
Robust Multiple Kernel K-means Using `2,1-Norm

Liang Du1,2, Peng Zhou1,3, Lei Shi1,3, Hanmo Wang1,3,
Mingyu Fan4, Wenjian Wang2∗, Yi-Dong Shen1†

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2School of Computer and Information Technology, Shanxi University

3University of Chinese Academy of Sciences
4Institute of Intelligent System and Decision, Wenzhou University

{duliang,zhoup,shilei,wanghm,ydshen}@ios.ac.cn, fanmingyu@amss.ac.cn, wjwang@sxu.edu.cn

Abstract
The k-means algorithm is one of the most often
used method for data clustering. However, the stan-
dard k-means can only be applied in the original
feature space. The kernel k-means, which extends
k-means into the kernel space, can be used to cap-
ture the non-linear structure and identify arbitrarily
shaped clusters. Since both the standard k-means
and kernel k-means apply the squared error to mea-
sure the distances between data points and cluster
centers, a few outliers will cause large errors and
dominate the objection function. Besides, the per-
formance of kernel method is largely determined by
the choice of kernel. Unfortunately, the most suit-
able kernel for a particular task is often unknown in
advance. In this paper, we first present a robust k-
means using `2,1-norm in the feature space and then
extend it to the kernel space. To recap the pow-
erfulness of kernel methods, we further propose a
novel robust multiple kernel k-means (RMKKM)
algorithm that simultaneously finds the best clus-
tering label, the cluster membership and the opti-
mal combination of multiple kernels. An alternat-
ing iterative schema is developed to find the optimal
value. Extensive experiments well demonstrate the
effectiveness of the proposed algorithms.

1 Introduction
Clustering is one of the most important research topics in both
machine learning and data mining communities. It aims at
partitioning the data points into groups with similar objects.
An enormous number and variety of methods have been pro-
posed over the past decades. Due to the simplicity and the
effectiveness, the k-means algorithm [Wu et al., 2008] be-
comes one of the most commonly-used methods for data clus-
tering. However, the standard k-means algorithm is limited to
∗Wenjian Wang is also affiliated with the Key Laboratory of
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Ministry of Education, Shanxi University
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the squared Euclidean distance and cannot identify arbitrarily
shaped clusters.

Kernel clustering algorithms have the ability to capture the
non-linear structure inherent in many real world data sets and
thereby usually achieve better clustering performance. The
typical kernel-based clustering methods include: kernel k-
means [Schölkopf et al., 1998] and spectral clustering [Ng
et al., 2002]. Efforts have been made to further improve
the result of kernel k-means. [Dhillon et al., 2007] shows
that the spectral clustering can be equivalently reformulated
as a weighted variant of kernel k-means. [Yu et al., 2012]
and [Huang et al., 2012b] propose to integrate multiple in-
formation for clustering. [Chitta et al., 2011], [Chitta et al.,
2012] and [Elgohary et al., 2014] develop efficient optimiza-
tion schema to improve the scalability of kernel k-means to
hanle large scale data.

Although kernel k-means based methods have attracted in-
creasing attention in recent years, they still suffer from the
following problems in real applications. First, these methods
adopt the squared loss, which is well-known to be unstable
with respect to outliers and noises, to measure the reconstruc-
tion error. As a result, a few noisy entries with large errors
may easily dominate the result. Second, it is known that the
performance of these single kernel methods are largely de-
termined by the choice of kernel. Unfortunately, the most
suitable kernel for a particular task is often unknown in ad-
vance. Moreover, exhaustive search on a user-defined pool
of kernels will be quite time-consuming when the size of
the pool becomes large [Zeng and Cheung, 2011]. In addi-
tion, real world data sets are often generated from different
sources equipped with heterogeneous features. However, sin-
gle kernel methods may fail to fully utilize such information.
By leveraging multiple input kernels from different views or
sources, multiple kernel methods are with great potential to
integrate complementary information [Yu et al., 2012]. To
alleviate the effort for kernel designing and make full use of
complementary information, it is imperative to learn an ap-
propriate kernel efficiently to make the performance of the
kernel k-means robust or even improved. However, unlike
the multiple kernel learning in supervised setting [Gönen and
Alpaydın, 2011], kernel learning in unsupervised scenario is
more challenging due to the absence of class labels that could
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guide the search for relevant kernels.
To improve the robustness with respect to noises and out-

