ 1,

𝑚∑︁
𝑣=1

𝛼𝑣 = 1. (8)

Then, we can obtain its Lagrange formula by introducing the

Lagrange multipliers Λ1 ∈ R𝑛×𝑛 and Λ2 ∈ R𝑛×𝑛 :

L =𝑡𝑟

(
X(𝑣)𝑇B𝑟𝑇 (D(𝑣) −W(𝑣) )B𝑟X(𝑣)

)
+ 𝜆

𝑚∑︁
𝑣=1

𝛼2𝑣 ∥W −W(𝑣) ∥2𝐹

+ 𝑡𝑟
(
Λ𝑇
1

(
B − I +W

2

))
+ 𝑡𝑟

(
Λ𝑇
2
(W − V)

)
(9)

+ 𝜇
2

(B − I +W
2

2
𝐹

+ ∥W − V∥2𝐹

)
where 𝜇 > 0 is an adaptive parameter. Now, we optimize B,W,V,
and 𝜶 iteratively by fixing other variables.

3.3.1 Optimizing B. The subproblem w.r.t. B can be written as:

min

B
J =𝑡𝑟

(
X(𝑣)𝑇B𝑟𝑇 (D(𝑣) −W(𝑣) )B𝑟X(𝑣)

)
(10)

+ 𝑡𝑟
(
Λ𝑇
1

(
B − I +W

2

))
+ 𝜇
2

B − I +W
2

2
𝐹

Notice that Eq.(10) is a non-constraint optimization problem, which

can be solved by the standard Quasi-Newton method. In our imple-

mentation, we use L-BFGS algorithm [20] to optimize it. To apply

the L-BFGS algorithm, we need the partial derivative of J w.r.t. B.
According to the chain rule of the derivative, we have

𝜕J
𝜕B

=

𝑟−1∑︁
𝑡=0

2B𝑡𝑇 (D(𝑣) −W(𝑣) )X(𝑣)X(𝑣)𝑇 (B𝑟−1−𝑡 )𝑇

+ Λ1 +
𝜇

2

(
B − I +W

2

)
. (11)

Thenwe can take it into the L-BFGS algorithm to obtain the solution

of B.

3.3.2 Optimizing W. When optimizing W, we can reformulate the

objective function as the following form:

min

W
∥W − A∥2𝐹 , (12)

𝑠 .𝑡 . 0 ≤𝑊𝑖 𝑗 ≤ 1,

𝑛∑︁
𝑗=1

𝑊𝑖 𝑗 = 1,

where A =
𝜆
∑𝑚
𝑣=1 𝛼

2

𝑣W(𝑣)+ Λ
1

4
− Λ

2

2
+ 𝜇

4

(
B− I

2
+2V

)
𝜆
∑𝑚
𝑣=1 𝛼

2

𝑣+
5𝜇

8

.

Eq.(12) can be decoupled into 𝑛 independent subproblems by

rows. Therefore, we solve Eq.(12) row by row. Considering the 𝑖-th

row of Eq.(12), it is a problem of Euclidean projection onto the

simplex, whose closed-form solution can be obtained by a standard

method such as [5].

3.3.3 Optimizing V. The subproblem w.r.t. V is as follows:

min

V

V −
(
W + Λ2

𝜇

)2
𝐹

, (13)

𝑠 .𝑡 . V = V𝑇 .

It is also a Euclidean projection problem, whose closed-form solu-

tion is:

V =
W +W𝑇

2

+
Λ2 + Λ𝑇

2

2𝜇
(14)

3.3.4 Optimizing 𝜶 . When fixing other variables, we obtain the

following formula:

min

𝜶

𝑚∑︁
𝑣=1

𝛼2𝑣 ∥W −W(𝑣) ∥2𝐹 , (15)

𝑠 .𝑡 . 0 ≤ 𝛼𝑣 ≤ 1,

𝑚∑︁
𝑣=1

𝛼𝑣 = 1.

