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Abstract

Deep multi-view clustering has been widely stud-
ied. However, since it is an unsupervised task,
where no labels are used to guide the training, it
is still unreliable especially when handling com-
plicated data.  Although deep semi-supervised
multi-view clustering can alleviate this problem
by using some supervised information, the super-
vised information is often pregiven or randomly
selected. Unfortunately, as we know, the clus-
tering performance highly depends on the qual-
ity of the supervised information and most of the
semi-supervised methods ignore the supervised in-
formation selection. To tackle this problem, in
this paper, we propose a novel active deep multi-
view clustering method, which can actively se-
lect important data for querying human annota-
tions. In this method, we carefully design a fu-
sion module, an active selection module, a super-
vised module, and an unsupervised module, and in-
tegrate them into a unified framework seamlessly.
In this framework, we can obtain a more reliable
clustering result with as few annotations as possi-
ble. The extensive experiments on benchmark data
sets show that our method can outperform state-
of-the-art unsupervised and semi-supervised meth-
ods, demonstrating the effectiveness and superior-
ity of the proposed method. The code is available
at https://github.com/wodedazhuozi/ADMC.

1 Introduction

Multi-view data are ubiquitous in real-world applications.
For example, web pages on the Internet may contain multi-
ple views such as images, texts, and videos. To handle these
multi-view data, multi-view clustering is one of the chal-
lenging tasks and attracts much attention [Zhou et al., 2019;
Zhang et al., 2019; Xie et al., 2020; Wang et al., 2020;
Zhou and Du, 2023].

Since the deep neural network (DNN) has been widely
used in many fields and achieves promising performance
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on many tasks, deep multi-view clustering attracts increas-
ingly more attention [Xue et al., 2021; Xu et al., 2021,
Lin et al., 2021a; Xia et al., 2021; Lin et al, 2021b;
Wang et al., 2022; Xu et al., 2022a; Du et al, 2022;
Yan et al., 2023]. These methods apply the DNN to ex-
tract more semantic representations of data and do the clus-
tering on the learned representations. For example, [Du et
al., 2021] used auto-encoder to extract features, and designed
cross-entropy-based regularization and local regularization to
ensure the consistency between any two views of a sample;
[Xiao et al., 2023] utilized view-specific graph convolution
networks to learn the representation of each view and pro-
posed a fusion method on the attribute-level and structure-
level; [Pan and Kang, 2021] learned a new consensus graph
by considering the relationship between nodes and the initial
graph, and designed a novel graph-level contrastive loss.

However, since multi-view clustering is still an unsuper-
vised task, where there is no supervised information in the
learning, deep multi-view clustering may still obtain unreli-
able results, especially when handling complicated real-world
data. To tackle this problem, some semi-supervised multi-
view clustering methods are proposed [Chen er al., 2022;
Tang et al., 2022; Qin et al., 2021; Whang et al., 2020;
Zhu and Gao, 2022]. These methods apply some supervised
information, such as the labels of data or the pairwise con-
straints, to guide the multi-view clustering. For example,
[Tang er al., 2022] applied the cannot-link and must-link con-
straints to guide the clustering and proposed constrained ten-
sor representation learning model based on the unified con-
straint to learn the representations; [Qin et al., 2021] utilized
the labels of data to build the affinity matrix and applied the
semi-supervised learning methods on the affinity matrix to
obtain the clustering results. Although semi-supervised meth-
ods can alleviate the problem of lacking supervised informa-
tion to some extent, all these methods ignore how to obtain
the supervised information. The supervised information used
in these methods is all pre-given or randomly generated. As
we know, the performance of semi-supervised learning highly
depends on the quality of the supervised information, and
poor supervised information may deteriorate semi-supervised
learning seriously. All these semi-supervised multi-view
clustering methods ignore this supervised information selec-
tion problem.

