
Deep Self-paced Active Learning for Image
Clustering

Helin Zhao
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

e21201088@stu.ahu.edu.cn

Wei Chen
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

e23201102@stu.ahu.edu.cn

Peng Zhou
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

zhoupeng@ahu.edu.cn

Abstract—Image clustering attracts much attention in com-
puter vision and multimedia. Due to the absence of labels, even
deep clustering still often achieves unreliable results. Although
semi-supervised deep clustering can alleviate this problem, it
introduces a new problem in the selection of supervised infor-
mation during semi-supervised learning. To address this issue,
in this paper, we propose a novel active deep clustering method
that can actively select informative data for querying human
annotations and apply these annotations to guide deep clus-
tering. We seamlessly integrate active learning and self-paced
learning into a unified deep clustering framework, which can
automatically evaluate the difficulty and representativeness of
each data and further find the important data. To demonstrate
its effectiveness, we conduct extensive experiments on benchmark
image data sets. The results show that our proposed method
outperforms the state-of-the-art semi-supervised deep clustering
and deep active learning methods. The code is available at
https://github.com/wodedazhuozi/DSAC.

Index Terms—Image clustering, deep clustering, active clus-
tering, self-paced learning

I. INTRODUCTION

In computer vision and multimedia, image clustering has
attracted increasingly more attention. Since deep learning
can learn better representations for given data and achieve
promising performance on many tasks, deep image clustering
is widely studied [1]–[3]. However, due to the absence of
labels, clustering is often an ill-posed problem [4], and even
deep clustering often mis-clusters data in real applications.

To address this issue, some deep semi-supervised clus-
tering methods are proposed [5]–[9]. For example, Ren et
al. extended the popular Deep Embedded Clustering (DEC)

Peng Zhou is the corresponding author.

[1] to the semi-supervised clustering task by considering the
pairwise constraints [5]; Huang et al. designed a consistency
regularization loss for semi-supervised clustering with pair-
wise constraint [6]; Li et al. further adopted the triple loss
constraint and label propagation for semi-supervised clustering
[9]. These methods apply some supervised information, e.g.
labels of partial data or pairwise constraints between some data
pairs, to guide the clustering. Since semi-supervised clustering
uses some supervised information, it sometimes achieves more
reliable clustering results. However, we should notice that, in
these semi-supervised clustering, the supervised information is
pre-given. As we know, the performance of semi-supervised
learning highly depends on the quality of the supervised
information, and low-quality supervised information may be
unhelpful to the clustering. Unfortunately, all these semi-
supervised methods just focus on how to adopt the supervised
information whereas ignoring the selection of the supervised
information.

To tackle this problem, in this paper, we propose a novel
active deep clustering method that can actively select some key
images for querying human annotations. Active learning often
contains multiple interactive batches where in each batch,
several data are selected to query for human annotations [10]–
[14]. We carefully design a strategy to select as few as possible
images and apply the human annotations of these images to
guide the clustering. In more detail, we select the representa-
tive and difficult data for annotations. The representative data
can well characterize the clustering structure. The difficult data
are those data that the clustering method cannot handle well
by itself and thus need human annotations. When selecting
the difficult data, we harness the complementarity of active

https://github.com/wodedazhuozi/DSAC

learning and self-paced learning and seamlessly integrate them
into a unified framework. Specifically, self-paced learning can
evaluate the difficulty of each data automatically and prefers
to use easy data for learning. On the contrary, active learning
focuses on difficult data and tends to select the difficult data
for annotations. Therefore, we integrate them into a self-paced
active learning framework, which directly selects easy data
for training and selects difficult data for querying annotations
to guide the training. Since the goal of active learning is to
select as few annotations as possible to obtain a good enough
learning result, to avoid wasting of the annotations, we also
design a strategy to generate a number of pseudo-labels based
on the annotations, which can further guide the training.

In this framework, we propose an unsupervised module
for self-paced learning and an active selection module to
select those representative and difficult data and also generate
pseudo-labels. After obtaining the human annotations, we pro-
vide a supervised module with a carefully designed supervised
loss function. We integrate these three modules into a unified
framework to make each module be boosted by each other,
leading to our Deep Self-paced Active Clustering (DSAC)
method. At last, extensive experiments on benchmark image
data sets compared with state-of-the-art semi-supervised and
active learning methods show the effectiveness and superiority
of the proposed method.