According to the Cauchy-Schwarz Inequality, its closed-form solu-

tion is:

𝛼𝑣 =
∥W −W(𝑣) ∥−2

𝐹∑𝑚
𝑣=1 ∥W −W(𝑣) ∥−2

𝐹

. (16)

Notice that ∥W − W(𝑣) ∥2
𝐹
indicates the difference between the

graph of the 𝑣-th view and the graph of the consensus view. If a

view is far away from the consensus one, which means its quality is

low, since 𝛼𝑣 ∝ 1/∥W −W(𝑣) ∥2
𝐹
, its 𝛼𝑣 will be small, which means

the weight of the low-quality view will be small. It is consistent

with our motivation for the weights.

3.3.5 Updating the Lagrange Multipliers. We update the Lagrange

multipliers Λ1, Λ2, and the parameter 𝜇 as following:
Λ1 ← Λ1 + 𝜇

(
B − I+W

2

)
,

Λ2 ← Λ2 + 𝜇 (W − V),
𝜇 ← 1.05 ∗ 𝜇.

(17)

After iteratively solving these variables, we obtain the final clus-

tering result by running spectral clustering on the consensus matrix

W. The whole process is summarized in Algorithm 1.

3.4 Theoretical Analysis
In this subsection, we discuss why the learned graph filter can

improve the clustering performance theoretically. According to

[14], the low eigenvalues of a graph Laplacian matrix correspond to

the large-scale structure, such as clusters, and the high eigenvalues

correspond to the details and noises. Therefore, to obtain a clearer

clustering structure, we need the low-pass graph filter, which can

suppress the high eigenvalues and preserve the low ones. Consider

a graph whose Laplacian matrix is L with 𝑛 eigenvalues 0 = 𝜎1 ≤
𝜎2 ≤ · · · ≤ 𝜎𝑛 . Let H(·) : R𝑛×𝑛 → R𝑛×𝑛 be a transform on the

Laplacian matrix and the eigenvalues ofH(L) areℎ(𝜎1), · · · , ℎ(𝜎𝑛),
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Algorithm 1 Multi-view Clustering method based on Learnable

Graph Filter

Input: Multi-view data X = {X(1) , · · · ,X(𝑚) }, hyper-parameter

𝑟 and 𝜆.

Output: Final consensus clustering result.

1: Construct W(𝑣) for each view by Eq.(2).

2: Initialize W = 1

𝑚

∑𝑚
𝑣=1 W(𝑣) , 𝛼 = 1

𝑚 , V = W, Λ1 = Λ2 = 0, and
𝜇 = 1.

3: while not converge do
4: Update B by solving Eq.(10).

5: Update W by solving Eq.(12).

6: Update V by Eq.(14).

7: Update 𝜶 by solving Eq.(16).

8: Update Lagrange multipliers by Eq.(17).

9: end while
10: Obtain the final clustering result by applying spectral clustering

on the consensus graph W.

where ℎ(·) is the transform of the eigenvalues. Wai et al. gave the

following Definition of the low-pass graph filter [33]:

Definition 1. [33] (Low-pass graph filter)H(L) is a (𝐾,𝜂) low-
pass graph filter if

𝜂 :=
max( |ℎ(𝜎𝐾+1) |, |ℎ(𝜎𝐾+2) |, · · · , |ℎ(𝜎𝑛) |)

min( |ℎ(𝜎1) |, |ℎ(𝜎2) |, · · · , |ℎ(𝜎𝐾 ) |)
< 1 (18)

𝜂 is the low-pass coefficient. Definition 1 shows that, given a

graph filter H(L), if there exists an integer 1 ≤ 𝐾 < 𝑛 and a

coefficient 𝜂 < 1, then H(L) is a low-pass graph filter. Now, we

show that the learned filter is a low-pass graph filter with the

following Theorem.

Theorem 1. Given the learned graph filter ( I+W
2
)𝑟 of Algorithm

1, there exists an integer 1 ≤ 𝐾 < 𝑛, which makes the low-pass
coefficient 𝜂 as defined in Definition 1 be smaller than 1, and thus the
learned graph filter is a low-pass graph filter.