liers, we first propose a robust k-means method by using `2,1-
norm to measure the distances between data points and clus-
ter centers. To recap the powerfulness of kernel method, we
also provide the robust k-means in kernel space. To alleviate
the effort of kernel construction and make use of complemen-
tary information, we further propose a robust multiple kernel
k-means (RMKKM) algorithm. In particular, RMKKM per-
forms robust k-means with an appropriate consensus kernel
learned from a linear combination of multiple input kernels.
To solve the optimization problem where all the variables are
encapsulated by the non-smooth `2,1-norm, an alternating it-
erative algorithm is provided to find the optimal value. Ex-
perimental results on benchmark data sets have shown that
the proposed approaches achieve better clustering results in
both the single kernel and multiple kernel learning settings.

The rest of the paper is organized as follows. The robust
multiple kernel k-means is introduced in Section 2. Section 3
provides the optimization schema. A variety of experimental
results are presented in Section 4. Finally, we provide some
concluding remarks in Section 5.

Notations. In this paper, matrices are written as upper-
case letters and vectors are written as boldface lower-case
letters. Given a matrix A = {aij}, we denote its i-th
column as ai. The `2-norm of a vector x is defined as
||x||2 =

√
xTx. The `2,1-norm of a matrix is defined as

||A||2,1 =
∑n
i=1

√∑m
j=1 a

2
ij =

∑n
i=1 ||ai||2.

2 Robust Multiple Kernel K-means
In this section, we first present the robust k-means using the
`2,1-norm. Then we extend it to kernel space and get robust
multiple kernel k-means. To improve the effectiveness of ker-
nel method, we further propose a novel robust multiple kernel
k-means (RMKKM) algorithm for data clustering.

2.1 Robust K-means
Suppose we are given a data set X = [x1,x2, · · · ,xn] ∈
Rd×n, and aim to partition these data points into c disjoint
clusters {C1, C2, . . . , Cc}. The k-means algorithm finds op-
timal solutions with respect to the clustering error, defined
as the sum of squared Euclidean distance between each data
point xi and the cluster center uj where xi belongs to. The
objective function of k-means can be written as

min
Z,U

||X − UZT ||22 (1)

s.t. zij = {0, 1},
c∑
j=1

zij = 1,∀i = 1, 2, · · · , n,

where U ∈ Rd×c is the cluster centroid matrix, and Z ∈
Rn×c is the cluster indicator matrix.

Though the k-means algorithm has been widely used for
data clustering, it is known that the squared loss used in Eq.
(1) is very sensitive to data outliers, and they greatly affect
the performance of clustering. In order to have a more stable
result with respect to a fixed initialization, the robust k-means
algorithm is desired. Inspired by the recent developed robust

multi-view k-means [Cai et al., 2013], we also use the `2,1-
norm to measure the reconstruction error, and get the follow-
ing problem

min
Z,U

||XT − ZUT ||2,1 =
n∑
i=1

√√√√ c∑
j=1

zij ||xi − uj ||2 (2)

s.t. zij = {0, 1},
c∑
j=1

zij = 1,∀i = 1, 2, · · · , n,

where the `1-norm is imposed among data points and the `2-
norm is used for features. By introducing the sparsity induced
norm, `2,1-norm, the effects of data outliers can be reduced
and a more robust result is expected.