To tackle the supervised information selection problem,
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in this paper, we propose a novel Active Deep Multi-view
Clustering (ADMC), which introduces active learning into
the multi-view clustering task. Active learning often in-
volves multiple interactive batches. In each batch, the al-
gorithm selects several data with a pre-given budget and
queries the human annotations on these selected data [Hoi
et al., 2006; Chattopadhyay et al., 2013; Wang et al., 2015a;
Yan and Huang, 2018; Wang et al., 2015b; Wang et al., 2019;
Halder et al., 2023; Sun et al., 2022; Zhou et al., 2023]. In
our method, we design an active selection module to automat-
ically select some important data for annotation by consider-
ing the representative and diversity properties of data. Be-
sides the active selection module, we propose a fusion mod-
ule to integrate the information in different views. Then, we
propose a supervised module to apply the human annotations
to train the whole model. Notice that in our active cluster-
ing setting, we wish to obtain a reliable result with as few
annotations as possible. Therefore, we can only train the net-
work with a very small number of data in the supervised mod-
ule. To address this issue, we also carefully design an unsu-
pervised module, which can make full use of the remaining
unlabeled data to aid the network training. We seamlessly
integrate these modules into a unified framework for multi-
view clustering. The extensive experiments on benchmark
data sets show that our method can outperform other state-
of-the-art unsupervised and semi-supervised deep multi-view
clustering methods, which well demonstrates the superiority
of our method.

The main contributions of this paper are summarized as
follows:

* To the best of our knowledge, we are the first to tackle
the active deep clustering problem on multi-view data.

* We propose a novel active deep multi-view clustering
method that can automatically select important data for
annotations. Due to the carefully designed active selec-
tion module and the unsupervised module, the proposed
method can learn better representations with as few an-
notations as possible.

» Extensive experiments on benchmark data sets demon-
strate the superiority of the proposed method.

2 Active Deep Multi-view Clustering

In this section, we introduce our proposed method ADMC.
First, we introduce some notations in this paper for a better
understanding of our method. Given a multi-view data set
X = {XV € RVXdv1V_ that can be divided into C clusters,
where NV denotes the number of samples, V' represents the
number of views, d, denotes the sample dimension of the
v-th view, and 7 denotes the v-th view of the ¢-th sample,
we denote £ and U as the sets of the labeled samples and
unlabeled samples, respectively. Therefore, LU U = ) and
LNU = X. In the beginning, all samples are unlabeled,
which means £ = @ and Y = X. Since our ADMC is a
batch-mode active learning method, we suppose that there are
overall T batches, and the budget of each batch is K, which
means in each batch, we can select at most K samples for
querying the human annotations.

Figure 1 shows the architecture of our method. In our
method, since there are V' views, we adopt V' same-structured
auto-encoders [Hinton and Salakhutdinov, 2006] as the back-
bones to extract the latent features for each view. In the
auto-encoder, we use the multi-layer perceptron (MLP) as the
encoder which contains four hidden layers. The activation
function used in each layer is nonlinear REctified Linear Unit
(ReLU). Let EV denote the used encoder for the v-th view, and
D" denote the decoder for the v-th view. The reconstructed
27 can be represented as follows

&) = DY(E"(x7)) (1)

Then, we use the following reconstruction 108S [0 for pre-
training:
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Our method contains four modules: a fusion module, an
active selection module, a supervised module, and an un-
supervised module. After obtaining the features of each
view, the fusion module ensembles the features with adaptive
weights. Then, we select some important samples for anno-
tation according to the fusion features in the active selection
module. Afterward, the data set is divided into the labeled
set and the unlabeled set, which are used in the supervised
module and the unsupervised module respectively to train the
backbone networks. The details of the four modules will be
introduced in the following subsections.

2.1 Fusion Module

The fusion module utilizes multiple views to obtain compre-
hensive information for more accurate and robust results. The
traditional feature fusion approaches, such as the summation
or concatenation of each view, may be too simple to obtain
the intrinsic representations for the complicated real-world
multi-view data. In real-world applications, the views may
contain various noises and the quality of each view may also
differ. Therefore, the traditional methods, which directly and
equally concatenate or sum them, may be inappropriate. Ad-
ditionally, it is often hard to tell which view is better and
which view is worse in advance.