Proof. Given the learned adjacency matrix W by Algorithm 1,

its normalized Laplacian matrix L = I −W. Supposing the eigenval-

ues of L are 0 = 𝜎1 ≤ 𝜎2 ≤ · · · ≤ 𝜎𝑛 , the eigenvalues of ( I+W
2
)𝑟 are

(1− 𝜎1
2
)𝑟 , · · · , (1− 𝜎𝑛

2
)𝑟 . Then, we compute its low-pass coefficient

𝜂 defined in Definition 1:

𝜂 =
max( | (1 − 𝜎𝐾+1

2
)𝑟 |, | (1 − 𝜎𝐾+2

2
)𝑟 |, · · · , | (1 − 𝜎𝑛

2
)𝑟 |)

min( | (1 − 𝜎1
2
)𝑟 |, | (1 − 𝜎2

2
)𝑟 |, · · · , | (1 − 𝜎𝐾

2
)𝑟 |)

(19)

=
(1 − 𝜎𝐾+1

2
)𝑟

(1 − 𝜎𝐾
2
)𝑟

=

(
2 − 𝜎𝐾+1
2 − 𝜎𝐾

)𝑟
.

Since 𝜎1 = 0, as long as there exists a non-zero eigenvalue of L,

there exists a 𝐾 such that 𝜎𝐾 < 𝜎𝐾+1, and thus 𝜂 =

(
2−𝜎𝐾+1
2−𝜎𝐾

)𝑟
< 1.

Therefore, our learned graph filiter ( I+W
2
)𝑟 is a low-pass graph

filter according to Definition 1. □

Theorem 1 shows that our learned filter is a low-pass graph filter

and thus can well reveal the clustering structure of the data.

Moreover, we can analyze the performance from the viewpoint

of spectral graph theory. In the clustering task, if data matrix X

has a clear clustering structure, it should follow the cluster and

manifold assumption. According to [23, 27], the cluster and man-

ifold assumption requires that the data or graph signals should

be smooth. Here, we follow the metric of smoothness defined in

[6, 47]:

Definition 2. [6](Smoothness) Given a graph with the adjacency
matrix W ∈ R𝑛×𝑛 whose Laplacian matrix is L, and a graph signal
x ∈ R𝑛 , the smoothness of signal graph x is defined as:

x𝑇 Lx =
1

2

𝑛∑︁
𝑖, 𝑗=1

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗 )2 . (20)

According to Definition 2, in the following Theorem, we will

show that, given the data of any view X(𝑣) , if we regard X(𝑣) as
graph signals, the signals operated by our filter (i.e., F (X(𝑣) )) are
smoother than the original signals (i.e., X(𝑣) ).

Theorem 2. Given the learned graph filter ( I+W
2
)𝑟 of Algorithm 1,

the new signals F (X(𝑣) ) = ( I+W
2
)𝑟X(𝑣) is smoother than the original

signals X(𝑣) .

Proof. Since X(𝑣) and F (X(𝑣) ) both are composed of 𝑑𝑣 inde-

pendent graph signals, we will consider the 𝑖-th signal (i.e., X(𝑣)
.𝑖

and F (X(𝑣) ).𝑖 ) as an example, and the results of other signals are

similar. According to Definition 2, to prove F (X(𝑣) ).𝑖 is smoother

than X(𝑣)
.𝑖

, we should prove F (X(𝑣) )𝑇.𝑖LF (X(𝑣) ).𝑖 ≤ X(𝑣)𝑇
.𝑖

LX(𝑣)
.𝑖

.

Given our learned adjacency matrix W, we have L = I −W and

thus
I+W
2

= I − L
2
. Denote the eigenvalue decomposition of L is

L = UΣU𝑇 , where U contains the eigenvectors of L and Σ contains

the eigenvalues 0 = 𝜎1 ≤ · · · , ≤ 𝜎𝑛 . Then we have

F (X(𝑣) )𝑇.𝑖LF (X(𝑣) ).𝑖 =X𝑇.𝑖

(
I − L

2

)𝑟
L

(
I − L

2

)𝑟
X.𝑖

=(U𝑇X.𝑖 )𝑇
(
I − Σ

2

)𝑟
Σ

(
I − Σ

2

)𝑟
(U𝑇X.𝑖 ).