2.2 Robust Kernel K-means
The effectiveness of k-means is largely limited to spheri-
cal clusters, that is, the clusters must be linearly separable
[Dhillon et al., 2004]. By applying kernel trick, the kernel k-
means [Schölkopf et al., 1998] algorithm attempts to address
this problem by mapping data with non-linear transformation
into appropriate feature space and applying k-means on the
induced feature space. This can lead to linear separated clus-
ters in the new feature space while these clusters are not linear
separable in the original space. Thus, kernel k-means is much
preferred for general clusteringn [Bishop and others, 2006].

Similar to the kernel k-means algorithm, the proposed ro-
bust k-means in Eq. (2) can also be easily extended to the
kernel version by using a general kernelization framework
[Zhang et al., 2010]. Let φ : Rd → H be a kernel map-
ping from the original space to the kernel space, where H
is a Reproducing Kernel Hilbert Space (RKHS) induced by
a kernel function K(x, z) = φ(x)Tφ(z). Then φ(X) =
[φ(x1), φ(x2), · · · , φ(xn)], and the robust k-means in Eq.
(2) in the kernel space becomes:

min
Z,V

||φ(X)T − ZV T ||2,1 (3)

=

n∑
i=1

√√√√ c∑
j=1

zij ||φ(xi)− vj ||2,

where V is the cluster center matrix in the implicit feature
space. It can be shown later (see Eq. (11)), the j-th cluster
center vj can be determined by vj =

∑
i aijφ(xi), where aij

is the membership of xi belongs to j-th cluster. Hence, the
above problem can be re-written as

min
Z,A

n∑
i=1

√√√√ c∑
j=1

zij(kii − 2aTj ki + aTj Kaj), (4)

where the kernel matrix is denoted by K ∈ Rn×n and the
(i, j)-th entry of K is kij = φ(xi)

Tφ(xj).

2.3 Robust Multiple Kernel K-means
The proposed method above only works for single kernel data
clustering. However, one of the central problems with kernel
methods in general is that it is often unclear which kernel is
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the most suitable for a particular task. In this subsection, we
further extend the above method to automatically learn an ap-
propriate kernel from the convex linear combination of sev-
eral pre-computed kernel matrices within the multiple kernel
learning framework [Gönen and Alpaydın, 2011].

Suppose there are altogether m different kernel functions
{K}mt=1 available for the clustering task in hand. Accord-
ingly, there are m different associated feature spaces denoted
as {H}mt . To combine these kernels and also ensure that the
resulted kernel still satisfies Mercer condition, we consider a
nonnegative combination of these feature maps, φ′ , that is,

φ′(x) =
m∑
t=1

wtφt(x) with wt ≥ 0. (5)

Unfortunately, as these implicit mappings do not necessar-
ily have the same dimensionality, such a linear combina-
tion may be unrealistic. Hence, we construct an augmented
Hilbert space H̃ = ⊕mt=1Hi by concatenating all feature
spaces φ̃(x) = [

√
w1φ1(x);

√
w2φ2(x); . . . ;

√
wmφm(x)]T

with different weight
√
wt(wt ≥ 0) , or equivalently the im-

portance factor for kernel function Kt. It can be verified that
clustering in feature space H̃ is equivalent to employing a
combined kernel function [Zeng and Cheung, 2011]

K̃(x, z) =
m∑
t=1

wtKt(x, z). (6)

It is known that the convex combination, with w(wt ≥ 0),
of the positive semi-definite kernel matrices {K}mt=1 is still a
positive semi-definite kernel matrix. By replacing the single
kernel in Eq. (4) with the combined kernel, we propose a new
Robust Multiple Kernel k-means method by solving:

min
Z,A,w

n∑
i=1

√√√√ c∑
j=1

zij [
m∑
t=1

wt(ktii − 2aTj k
t
i + aTj K

taj)]

=

n∑
i=1

√√√√ c∑
j=1

zij(k̃ii − 2aTj k̃i + aTj K̃aj) (7)

s.t. zij = {0, 1},
c∑
j=1

zij = 1,
m∑
t=1

wγt = 1, wt ≥ 0,

where γ is the parameter to control the kernel weight distribu-
tion with 0 < γ < 1. It should be noticed that RMKKM aims
at improving the stability of kernel k-means without suffering
the choice of appropriate kernel functions, where the weak
kernels can be computed either on single view or multi-view
data [Cai et al., 2013].