The most related work is Active Deep Clustering (ADC)
[15]. This method selected pairs of data for annotation and
used both labeled and unlabeled data for training the network.
Notice that, ADC annotated data with must-link and cannot-
link constraints and thus needs a large number of annotation
data for training. Different from it, our method directly labels
the image and needs only a small number of annotations.
Moreover, our method plugs deep active learning into a
self-paced learning framework and designs a more careful
selection strategy including pseudo-labeling. Therefore, ours
can achieve better performance with much fewer annotations.

The main contributions are summarized as follows:
• We integrate active learning and self-paced learning into a

unified deep clustering framework, which can seamlessly
evaluate the difficulty of data, select the key data, and do
the deep clustering.

• We carefully design a novel active selection module,
which can select representative and difficult data for
annotations. Moreover, in this module, we also provide a
strategy to generate the pseudo-labels which can largely
decrease the number of annotations.

• We conduct extensive experiments on benchmark data
sets by comparing the proposed method with state-of-
the-art methods and demonstrate its superiority.

II. DEEP SELF-PACED ACTIVE CLUSTERING

In this section, we introduce our DSAC method. Figure 1
shows its framework. To handle the images, we use ConvNeXt
[16] as the backbone network, which is based on a convo-
lutional network and works well in image processing. The
framework includes three modules: an unsupervised module,

Fig. 1. The framework of DSAC.

an active selection module, and a supervised module. In the
clustering task, to handle the unlabeled data, we need an
unsupervised module with self-paced learning to train the net-
work. Then, we actively select some key images according to
their embeddings for human annotations in the active selection
module. After obtaining the annotations of the selected data,
we use them to train the network in the supervised module.
In the following, we introduce each module in detail.

A. Unsupervised Module

Given a data set X = {x1, · · · ,xn} = L∪U with n images,
where L is the set of labeled data (L = ∅ at the beginning) and
U is the set of unlabeled data, we feed them into the backbone
network and obtain their embeddings F (xi;θ) ∈ Rm, where
θ is the parameters in the backbone network and m is the
dimension of the embedding. Then, if L ̸= ∅, we run semi-
supervised kmeans [17] on them, or otherwise, we run standard
kmeans on them to obtain c cluster centers.

Let cxi ∈ Rm denote the center of the cluster which
xi belongs to. One natural unsupervised loss function is
to make each instance be close to its cluster center, i.e.,∑

xi∈U ∥F (xi;θ)−cxi
∥22. However, as discussed before, some

data (e.g. the data in the boundary of a cluster) are difficult
and may mislead the model. To tackle this problem, we plug it
into a self-paced learning framework. In more detail, for each
image, we use a weight wi to indicate its difficulty. The larger
wi is, the easier the image is. To this end, we need a self-paced
regularized term R(wi) = λ(12w

2
i − wi) [18], where λ is an

adaptive age parameter, and obtain the following unsupervised
loss:

min
θ,w

Lu =
1

|U|
∑
xi∈U

(
wi∥F (xi;θ)− cxi

∥22 + λ

(
1

2
w2

i − wi

))
s.t. wi ≥ 0. (1)

When we fix the parameter θ of the network and optimize
the weight wi, we can obtain its closed-form solution:

wi = max

(
1− ∥F (xi;θ)− cxi∥22

λ
, 0

)
. (2)

Eq.(2) shows that smaller ∥F (xi;θ)− cxi
∥22, which means

xi is closer to the center and thus is an easier image, leads to

a larger wi. It is consistent with the motivation of self-paced
learning, i.e., we first use easier data for training and then
gradually involve difficult data in training.

B. Active Selection Module

Conventional self-paced learning only focuses on the simple
data whereas ignoring the difficult data. In our framework,
since we plug active learning into self-paced learning, we also
pay attention to the difficult data. When we select key data for
annotations, we consider the following two properties:

• Representativeness. Since we wish the model can be well
trained by as few data as possible, the selected data should
be representative enough and can well characterize the
cluster structure of all data.

• Difficulty. The simple data can be directly used for
training as self-paced learning did. Only the difficult data,
which the model cannot handle correctly, need the help
of human experts.

To this end, we design a strategy to select the key data
satisfying these two properties. Firstly, we divide the budget
into each cluster equally. Assuming that the budget in each
batch is b, and there are c clusters, we select [bc] data from
each cluster, where [·] is the rounding operation.