Denoting z = U𝑇X.𝑖 , we obtain:

F (X(𝑣) )𝑇.𝑖LF (X(𝑣) ).𝑖 − X(𝑣)𝑇
.𝑖

LX(𝑣)
.𝑖

(21)

=z𝑇
(
I − Σ

2

)𝑟
Σ

(
I − Σ

2

)𝑟
z − z𝑇Σz

=

𝑛∑︁
𝑖=1

((
1 − 𝜎𝑖

2

)
2𝑟
− 1

)
𝜎𝑖𝑧

2

𝑖 ≤ 0,

where the inequality holds because all the eigenvalues 𝜎𝑖s of Lapla-

cianmatrix L satisfy 0 ≤ 𝜎𝑖 ≤ 2. It shows thatF (X(𝑣) )𝑇.𝑖LF (X(𝑣) ).𝑖 ≤
X(𝑣)𝑇
.𝑖

LX(𝑣)
.𝑖

which means F (X(𝑣) ).𝑖 is smoother than X(𝑣)
.𝑖

. □

Theorem 2 shows that with the learned graph filter, we can

smooth the graph signals and obtain a clearer clustering structure,

which follows the cluster and manifold assumption,

At last, we analyze the time complexity of Algorithm 1. Algo-

rithm 1 only involves the matrix multiplication operations, there-

fore we just need to analyze the matrix multiplication. Denote 𝑛

as the number of instances and 𝑑 as the number of features in the

view which contains the most features. When optimizing B, we
need to compute the partial derivative Eq.(11). By applying the
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Table 1: Description of the data sets.

#instances #features #classes

3sources 169 3560, 3631, 3068 6

Caltech 9144

48, 40, 254,

102

1984, 512, 928

CCV 6773 20, 20, 20 20

CiteSeer 3312 3312, 3703 6

COIL 1440 1024, 944, 4096, 576 20

Hdigit 10000 784, 256 10

NUSWIDE 2000

64, 225, 144

31

73, 128

Reuters 1500

21531, 24892, 34251

6

15506, 11547

Scene 4485 20, 59, 40 15

SUNRGBD 10335 4096, 4096 45

associative property of matrix multiplication, we can compute the

partial derivative in 𝑂 (𝑛2𝑑) time. When optimizing W, we solve it

row by row. Considering the 𝑖-th view, we can solve the Euclidean

projection on simplex in 𝑂 (𝑛𝑙𝑜𝑔𝑛) time. Since there are 𝑛 rows in

W, it costs 𝑂 (𝑛2𝑙𝑜𝑔𝑛) time to optimize W. Obviously, this step can

be easily parallelized. Optimizing V and 𝜶 only involves matrix

addition, which is often very fast. Therefore, the bottleneck of the

time complexity is 𝑂 (𝑛2𝑑 + 𝑛2𝑙𝑜𝑔𝑛). This is comparable with the

mainstream graph based multi-view clustering methods. Despite

this, in the future, we will study how to speed up it further.

4 EXPERIMENTS
4.1 Data Sets
We conduct experiments on 10 benchmark data sets, including

3sources
1
, Caltech

2
, CCV

3
, CiteSeer [8], COIL

4
, Hdigit

5
, NUSWIDE

[4], Reuters [1], Scene
6
and SUNRGBD [46]. The detailed informa-

tion of these data sets is shown in Table 1.