3 Optimization Algorithm and Analysis
The optimization problem in Eq. (7) is not convex in all vari-
ables together, but convex in them separately. The difficulty
of solving the proposed objective mainly lies that all vari-
ables are encapsulated into a non-smooth `2,1-norm. In the
following, we introduce an iterative algorithm based on block
coordinate descent to solve it. We separately update the value

of A,Z, and w while holding the other variables as constant.
Thus, a local minima can be expected by solving a sequence
of convex optimization problems.

3.1 Optimizing w.r.t. cluster centroid when Z and
w are fixed

Recall that, we have introduced cluster centroid matrix V in
the implicit feature space in Eq. (3), conceptually we further
denote ṽj to be the concatenated implicit representations for
j-th cluster center. The optimization problem in Eq. (7) with
respect to the cluster centroid matrix can be re-written as

J (Ṽ ) =
n∑
i=1

√√√√ c∑
j=1

zij ||φ̃(xi)− ṽj ||2. (8)

It can be verified that the derivative of J is equivalent to the
derivative of the following proxy function L(Ṽ ),

L(Ṽ ) =
n∑
i=1

Dii

c∑
j=1

zij(φ̃(xi)− ṽj)
2, (9)

where Dii =
1

2
√∑c

j=1 zij ||φ̃(xi)−ṽj ||2
, conceptually.

Actually, the above problem is the weighted version of ker-
nel k-means [Dhillon et al., 2004]. By setting the derivative
to be zero, we have

∂L
∂vj

= −2
n∑
i=1

zij(φ̃(xi)− ṽj) = 0. (10)

vj =

∑n
i=1 zijDiiφ̃(xi)∑n

i=1 zijDii
. (11)

Thus, it is clear that the cluster centroid matrix for robust
(multiple) kernel k-means can be determined by the weighted
combination of the data in implicit feature space, where the
membership matrix A can be computed by

aij =
zijDii∑n
i=1 zijDii

. (12)

And the actual value of Dii can be computed by

Dii =
1

2
√∑c

j=1 zij
∑m
t=1 wt(k

t
ii − 2aTj k

t
i + aTj K

taj)
.

(13)

3.2 Optimizing w.r.t. partition matrix Z when A
and w are fixed

The minimization of the objective function in Eq. (7) with
respect to Z can be decomposed into solving n independent
sub-problems, that is

min
zi

√√√√ c∑
j=1

zij(k̃ii − 2aTj k̃i + aTj K̃aj), (14)

where zij = {0, 1},
∑c
j=1 zij = 1. And, the optimal solution

of the above problem is given by

zij=

{
1 j = argminj′(

∑m
t=1 wt(a

T
j′K

taj′−2aTj′kti))
0 otherwise.

(15)
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3.3 Optimizing w.r.t. kernel weight w when A and
Z are fixed

By defining E ∈ Rn×m with

eit =
c∑
j=1

zij(k
t
ii − 2aTj k

t
i + aTj K

taj), (16)

the optimization of Eq. (7) with respect to w can be simpli-
fied as solving the following problem

min
n∑
i=1

√√√√ m∑
t=1

wteit, s.t.
m∑
t=1

wγt = 1, wt ≥ 0. (17)

It is obvious that the derivative in Eq. (17) can also be re-
garded as the derivative of the following objective function

L(w) =
∑
t=1

wtht, s.t.
m∑
t=1

wγt = 1, wt ≥ 0, (18)

where ht is denoted as

ht =
n∑
i=1

eit

2
√∑m

t′=1 wt′eit′
. (19)

The Lagrange function of Eq. (18) is J (w) = wTh+λ(1−∑
t w

γ
t ). By using the KKT condition ∂J (w)

∂wt
wt = 0 and the

constraint
∑m
t=1 w

γ
t = 1, the optimal solution of w can be

obtained by

wt =

[
1∑m

t′=1 h
γ
γ−1

t′

] 1
γ

h
1

γ−1

t . (20)

In summary, we present the alternating iterative algorithm
for optimizing Eq. (7) in Algorithm 1.