To tackle this problem, we propose an adaptive feature fu-
sion module, which can automatically learn the weight of
each view, and then fuse all views according to the learned
weights. Specifically, for a sample z;, after obtaining the
representations for each view F = {f! ... fV} where
f¥ = E¥(x?), we feed f? into an MLP to obtain the weight
for the v-th view w?’ = M LP(f?) € R, Then we use the
Softmax function to get the final weight w; for the v-th view
of z; as follows.
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At last, the fused representation of x; is:

w{ = Softmax(w}’) =
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Figure 1: The architecture of ADMC. ADMC contains four modules. The fusion module integrates the representations in each view to obtain
a consensus representation. The active selection module automatically selects some important samples for querying human annotations. The
supervised module trains the backbone networks with the annotated data. The unsupervised module trains the backbone networks with the

unlabeled data.

2.2 Active Selection Module

After obtaining the fused representation of each sample, we
actively select several important samples for querying human
annotations. We select the samples based on the following
two properties:

* Representativeness. The representative data can capture
the intrinsic clustering structure of data. If we obtain
their annotations, we can easily characterize the cluster-
ing structure of all data.

e Diversity. If two samples are similar, we only need to
annotate one of them. Therefore, to avoid the waste of
the annotation budget, we should select diverse samples
for querying.

To simultaneously achieve both two properties, we design
a simple yet effective active selection module. Notice that the
budget of each batch is K, which means in each batch, we can
only query at most K samples for annotations. We first run

k-means on the fused representations f; (obtained by Eq.(4))
of all samples in the unlabeled set I/ to partition them into K
clusters. In each cluster, the closer the sample is to the cluster
center, the more representative this sample is. Therefore, for
each cluster, we select the sample which is the closest to the
cluster center for querying. Since in each cluster, we only
select one sample which lies in the center of the cluster, and
according to the property of k-means algorithm, all selected
samples will be far away from each other and achieve the
diversity property.

Denote S as the set of K selected samples. We query hu-
mans to annotate the samples in S. Then, we move the sam-

ples in S from the unlabeled set I/ to the labeled set £, which
means we update i/ =U —Sand L =L US.

2.3 Supervised Module

After obtaining the annotations of several samples, we can de-
sign a supervised module to apply the labeled data £ to train
the network. Given a labeled sample x; = {z},..., 2V} € L
whose label is y;, its high-level representation from the auto-

encoder is {f},..., f¥}. and its fused representation is f;

(obtained from Eq.(4)). Notice that f; contains the consen-
sus information among all views, and {f},..., fV'} contains
some individual information of each view. To obtain a more
comprehensive representation, we first concatenate them as
[fH .- IIfY || fi], and then feed the concatenated represen-
tation into a classification layer, which is a Fully Connected
(FC) layer to obtain the final embedding §j; € R'*¢, where C
is the number of classes. Then, we feed the final embedding
7; into a Softmax function to obtain the probability vector of
sample z; as 7; € R*C.

To train the network, we use the following cross-entropy
loss between the final representation y; and the human anno-
tation y;:

labet = Y, H(yi, i), S
z, €L
where H (-, -) denotes the cross-entropy loss.

Besides this, the reconstruction 10ss /,ccon, 1S also used in
the supervised module to prevent the model collapse. There-
fore, the whole supervised loss /s of labeled data is as follows

ZS = llabel + Vlrecon (6)



where + is a balanced parameter.

2.4 Unsupervised Module

In our active clustering setting, most of the samples are unla-
beled. It is hard to directly learn a reliable representation be-
cause we do not have enough labeled data to guide the learn-
ing. To address this issue, we design an unsupervised module
to enhance the representation learning.

In the unsupervised module, since we do not use the la-
bel information, we apply contrastive learning to guide the
representation learning. Contrastive learning is to learn the
common features between similar samples and distinguish
the differences between dissimilar samples. In single-view
data, contrastive learning often needs some data augmenta-
tion techniques to generate positive and negative pairs of data
for learning. In our multi-view setting, we can construct pos-
itive and negative pairs of data more naturally.