4.2 Experimental Setup
To show the effectiveness of the proposed method, we compare it

with 16 state-of-the-art multi-view clustering methods, including

RMSC [36], AMGL [25], MVGL [40], AWP [26], MCGC [39], CGD

[29], GMC [34], LMVSC [13], 2CMV [22], LMSC [41], OPLFMVC

[21], CGL [16], COMVSC [44], ONMVSC [17], LSRMSC [10], and

MvAGC [19]. For all methods on all data sets, the number of clusters

are set as the true number of classes. In our method, we fix 𝑟 = 2

and tune 𝜆 in [10−5, 105]. Two widely used metric Accuracy (ACC)

and Normalized Mutual Information (NMI) are used to measure

the clustering performance. The experiments are conducted using

MATLAB on a PC with Windows 10, 4.2-GHz CPU, and 64-GB

memory.

1
http://mlg.ucd.ie/datasets/3sources.html

2
https://data.caltech.edu/records/mzrjq-6wc02

3
https://www.ee.columbia.edu/ln/dvmm/CCV/

4
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

5
https://cs.nyu.edu/~roweis/data.html

6
https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177
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(a) The embedding of the first view by

LSRMSC
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(c) The embedding of the first view by

MvAGC
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(d) The embedding of the second view

by MvAGC
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(e) The embedding of the first view by

our MCLGF
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(f) The embedding of the second view

by our MCLGF

Figure 1: t-sne of the embedding of the two views in CiteSeer
by LSRMSC, MvAGC, and the proposed MCLGF .

4.3 Experimental Results
Tables 2 and 3 show the ACC and NMI results of all methods on

all data sets. The red texts indicate the best results, the blue ones

indicate the second best results, and the green ones indicate the

third best results. Notice that, LSRMSC cannot run a result in rea-

sonable time on the large data sets Caltech and SUNRGBD due

to its high time complexity. From these Tables, we can find that

the proposed MCLGF outperforms the state-of-the-art multi-view

clustering methods on most data sets. On other data sets, MCLGF

can still achieve comparable performance even though it is not the

best one.

When comparing with other graph filter based methods LSRMSC

and MvAGC, we show the t-sne [32] of the embeddings of the two

views in CiteSeer data set by LSRMSC, MvAGC, and our MCLGF,

respectively. The t-sne results are shown in Figure 1.We can see that,

in the first view, our method can obtain a better embedding result

because it can partition the data into different classes more clearly.

In the center of Figure 1(a) and 1(c), LSRMSC and MvAGC both

entangle data in different classes seriously, whereas our method

can partition them well. In the second view, these methods obtain
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Table 2: ACC results on all the data sets. Red texts indicate the best results, blue texts indicate the second best results, and
green texts indicate the third best results.