Algorithm 1 The algorithm of RMKKM
Input: A set of kernels {Kt}mt=1, the desired number of clus-

ter c and the parameter γ.
Initialize the indicator matrix Z randomly, such that Z sat-
isfies zij = {0, 1} and

∑
j zij = 1;

Initialize the kernel weight wt = 1/m for each kernel;
Initialize the diagonal matrixD = In, where In is the iden-
tity matrix;
repeat

Update the membership matrix A by Eq. (12);
Update the cluster indicator matrix Z by Eq. (15);
Update the kernel weight w by Eq. (20);
Update the diagonal matrix D by Eq. (13);

until Converges
Output: Partition matrix Z, membership matrix A, and the

kernel weights w.

3.4 Convergence Analysis
The optimization problem of Eq. (7) is a convex problem
with respect to one variable while holding the others. For
each subproblem, our algorithm will guarantee that we can

find the optimal solution. Therefore, by solving these sub-
problems alternatively, our algorithm will reduce the objec-
tive function monotonically. Meanwhile, the whole problem
is lower bounded. Thus, the convergence of the proposed al-
gorithm can be verified.

3.5 Complexity Analysis
In the following, we give the complexity analysis of the
optimization algorithm. Initially, we need to compute the
n × n × m kernel matrices {K}mt=1, whose cost is gener-
ally O(n2dm). In each iteration, the cost of updating A
by Eq. (12) is O(nc), the cost of updating Z by Eq. (15)
is O((n2 + n)cm), the cost of updating w by Eq. (20) is
O((n2 + n)nm + nm +m), and the cost of updating D by
Eq. (13) is O((n2 + n)nm). Since c � n, the total cost
is O(n2dm + (n3 + n2 + n)ml), where l is the number of
iterations. Compared with kernel k-means with fixed kernel
weights and sample weights, the proposed algorithm is less
efficient due to the involvement of updating kernel weight w
and sample weight D.

3.6 Discussion of the parameter γ
The parameter γ is used to control the distribution of weights
for different kernels. From Eq. (20), we can observe that
when γ → 1, we will assign 1 to the kernel whose ht is the
smallest and assign 0 to the weights of other kernels. And
when γ → 0, we will get equal weights. With this strategy,
we can avoid the trivial solution of the kernel weights w and
control the whole weights distribution flexibly.

4 Experimental Results
In this section, we evaluate the clustering performance of the
proposed algorithm on a number of real world data sets.

4.1 Data Sets
We collect a variety of data sets, including 6 image data sets
and 3 text corpora, most of which have been frequently used
to evaluate the performance of different clustering algorithms.
The statistics of these data sets are summarized in Table 1.

Table 1: Description of the data sets
# instances # features # classes

YALE 165 1024 15
JAFFE 213 676 10
ORL 400 1024 40
AR 840 768 120
COIL20 1440 768 20
BA 1404 320 36
TR11 414 6429 9
TR41 878 7454 10
TR45 690 8261 10

4.2 Compared Algorithms
To demonstrate how the clustering performance can be im-
proved by the proposed approaches, we compared the results
of the following algorithms:
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Table 2: Clustering results measured by Accuracy/NMI/Purity of the compared methods.
Data Metrics KKM-b KKM-a SC-b SC-a RKKM-b RKKM-a KKM-ew SC-ew RKKM-ew MKKM AASC RMKKM∗

YALE
Acc 0.4712 0.3897 0.4942 0.4052 0.4809 0.3971 0.4100 0.4973 0.4106 0.4570 0.4064 0.5218
NMI 0.5134 0.4207 0.5292 0.4479 0.5229 0.4287 0.4571 0.5326 0.4601 0.5006 0.4683 0.5558