Notice that in multi-view data, each data contains multi-
ple views and thus we can make the different views of the
same sample as the positive pairs and the views of differ-
ent samples as the negative pairs. Specifically, we obtain
the representations of each view of z; and z; as f},---, fV
and f,---, f}, respectively. We use (f/, f{) and (f, f])
(p,q € {1,2,---,V}) as the positive pairs and (f7, f]') as
the negative pair. Then, we use the cosine similarity to mea-
sure the similarity between two representations as follows:

| P £
im(fP ) = LI 7
s 1) = Tl @

where (-, -) represents the inner production.
Based on this similarity, we can design the following con-
trastive loss:

sim(£2,£0) /7

1 vV v
lcon = _m Z Z Z ZO‘gZN Z esiM(f,ip»f;-))/T
z;€U p=1g=p+1 J#i £4v=p,q

3
where 7 denotes the temperature parameter.

Eq.(8) is a sample-level loss that does not consider the clus-
ter structure. To characterize the cluster structure, we also
introduce a center loss. The basic idea of center loss is that
a clear cluster structure often needs the samples to be close
to their cluster centers. To achieve this, we utilize a k-means
based center loss function to characterize the cluster struc-

ture. In more detail, after obtaining the fused representation

fl, ceey fN by Eq.(4), we run k-means on them to obtain C'
clusters. Then, we design the following center loss I cy,:
lcen = Z Hﬁ - Ci”gu (9)
x; €U

where ¢; denotes the center of the cluster which z; belongs
to. Similar to the supervised module, we also add the recon-
struction 10ss l;.¢cop, to the unsupervised module, which aims
at preventing model collapse. As a result, the whole unsuper-
vised loss Iy is as follows

Iy = leon + adcen + Blrecon, (10)

where « and (3 are two balanced parameters.

Algorithm 1 Active Deep Multi-view Clustering

Input: Data set X, cluster number C, the budget of each
selection batch K, number of selection batches 7.
Output: Clustering result
1: Initialize L= 0,4 = X.
2: Pretrain the auto-encoder by minimizing the reconstruc-
tion loss Eq.(2).
3: fori=1,---,T do
4:  Obtain the representations of each view by the auto-
encoder. _
5:  Obtain the fusion representation I’ by Eq.(3) and
Eq.(4).
6:  Select samples to annotate with the active selection
module, and then update £ and U/.
7:  Use the supervised loss Eq.(6) to train auto-encoder on
L.
8:  Use the unsupervised loss Eq.(10) to train the auto-
encoder on Uf.
9: end for
10: Obtain the final clustering result from the representation

Yoo UN-

Data set #samples #views #classes
Caltech-2V 1400 40 /254 7
Caltech-5V 1400 40/254 71984 /512 /928 7

CCV 6773 5000 /5000 / 4000 20
2000 /2000 /2000

Reuters 1200 2000/ 2000 6

Cora 2708 2708 /1433 /2706 / 2706 7

BBCSport 544 3183/3203 5

Scene 4485 20/59740 15

Noisy-Mnist | 30000 784 /784 10

Table 1: Description of the data sets.

2.5 Algorithm

At last, we feed all data into the backbones and the FC layer
with Softmax trained in the supervised module to obtain the
probability ¥1,--- ,yn. Then, given x;, we put it into the
cluster with the largest probability in ;. The whole algorithm
of our method is shown in Algorithm 1.

3 Experiment

In this section, we compare our method with the state-of-the-
art unsupervised and semi-supervised methods on benchmark
data sets.

3.1 Data sets

To validate the effectiveness of ADMC, we conduct experi-
ments on eight benchmark data sets, including BBCSport ! ,
Caltech-2V [Fei-Fei et al., 2004], Caltech-5V [Fei-Fei et al.,
2004], CCV [Jiang et al., 2011], Reuters1200 [Amini et al.,
2009], Cora [Wen et al., 20201, Scene [Fei-Fei and Perona,
2005], and Noisy-Mnist 2 The details of these data sets are
shown in Table 1.