Methods 3sources Caltech CCV CiteSeer COIL Hdigit NUSWIDE Reuters Scene SUNRGBD

RMSC [36] 0.4260 0.1339 0.2578 0.2255 0.4660 0.3260 0.1645 0.3267 0.1507 0.1296

AMGL [25] 0.3254 0.2496 0.2317 0.2141 0.8417 0.8485 0.1565 0.2940 0.3271 0.2107

MVGL [40] 0.3077 0.1418 0.1124 0.2189 0.8090 0.9958 0.1450 0.3173 0.1889 0.1233

AWP [26] 0.4260 0.2613 0.1680 0.2554 0.6986 0.7239 0.1515 0.3247 0.3663 0.1723

MCGC [39] 0.3491 0.2090 0.1062 0.2120 0.8069 0.1002 0.1490 0.3327 0.1474 0.1823

CGD [29] 0.7870 0.2418 0.1540 0.3312 0.7660 0.7139 0.1485 0.4767 0.4230 0.2137

GMC [34] 0.6923 0.1950 0.1057 0.2174 0.8035 0.9981 0.1490 0.3053 0.1400 0.1277

LMVSC [13] 0.5444 0.1166 0.2073 0.2485 0.6583 0.5424 0.1370 0.4420 0.3588 0.1849

2CMV [22] 0.3432 0.2371 0.1208 0.4849 0.6750 0.1001 0.1245 0.2787 0.3336 0.1865

LMSC [41] 0.5740 0.2492 0.1538 0.4091 0.7806 0.7972 0.1375 0.4820 0.3828 0.1786

OPLFMVC [21] 0.6080 0.2475 0.2198 0.4710 0.5437 0.1999 0.1405 0.2493 0.3753 0.0892

CGL [16] 0.6746 0.2683 0.1620 0.5432 0.8964 0.7211 0.1600 0.4507 0.4400 0.1942

COMVSC [44] 0.3846 0.0977 0.1062 0.2228 0.5368 0.2448 0.1215 0.2787 0.0923 0.2204

ONMVSC [17] 0.3432 0.0876 0.1974 0.2107 0.3306 0.1001 0.1530 0.2787 0.4147 0.1050

LSRMSC [10] 0.6331 - 0.1400 0.2687 0.5972 0.2605 0.1400 0.3220 0.2292 -

MvAGC [19] 0.5858 0.1461 0.1788 0.4903 0.6271 0.3122 0.1875 0.3693 0.2932 0.1218

MCLGF 0.8284 0.2758 0.2460 0.6709 0.9000 0.9966 0.1655 0.5113 0.4314 0.2616
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(g) NUSWIDE
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(h) Reuters
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(j) SUNRGBD

Figure 2: Logarithm of the running time on all data sets (in Sec.).

comparable results. Notice that, even though LSRMSC and MvAGC

both use different graph filters for the two views, they cannot handle

the first view well. However, in our method, we use only one filter
for the two views which can obtain good results for both views.

This well demonstrates the superiority of the learned consensus

graph filter in our method.

4.4 Ablation Study
The proposed framework involves multiple graph learning (i.e., Sec-

tion 3.1) and graph filter learning (i.e., Section 3.2). In this section,

we conduct the ablation study to show the effect of each part. We

denote MGL as the degenerated version of our method which only

considers multiple graph learning, i.e., the first term of Eq.(6) van-

ishes. We denote GFL as the degenerated version only considering

the graph filter learning, i.e., the second term of Eq.(6) vanishes.

MCLGF denotes the original version of our method.

Table 4 shows the ACC and NMI results of MCLGF and its two

degenerated versions. On most data sets, the performance of GFL

is better than MGL, which shows that graph filter learning may be

more important than multiple graph learning. Moreover, MCLGF

outperforms both MGL and GFL on all data sets. It demonstrates

that combining graph filter learning with multiple graph learning

can further improve the clustering performance.

4.5 Running Time Results
Figure 2 shows the running time of all methods on all data sets.

Since on some data sets, many methods cost a lot of time, we

show the logarithm of the running time, which is more readable.

The rightmost black bar indicates our method. Figure 2 shows

that our method is comparable with the mainstream multi-view

clustering methods and even faster than some graph based multi-

view clustering methods, such as CGD, COMVSC, and LSRMSC.
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Table 3: NMI results on all the data sets. Red texts indicate the best results, blue texts indicate the second best results, and green
texts indicate the third best results.