Purity 0.4915 0.4112 0.5161 0.4306 0.4979 0.4174 0.4345 0.5148 0.4358 0.4752 0.4233 0.5364

JAFFE
Acc 0.7439 0.6709 0.7488 0.5403 0.7561 0.6798 0.6254 0.5376 0.6277 0.7455 0.3035 0.8707
NMI 0.8013 0.7148 0.8208 0.5935 0.8347 0.7401 0.6962 0.5913 0.7017 0.7979 0.2722 0.8937

Purity 0.7732 0.7013 0.7683 0.5656 0.7958 0.7182 0.6655 0.5643 0.6683 0.7683 0.3308 0.8890

ORL
Acc 0.5353 0.4593 0.5796 0.4665 0.5496 0.4688 0.4726 0.4810 0.4815 0.4751 0.2720 0.5560
NMI 0.7343 0.6336 0.7516 0.6674 0.7423 0.6391 0.6757 0.6939 0.6845 0.6886 0.4377 0.7483

Purity 0.5803 0.5042 0.6145 0.5120 0.5960 0.5146 0.5189 0.5233 0.5285 0.5140 0.3156 0.6023

AR
Acc 0.3302 0.3089 0.2883 0.2222 0.3343 0.3120 0.3185 0.2188 0.3184 0.2861 0.3323 0.3437
NMI 0.6521 0.6064 0.5837 0.5605 0.6544 0.6081 0.6334 0.5805 0.6334 0.5917 0.6506 0.6549

Purity 0.3552 0.3364 0.3324 0.2599 0.3587 0.3388 0.3464 0.2533 0.3464 0.3046 0.3498 0.3678

COIL20
Acc 0.5949 0.5074 0.6770 0.4365 0.6164 0.5189 0.5483 0.3694 0.5543 0.5482 0.3487 0.6665
NMI 0.7405 0.6357 0.8098 0.5434 0.7463 0.6370 0.7072 0.4647 0.7098 0.7064 0.4187 0.7734

Purity 0.6461 0.5530 0.6992 0.4683 0.6635 0.5634 0.5945 0.3980 0.6012 0.5895 0.3914 0.6995

BA
Acc 0.4120 0.3366 0.3107 0.2625 0.4217 0.3435 0.3637 0.2902 0.3699 0.4052 0.2707 0.4342
NMI 0.5725 0.4649 0.5076 0.4009 0.5782 0.4691 0.5228 0.4438 0.5293 0.5688 0.4234 0.5847

Purity 0.4420 0.3606 0.3450 0.2907 0.4528 0.3686 0.3876 0.3206 0.3946 0.4347 0.3029 0.4627

TR11
Acc 0.5191 0.4465 0.5098 0.4332 0.5303 0.4504 0.4382 0.4651 0.4384 0.5013 0.4715 0.5771
NMI 0.4888 0.3322 0.4311 0.3139 0.4969 0.3348 0.3504 0.3814 0.3506 0.4456 0.3939 0.5608

Purity 0.6757 0.5632 0.5879 0.5023 0.6793 0.5640 0.5825 0.5464 0.5826 0.6548 0.5467 0.7293

TR41
Acc 0.5564 0.4634 0.6352 0.4480 0.5676 0.4680 0.4755 0.4723 0.4784 0.5610 0.4590 0.6265
NMI 0.5988 0.4037 0.6133 0.3660 0.6077 0.4086 0.4245 0.4362 0.4292 0.5775 0.4305 0.6347

Purity 0.7446 0.6000 0.7368 0.5645 0.7499 0.6021 0.6367 0.6269 0.6395 0.7283 0.6205 0.7757

TR45
Acc 0.5879 0.4558 0.5739 0.4596 0.5813 0.4569 0.4512 0.5329 0.4530 0.5846 0.5264 0.6400
NMI 0.5787 0.3869 0.4803 0.3322 0.5786 0.3896 0.4022 0.4198 0.4057 0.5617 0.4194 0.6273