Then, we select the representative data in each cluster. Now,
consider the p-th cluster πp. Firstly, the representative data of
a cluster should be near the cluster center. Fortunately, the
distance from data to the cluster center can be obtained by
the self-paced weights wi in Eq.(2). The larger the wi is, the
closer the xi is to the center. Therefore, we first sort wi of
xi ∈ πp by descending order and choose xi’s with the top k1
largest wi’s to form a candidate set. Secondly, representative
data should also be compact with other data, which means
the representative data should be close to their neighbors.
Therefore, in the candidate set, we choose the image with the
largest compactness as the representative data of this cluster.
To this end, we define the compactness Ci of xi as:

Ci =
1∑

xj∈KNN(xi)
∥F (xi;θ)− F (xj ;θ)∥22

. (3)

where KNN(xi) means the k-nearest neighbors of data xi.
If xi is closer to its neighbors xj’s, ∥F (xi;θ) − F (xj ;θ)∥22
should be small, and thus Ci should be large.

After selecting the representative data in a cluster, there
leave [bc]− 1 budget in this data set. Then, we select [bc]− 1
difficult data in this cluster. Intuitively, it is not necessary
to select too many representative data because these data
are simple to handle. Contrarily, we should select as many
difficult data as possible because the model itself cannot
handle them well. That is why in one cluster we just select
one representative data and save the remaining budget for the
difficult data. As introduced before, since the weight wi in
self-paced learning indicates the difficulty of each instance,
we can select the difficult data directly according to wi. The
smaller wi is, the more difficult the data is. Therefore, we
select k1 data with the smallest wi’s as the candidate set.
After obtaining the candidate set, we resort the candidate data

(a) Original data (b) Selection results

Fig. 2. A toy example of active selection module.

according to their compactness which is defined in Eq.(3),
and select the [bc]− 1 data with the largest compactness. The
reason is that some data far away from the center with small
compactness are often outliers which are useless for learning.
To avoid selecting the outliers for annotation, we select those
with large compactness which contain more information for
clustering.

Notice that for each cluster we only select one representative
data for annotation, which seems not enough. To address
this issue, we generate some pseudo-labels according to the
annotations of the representative data. Since the data near the
cluster centers are reliable data, we can label them directly
with pseudo-labels. To this end, in each cluster, we select the
nearest k2 instances from the cluster center and annotate them
with the label of the representative data of this cluster. With
these pseudo-labels, we can save more budget while achieving
better performance.

After the selection and annotation, we move all annotated
data together with the data with pseudo-labels from unlabeled
set U to labeled set L. Figure 2 provides a toy example of
the active selection module. Figure 2(a) shows the original
data and Figure 2(b) shows the selection results. In Figure
2(b), the black triangles denote the representative data and the
black crosses denote the difficult data. The data in the circle
are those with the pseudo-labels. Algorithm 1 shows the active
selection process.

Algorithm 1 Active selection module
Input: c clusters of unlabeled data U = π1∪π2∪, · · · ,∪πc, labeled

set L, self-paced weights w, budget b.
Output: New labeled set L and unlabeled set U .

1: Initialize set S = ∅.
2: for p = 1, · · · , c do
3: Construct the candidate set from πp containing the instances

with largest k1 wi’s.
4: Compute the compactness of each instance in the candidate set

with Eq.(3) and select the data with the largest compactness
as the representative data.

5: Select the [b
c
] − 1 difficult data according to their wi’s and

their compactness.
6: Obtain the selected set S ′ by combining the representative and

difficult data, and query for human annotations of S ′.
7: Obtain the set S ′′ with the data near the center and generate

the pseudo-labels for S ′′.
8: Update S = S ∪ S ′ ∪ S ′′.
9: end for

10: Update L = L ∪ S and U = U − S.

C. Supervised Module

After obtaining the labels and pseudo-labels from the active
selection module, we design a supervised module to train the
network with the new labeled set L. Given a data xi ∈ L,
we denote ȳi as its label or pseudo-label. Then, we can adopt
the cross-entropy loss as the class loss of xi. Notice that the
dimension of the embedding F (xi;θ) is m which is not nec-
essarily equal to the number of clusters c. Therefore, we use
an additional fully connected layer (FC layer) f(·) : Rm → Rc

after F (xi;θ) to obtain the final representation f(F (xi;θ))
and compute the cross-entropy between f(F (xi;θ)) and ȳi.