Methods 3sources Caltech CCV CiteSeer COIL Hdigit NUSWIDE Reuters Scene SUNRGBD

RMSC [36] 0.4177 0.2037 0.2013 0.0156 0.6838 0.3108 0.1941 0.0699 0.1000 0.0841

AMGL [25] 0.0583 0.3079 0.1611 0.0031 0.9299 0.9250 0.1728 0.0265 0.3247 0.1758

MVGL [40] 0.0660 0.1609 0.0159 0.0177 0.9104 0.9866 0.0688 0.0602 0.1584 0.0368

AWP [26] 0.3790 0.4526 0.1202 0.0489 0.8473 0.7706 0.1650 0.0619 0.3564 0.2074

MCGC [39] 0.0607 0.1867 0.0035 0.0014 0.8997 0.0009 0.0481 0.0634 0.0912 0.0862

CGD [29] 0.6939 0.4435 0.1173 0.1059 0.8636 0.7241 0.1550 0.2878 0.4147 0.2409

GMC [34] 0.5480 0.2379 0.0022 0.0072 0.9176 0.9939 0.0852 0.0883 0.0582 0.0402

LMVSC [13] 0.3614 0.2573 0.1681 0.0464 0.7804 0.4999 0.1410 0.2898 0.3493 0.2329

2CMV [22] 0.0308 0.4355 0.0493 0.2519 0.7845 0.0009 0.0156 0.0040 0.3189 0.2481

LMSC [41] 0.4775 0.4608 0.1129 0.2195 0.8421 0.7958 0.1527 0.3444 0.3500 0.2274

OPLFMVC [21] 0.5290 0.4239 0.1615 0.2260 0.7131 0.1087 0.1491 0.0039 0.3815 0.0418

CGL [16] 0.6780 0.4986 0.1174 0.2724 0.9364 0.8394 0.1809 0.2595 0.4115 0.2621

COMVSC [44] 0.1179 0.0362 0.0030 0.0107 0.7064 0.1963 0.0151 0.0069 0.0032 0.1218

ONMVSC [17] 0.0443 0.0082 0.1699 0.0039 0.4690 0.0009 0.1919 0.0040 0.4013 0.0034

LSRMSC [10] 0.4522 - 0.0727 0.0302 0.7099 0.1600 0.1313 0.0476 0.1786 -

MvAGC [19] 0.5511 0.2937 0.1094 0.2640 0.7145 0.1774 0.1961 0.0594 0.2616 0.1369

MCLGF 0.6990 0.4570 0.2017 0.4078 0.9441 0.9897 0.2001 0.2860 0.4192 0.2796

Table 4: Ablation Study.

Data sets

MGL GFL MCLGF

ACC NMI ACC NMI ACC NMI

3sources 0.5799 0.5743 0.6331 0.6030 0.8284 0.6990
Caltech 0.2605 0.4285 0.2306 0.4509 0.2758 0.4570
CCV 0.1887 0.1691 0.2291 0.1834 0.2460 0.2017

CiteSeer 0.2681 0.0816 0.6543 0.3890 0.6709 0.4078
COIL 0.8715 0.9344 0.7333 0.8514 0.9000 0.9441
Hdigit 0.8529 0.9158 0.9865 0.9793 0.9966 0.9897

NUSWIDE 0.1355 0.1648 0.1650 0.1943 0.1655 0.2001
Reuters 0.3920 0.1279 0.4540 0.2488 0.5113 0.2860
Scene 0.3373 0.3510 0.4297 0.4099 0.4314 0.4192

SUNRGBD 0.1846 0.2334 0.1933 0.2400 0.2616 0.2796

Despite this, in the future, we will study how to further speed up it

to handle larger data.

4.6 Parameter Study
In this subsection, we show the effect of the hyper-parameter 𝜆.

We tune 𝜆 in [10−5, 105]. Figure 3 show the ACC and NMI results

on 3sources and CiteSeer data sets. The results on other data sets

are similar. Figure 3 shows that the proposed MCLGF can achieve

relatively good results when 𝜆 ≤ 1. Notice that 𝜆 is a hyperparam-

eter to control the weights of multiple graph learning and graph

filter learning. When it is small, which means the graph filter learn-

ing will have a larger weight than multiple graph learning, the

method can achieve better performance. It means that the graph fil-

ter learning is more important than multiple graph learning which

is consistent with the results of the ablation study.

5 CONCLUSION
This paper proposes a novel multi-view clustering method with a

learnable graph filter. Different from other graph filter based multi-

view clustering methods, which directly use pre-defined graph
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Figure 3: Clustering results of w.r.t. 𝜆 on 3sources and Cite-
Seer data sets.

filters, our method focuses on how to leverage the information in

all views to learn an appropriate consensus graph filter for cluster-

ing. To this end, we design a framework of graph filter learning

with multiple graph learning. We also provide an iterative algo-

rithm to learn the graph filter and do the multi-view clustering. At

last, we conduct extensive experiments by comparing with some

state-of-the-art multi-view clustering methods to demonstrate the

effectiveness and superiority of the proposed method.
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