Purity 0.6849 0.5364 0.6125 0.5002 0.6818 0.5375 0.5586 0.5697 0.5604 0.6914 0.5749 0.7520

Average
mAcc 0.5279 0.4487 0.5353 0.4082 0.5376 0.4550 0.4559 0.4294 0.4591 0.5071 0.3767 0.5817
mNMI 0.6312 0.5110 0.6141 0.4695 0.6402 0.5172 0.5411 0.5049 0.5449 0.6043 0.4350 0.6697

mPurity 0.5993 0.5074 0.5792 0.4549 0.6084 0.5139 0.5250 0.4797 0.5286 0.5734 0.4284 0.6462
∗ The parameter γ for RMKKM is set to 0.3 for all the data sets.

• Single kernel methods. Since we have multiple input
kernels in hand, we run Kernel K-means (KKM), Spec-
tral Clustering (SC) [Ng et al., 2002], and Robust Ker-
nel K-means (RKKM) in Eq. (4) on each kernel sepa-
rately. And both the best and the average results over all
these kernels are reported, which are referred to KKM-b,
KKM-a, SC-b, SC-a, RKKM-b, RKKM-a, respectively.
Due to space limitation, the worst results for single ker-
nel are not reported. It should be pointed out that the
worst results are often far below the average.
• Equal weighted methods. The multiple input kernels are

combined into a single kernel with equal weights, and
then report the results of KKM-ew, SC-ew, RKKM-ew.
Note that such strategy often gets more stable results in
multiple kernel learning [Gönen and Alpaydın, 2011].
• MKKM1. The MKKM proposed in [Huang et al.,

1http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/mkfc/code.

2012b] also extends k-means in multiple kernel setting.
Both the loss function and the constraint on the kernel
weight distribution are different to our method.

• AASC2. The AASC algorithm is proposed in [Huang et
al., 2012a] for multiple affinities aggregation.

• RMKKM3. The proposed robust multiple kernel k-
means method for data clustering.

4.3 Experiment Setup
Following the similar strategy of other multiple kernel
learning approaches, we apply 12 different kernel func-
tions as basis for multiple kernel clustering. These ker-

rar.
2http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/aasc/code.

rar.
3For the purpose of reproducibility, we provide the code at https:

//github.com/csliangdu/RMKKM.
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nels include, seven RBF kernels K(xi,xj) = exp(−||xi −
xj ||2/2δ2) with δ = t ∗ D0, where D0 is the maxi-
mum distance between samples and t varies in the range
of {0.01, 0.05, 0.1, 1, 10, 50, 100}, four polynomial kernels
K(xi,xj) = (a+xTi xj)

b with a = {0, 1} and b = {2, 4} and
a cosine kernel K(xi,xj) = (xTi xj)/(||xi|| · ||x||). Finally,
all the kernels have been normalized through K(xi,xj) =

K(xi,xj)/
√
K(xi,xi)K(xj ,xj) and then rescaled to [0, 1].

The number of clusters is set to the true number of classes
for all the data sets and clustering algorithms. For SC and
AASC, the discrete clustering result is obtained by running
k-means on spectral embedding. For the proposed method
RMKKM, the parameter γ to control the kernel weight distri-
bution is set to 0.3. In addition, the results of all these com-
pared algorithms depend on the initialization. As suggested
in [Yang et al., 2010], we independently repeat the experi-
ments for 20 times with random initializations and report the
best results corresponding to the best objective values.

Three clustering evaluation metrics are adopted to mea-
sure the clustering performance, that is, Clustering Accuracy
(Acc), Normalized Mutual Information(NMI) and Purity.