"http://mlg.ucd.ie/datasets/
“https://github.com/nineleven/NoisyMNISTDetection
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Metrics | Method | Caltech-2V | Caltech-5V | CCV | Reuters | Cora | BBCSport | Scene | Noisy-Mnist

CVCL 0.5648 0.6008 0.1044 | 0.4366 | 0.3039 0.5488 0.3822 0.9539

DealMVC 0.1743 0.1750 0.0833 | 0.1817 | 0.2237 0.6176 0.0939 0.1090

ACC MFLVC 0.6207 0.7171 0.3201 | 0.4617 | 0.2493 0.3346 0.3681 0.9733
DSMVC 0.6064 0.6143 0.1875 | 0.4108 | 0.3095 0.5147 0.4161 0.3781

SDSNE 0.6214 0.7636 0.2596 | 0.2342 | 0.3774 0.7868 0.3969 OOM

ADMC 0.7643 0.9050 0.3325 | 0.6575 | 0.6499 0.9651 0.4591 0.9864

CVCL 0.4164 0.4615 0.0000 | 0.2267 | 0.1270 0.4248 0.4124 0.8980

DealMVC 0.0079 0.0095 0.0056 | 0.0046 | 0.0035 0.4759 0.0072 0.0007

NMI MFLVC 0.5374 0.6748 0.3001 | 0.2786 | 0.0297 0.0553 0.3845 0.9342
DSMVC 0.5342 0.5056 0.1688 | 0.1490 | 0.0961 0.2197 0.4434 0.2999

SDSNE 0.5240 0.7547 0.2633 | 0.1681 | 0.2379 0.6133 0.4272 OOM

ADMC 0.6187 0.8219 0.3068 | 0.4049 | 0.3639 0.8899 0.4057 0.9624

CVCL 0.3300 0.3870 0.0000 | 0.1697 | 0.0819 0.3352 0.2292 0.9026

DealMVC 0.0006 0.0016 0.0001 | 0.0005 | 0.0049 0.3450 0.0003 0.0001

ARI MFLVC 0.4329 0.5739 0.1528 | 0.2136 | 0.0122 0.0167 0.2254 0.9432
DSMVC 0.4379 0.4139 0.0593 | 0.1217 | 0.0795 0.2457 0.2442 0.2078

SDSNE 0.4005 0.6459 0.1018 | 0.0171 | 0.0485 0.5514 0.2307 OOM

ADMC 0.5767 0.8103 0.1599 | 0.3614 | 0.3708 0.9118 0.2664 0.9706

CVCL 0.5781 0.6094 0.1044 | 0.4462 | 0.4085 0.6426 0.4234 0.9539
DealMVC 0.1750 0.1771 0.1057 | 0.1817 | 0.3022 0.6507 0.1035 0.1150

PUR MFLVC 0.6207 0.7264 0.3329 | 0.4683 | 0.3135 0.3750 0.4172 0.9733
DSMVC 0.6114 0.6200 0.2159 | 0.4133 | 0.3778 0.5202 0.4334 0.3916

SDSNE 0.6393 0.7971 0.2788 | 0.2708 | 0.3818 0.7868 0.4457 OOM

ADMC 0.7643 0.8914 0.3357 | 0.6575 | 0.6499 0.9651 0.4604 0.9864

Table 2: The clustering results compared with unsupervised methods. OOM means that the method does not run a result due to the out-of-
memory error.