4.4 Experimental Results
Table 2 shows the clustering results in terms of accuracy, NMI
and purity on all the data sets. Both the best results for single
kernel methods and multiple kernel methods are highlighted
in boldface. These experiments reveal a number of interesting
points: 1)The performance of single kernel methods (the first
6 columns), i.e., KKM, SC, RKKM, is largely determined by
the choice of kernel function. On the one hand, with proper
kernel function, these methods usually present good results.
On the other hand, their performances are significantly de-
teriorated on inappropriate kernels. Such observations also
motivate the development of robust kernel k-means for mul-
tiple kernel learning. Besides, it can also be seen that the
proposed RKKM give best results on 5 data sets with sin-
gle input kernel. 2)Clustering on the equal weighted multiple
kernel combination often gives more reasonable and reliable
results. Thus, it could be expected that with much carefully
designed kernel weighting schema, the performance of mul-
tiple kernel clustering can be further boosted. 3)With proper
kernel weight learning schema, the multiple kernel clustering
approaches usually improve the results over simple equally
weighted combination. 4)The proposed RMKKM gives the
best results on these data sets for multiple kernel clustering.
The performance of RMKKM is usually better or close to the
result on the best single kernel. Note that, RMKKM does
not need perform exhaustive search on a predefined pool of
kernels. Such results well demonstrate the superiority of our
method.

4.5 Parameter Selection
Our proposed method RMKKM introduces the parameter γ
to control the kernel weight distribution. The effect of the
parameter γ has been discussed in previous section. Here,
we evaluate it empirically. Figure 1 shows how the clustering
result in terms of NMI varies with the parameter γ on two
image data sets, JAFFE and ORL, and two document data
sets, TR11 and TR41.

As we can see, the performance of RMKKM is very stable
with respect to the parameter γ. Compared with the aver-
age performance of single kernel method, i.e., KKM-a, and
the result of equally weighted kernel fusion, i.e., KKM-ew,
the RMKKM achieves consistently good performance when
γ varies from 0.3 to 0.9 on all four data sets.
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Figure 1: The performance of RMKKM is stable with respect
to the parameter γ.

5 Conclusion
In this paper, we presented a robust k-means method which
uses `2,1-norm to quantify the distances between data points
and cluster centers. Then we extended it to perform robust k-
means in the kernel space. To fully recap the powerfulness of
kernel methods, we further proposed a robust multiple kernel
k-means algorithm for clustering, i.e. RMKKM. It automati-
cally learns an appropriate kernel from a lot of input kernels,
which significantly reduces the effort of kernel designing or
selection. Experimental results well demonstrate the superi-
ority of the proposed method on benchmark data sets with
multiple input kernels.

It has been shown that, given the kernel weight, the re-
mained problem can be finally reformulated as a adaptively
weighted kernel k-means (see Eq. (9)). Thus, in the future,
we plan to investigate the use of the Nyström method [El-
gohary et al., 2014] and the random fourier feature [Yang
et al., 2012] to make the proposed algorithms more efficient
in terms of computational and memory complexity. Besides,
we want to further investigate the effectiveness of the pro-
posed method on multi-view and multi-source data cluster-
ing, where a bundle of input kernels is also available.
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[Yu et al., 2011] Shi Yu, Léon-Charles Tranchevent, Bart De
Moor, and Yves Moreau. Kernel-based Data Fusion for
Machine Learning - Methods and Applications in Bioin-
formatics and Text Mining, volume 345 of Studies in Com-
putational Intelligence. Springer, 2011.

[Yu et al., 2012] Shi Yu, L-C Tranchevent, Xinhai Liu, Wolf-
gang Glanzel, Johan AK Suykens, Bart De Moor, and
Yves Moreau. Optimized data fusion for kernel k-means
clustering. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 34(5):1031–1039, 2012.

[Zeng and Cheung, 2011] Hong Zeng and Yiu-ming Che-
ung. Feature selection and kernel learning for local
learning-based clustering. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 33(8):1532–
1547, 2011.

[Zhang et al., 2010] Changshui Zhang, Feiping Nie, and
Shiming Xiang. A general kernelization framework for
learning algorithms based on kernel pca. Neurocomput-
ing, 73(4):959–967, 2010.

3482