Method | # of annotations | Caltech-2V | Caltech-5V | CCV | Reuters | Cora | BBCSport | Scene | Noisy-Mnist
10 0.4788 0.7914 0.0841 | 0.4300 | 0.4557 0.9157 0.2761 0.5305
20 0.6200 0.8636 0.0890 | 0.5083 | 0.5487 0.9447 0.3621 0.6443
IMvGCN 30 0.6050 0.8493 0.1016 | 0.5367 | 0.5907 0.9494 0.3254 0.6756
40 0.6591 0.8436 0.0992 | 0.5650 | 0.5077 0.9504 0.3978 0.6906
50 0.6099 0.8457 0.1267 | 0.6308 | 0.6279 0.9574 0.4145 0.7132
10 0.4657 0.7671 0.1181 | 0.3100 | 0.3065 0.8199 0.1353 OOM
20 0.6264 0.8479 0.1397 | 0.4358 | 0.3161 0.7941 0.2163 OOM
DSRL 30 0.6064 0.8607 0.1314 | 0.4217 | 0.3275 0.8511 0.2593 OOM
40 0.6457 0.8564 0.1400 | 0.5125 | 0.3346 0.8603 0.2640 OOM
50 0.6786 0.8464 0.1537 | 0.5467 | 0.3497 0.9577 0.3115 OOM
10 0.5057 0.5736 0.1107 | 0.2242 | 0.3253 0.5349 0.2002 0.2784
20 0.5314 0.7036 0.1441 | 0.3800 | 0.3689 0.6029 0.2803 0.3108
MVAR 30 0.4857 0.7086 0.1727 | 0.4117 | 0.3685 0.7813 0.2584 0.2920
40 0.5450 0.7214 0.1742 | 0.5075 | 0.4121 0.7169 0.2493 0.4723
50 0.6179 0.8164 0.1978 | 0.5175 | 0.5037 0.8272 0.3142 0.4667
10 0.6093 0.8086 0.1927 | 0.5242 | 0.5645 0.8199 0.3530 0.5981
20 0.6679 0.8521 0.2486 | 0.5333 | 0.6089 0.8658 0.4312 0.9433
ADMC 30 0.7164 0.8843 0.2692 | 0.5842 | 0.6193 0.9375 0.4341 0.9688
40 0.7521 0.8914 0.3191 | 0.6208 | 0.6448 0.9559 0.4406 0.9866
50 0.7643 0.9050 0.3325 | 0.6575 | 0.6499 0.9651 0.4591 0.9864

Table 3: ACC results compared with semi-supervised methods. OOM means that the method does not run a result due to the out-of-memory
error.



Method | # of annotations | Caltech-2V | Caltech-5V | CCV | Reuters | Cora | BBCSport | Scene | Noisy-Mnist
10 0.4395 0.6796 0.1881 | 0.2164 | 0.2069 0.7672 0.3094 0.4460
20 0.4947 0.7678 0.2004 | 0.3131 | 0.2780 0.8349 0.3419 0.5017
IMvGCN 30 0.5095 0.7852 0.1936 | 0.3164 | 0.3183 0.8609 0.3651 0.5528
40 0.5092 0.7721 0.1880 | 0.3681 | 0.2458 0.8618 0.3548 0.5615
50 0.5074 0.7730 0.1893 | 0.3570 | 0.3619 0.8750 0.3708 0.5918
10 0.3137 0.6570 0.0638 | 0.1020 | 0.0104 0.7998 0.1175 OOM
20 0.3962 0.7273 0.0828 | 0.1965 | 0.0316 0.6172 0.2058 OOM
DSRL 30 0.4000 0.7420 0.0628 | 0.2080 | 0.0538 0.7325 0.2258 OOM
40 0.4328 0.7386 0.0724 | 0.2447 | 0.0697 0.7517 0.2335 OOM
50 0.4671 0.7309 0.0908 | 0.2678 | 0.0932 0.8571 0.2656 OOM
10 0.4555 0.4441 0.1155 | 0.0873 | 0.0354 0.2829 0.2667 0.2881
20 0.3540 0.5231 0.1012 | 0.1582 | 0.1412 0.3300 0.2530 0.4179
MVAR 30 0.3074 0.5559 0.1187 | 0.1762 | 0.1057 0.5918 0.1665 0.3946
40 0.3273 0.5376 0.1393 | 0.2172 | 0.1352 0.5630 0.1493 0.5012
50 0.3814 0.6734 0.1249 | 0.2506 | 0.2562 0.6713 0.3162 0.5299
10 0.5097 0.6883 0.2194 | 0.2993 | 0.3118 0.6568 0.3560 0.6280
20 0.5455 0.7596 0.2604 | 0.3039 | 0.3323 0.7340 0.3926 0.8903
ADMC 30 0.5811 0.7924 0.2757 | 0.3408 | 0.3416 0.8163 0.3869 0.9321
40 0.6107 0.7991 0.2997 | 0.3763 | 0.3659 0.8567 0.3942 0.9631
50 0.6187 0.8219 0.3068 | 0.4049 | 0.3639 0.8899 0.4057 0.9624

Table 4: NMI results compared with semi-supervised methods. OOM means that the method does not run a result due to the out-of-memory

€ITOrI.

3.2 Experimental Setup

We compare ADMC with eight state-of-the-art multi-view
clustering algorithms including five unsupervised algorithms
and three semi-supervised algorithms. The five unsuper-
vised multi-view algorithms are CVCL [Chen et al., 2023],
DealMVC [Yang et al., 2023], MFLVC [Xu et al., 2022b],
DSMVC [Tang and Liu, 2022] and SDSNE [Liu er al.,
2022]. The three semi-supervised multi-view algorithms are
IMvGCN [Wu et al., 2023], DSRL [Wang et al., 2021], and
MVAR [Tao et al., 2017].

For our proposed ADMC, the sizes of the four hidden lay-
ers in the auto-encoder are set to 500, 500, 2000, and 128, re-
spectively. The FC in the fusion module is a four-layer MLP
with RELU as an active function whose sizes are set to 128,
128, 256, and 1, respectively. The FC in the supervised mod-
ule is a single layer whose size is the number of clusters. «
is fixed as 107>, and /3 and ~y are chosen from [1073,103].
7 is fixed as 0.6. We use AdmW as the optimizer, The ex-
periments contain 5 selection batches and the budget of each
batch is 10 samples. For other compared methods, we use the
public codes and pre-trained models provided by their authors
to conduct experiments. All experiments are conducted on the
PC with AMD Ryzen 7 7840H CPU, NVIDIA GeForce RTX
4060 GPU, and 16GB RAM.

We apply four wildly-used metrics to evaluate the fi-
nal clustering performance, including clustering ACCuracy
(ACC), Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI), and PURity (PUR).

3.3 Experimental Results

Table 2 shows the results of ADMC and state-of-the-art un-
supervised methods. The best results are highlighted in bold.
The results of ADMC in Table 2 are the results after 5 se-
lection batches. Among all data sets on all metrics, ADMC

achieves the best results. The results of ADMC are signifi-
cantly better than other methods. It shows that the supervised
information is helpful in the clustering task as claimed in the
Introduction.

Tables 3 and 4 show the ACC and NMI results compared
with semi-supervised methods on all data sets with differ-
ent numbers of annotated data. The results w.r.t. ARI and
PUR are shown in the Appendix. We can see that the perfor-
mance of ADMC increases with the increase of human anno-
tations on most data sets. When compared with other semi-
supervised methods, our ADMC achieves better performance
on all data sets at last. Moreover, we can also find that our
ADMC achieves better performance with fewer annotations
compared with other methods. For example, on Caltech-2V
data set, we only need 30 annotations to outperform other
methods with 50 annotations. It well demonstrates the effec-
tiveness of our active clustering method.

3.4 Ablation Study

To further verify the effectiveness of our active selection
module, we design an ablation study by comparing ADMC
with its unsupervised and semi-supervised versions. In more
detail, we denote ADMC-U as the unsupervised version with-
out any annotations, which means it removes the active selec-
tion module and the supervised module. We denote ADMC-
R as the semi-supervised version, which means in the active
selection module, we randomly select K samples for query-
ing annotations.

Table 5 shows the ACC and NMI results of our method and
these two degenerated versions. The results w.r.t. ARI and
PUR are shown in the Appendix. We can find that ADMC-U
is much worse than ADMC-R and ADMC, even though we
only have very few annotations in ADMC-R and ADMC. It
shows that the supervised information is quite important for



Metrics | Method | # of annotations | Caltech-2V | Caltech-5V | CCV | Reuters | Cora | BBCSport | Scene | Noisy-Mnist
ADMC-U 0 0.2371 0.3886 0.2494 | 0.3858 | 0.3246 0.3548 0.2054 0.4758
10 0.4856 0.5000 0.1490 | 0.3800 | 0.4335 0.4926 0.2919 0.5430
20 0.5814 0.6421 0.2479 | 0.4408 | 0.5295 0.7316 0.3530 0.7206
ADMC-R 30 0.6721 0.7500 0.2309 | 0.4633 | 0.4557 0.8309 0.4120 0.9469
40 0.7093 0.8364 0.2631 | 0.5600 | 0.6226 0.8879 0.4192 0.9688
ACC 50 0.7336 0.8529 0.2790 | 0.5683 | 0.6331 0.9062 0.4297 0.9748
10 0.6093 0.8086 0.1927 | 0.5242 | 0.5645 0.8199 0.3530 0.5981
20 0.6679 0.8521 0.2486 | 0.5333 | 0.6089 0.8658 0.4312 0.9433
ADMC 30 0.7164 0.8843 0.2692 | 0.5842 | 0.6193 0.9375 0.4341 0.9688
40 0.7521 0.8914 0.3191 | 0.6208 | 0.6448 0.9559 0.4406 0.9866
50 0.7643 0.9050 0.3325 | 0.6575 | 0.6499 0.9651 0.4591 0.9864
ADMC-U 0 0.1107 0.3353 0.2494 | 0.1880 | 0.0956 0.0000 0.2725 0.4329
10 0.3753 0.4517 0.1147 | 0.1952 | 0.1736 0.2943 0.2934 0.5380
20 0.4551 0.5981 0.2445 | 0.2159 | 0.2480 0.5839 0.3377 0.6826
ADMC-R 30 0.5341 0.6852 0.2267 | 0.2415 | 0.2593 0.6909 0.3668 0.8780
40 0.5678 0.7578 0.2466 | 0.2990 | 0.3454 0.7455 0.3942 0.9211
NMI 50 0.5960 0.7640 0.2441 | 0.2996 | 0.3860 0.7831 0.4004 0.9330
10 0.5097 0.6883 0.2194 | 0.2993 | 0.3118 0.6568 0.3560 0.6280
20 0.5455 0.7596 0.2604 | 0.3039 | 0.3323 0.7340 0.3926 0.8903
ADMC 30 0.5811 0.7924 0.2757 | 0.3408 | 0.3416 0.8163 0.3869 0.9321
40 0.6107 0.7991 0.2997 | 0.3763 | 0.3659 0.8567 0.3942 0.9631
50 0.6187 0.8219 0.3068 | 0.4049 | 0.3639 0.8899 0.4057 0.9624

Table 5: The ACC and NMI results of ablation study.

the clustering. Moreover, compared with ADMC-R, ADMC
often achieves better performance, even when there are only
10 annotations. It shows that our designed active selection
module performs much better than the random selection no
matter how many samples are annotated, demonstrating the
effectiveness of the active selection module.
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Figure 2: The ACC and NMI value of ADMC with different 5 and
~ on Cora and Caltech-2v.

3.5 Hyper-parameter Study

To investigate the sensitivity of two hyper-parameters 3 and -y
in ADMC, we show the ACC and NMI results with different
values of 3 and v in the range [1073,103]. Figure 2 shows
the results after 50 annotations on Cora and Caltech-2v data
sets. The results on other data sets are similar. From Figure 2,
we can see that the performance is stable in a relatively wide
range. It means that we can easily select hyper-parameters.
For example, we can select them in the range [1072,1071] to
easily achieve a relatively good performance.

3.6 Conclusion

In this paper, we proposed a novel active deep multi-view
clustering algorithm that can automatically select important
samples for querying human annotations to guide the clus-
tering. In this method, we provided an adaptive multi-view
fusion module to ensemble multiple views by learning ap-
propriate weights. Then, we designed an active selection
module to identify representative and diverse samples for hu-
man annotations in a simple yet effective way. We used
the annotations to train the network in a supervised mod-
ule and we also carefully designed an unsupervised module
with contrastive learning to enhance the multi-view represen-
tation learning. Experimental results on eight widely-used
multi-view data sets by comparing it with state-of-the-art
supervised and semi-supervised multi-view clustering meth-
ods show the effectiveness and superiority of our proposed
ADMC. We also conducted the ablation study to compare it
with its unsupervised and semi-supervised versions, which
shows the effectiveness of our designed active selection mod-
ule, and well demonstrates our motivation of active cluster-
ing.

In the future, we will further study other selection criteria,
such as uncertainty and informative, and design a new active
selection module for multi-view clustering.
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