Since the importance of each instance is different, here
we design a weighted entropy loss, where the important
instance will get a large weight. We also use the compactness
defined in Eq.(3) as its importance. The data with larger
compactness means they are more representative and thus are
more important. To this end, we design the following weighted
class loss:

Lclass =
1

|L|
∑
xi∈L

CiH(ȳi, f(F (xi;θ))) (4)

where Ci is the compactness of xi defined in Eq.(3), and
H(y, ŷ) = −

∑c
i=1 yclog(ŷc) is the cross-entropy loss.

Moreover, to make the embedding have a clearer clustering
structure, we also impose the center loss on each instance. The
intuition is that each instance should be close to the center of
its class. To this end, we define c′xi

∈ Rm as the embedding
of the center of all data which belong to the same class with
xi in L. Then we design the following weighted center loss:

Lcenter =
1

|L|
∑
xi∈L

Ci∥F (xi;θ)− c′xi
∥22 (5)

Combining the weighted class loss and weighted center loss
with a hyperparameter γ, we obtain the supervised loss:

Ll = Lclass + γLcenter (6)

Combining the unsupervised loss and the supervised loss,
we can obtain the whole loss function of our method:

L = Lu + Ll. (7)

We train the neural network by minimizing the loss function
Eq.(7). Then, we update the cluster center by feeding all data
into the neural network and running semisupervised kmeans
on the embedding. At last, we obtain the final clustering results
from the final representation f(F (xi;θ)). Algorithm 2 shows
the whole process of our algorithm.

III. EXPERIMENTS

A. Experimental Setup and Implementation Details

We conduct experiments on three widely-used benchmark
image data sets including STL-10 [24], CIFAR-10 [25] and
CIFAR-100-20 [25]. STL-10 contains 13000 images of 96×96
pixels. CIFAR-10 and CIFAR-100-20 contains 60000 images
of 32×32 pixels. In Cifar-100-20, we use the 20 superclasses
for evaluation.

Algorithm 2 Deep Self-paced Active Clustering
Input: Data X , number of batches for active selection T , the budget

of each batch b.
Output: Clustering result.

1: Initialize L = ∅ and U = X . Initialize the parameters of
ConvNeXt.

2: Feed all data into ConvNeXt and run kmeans to obtain the initial
cluster centers of the embeddings of all data.

3: for t = 1, · · · , T do
4: Compute the self-paced weight wi by Eq.(2).
5: Select data for querying and update L and U by Algorithm 1.

6: Train the ConvNeXt by minimizing Eq.(7).
7: Update the cluster centers of unlabeled data by running semi-

supervised kmeans on the embeddings.
8: end for
9: Obtain the final clustering results from the final embedding

f(F (xi;θ)).

We compare our method with the following deep semi-
supervised clustering methods including SDEC [5] and Au-
toEmbedder [19]. We also compare with some state-of-the-art
deep active learning methods, including SRAAL [20], TOD
[21], Core-GCN [22], ADC [15], and MCDAL [23]. Besides,
we also compare with a degenerated version DSAC-R, which
replaces the active selection module with randomly selecting
the data for annotations, to show the effectiveness of our
active selection module. We use Adjusted Rand index (ARI),
Normalized Mutual Information (NMI), and Accuracy (ACC)
to evaluate the clustering performance.

In the experiments, there are 5 iterations and in each
iteration a number of data are selected for annotations. In our
method, the budget of each iteration is set as 20 on all data
sets. Since the compared methods, including both the semi-
supervised and active clustering methods, need much more
annotations to achieve acceptable performance, we increase
the budgets of these compared methods. In more detail, on
the STL-10 data set, which contains 13000 images, we set the
budget of one iteration as 200 for all compared methods; on
CIFAR-10 and CIFAR-100-20 data sets, which contain 60000
images, we set the budget as 1000 for compared methods.
Therefore, the budgets of compared semi-supervised and active
learning methods are much larger than ours.

Our method adopts SimCLR [26] to pre-train ConvNeXt.
We use AdamW optimizer with a learning rate of 2 × 10−5.
The batch size is 128 on all data sets. The number of epochs
are set 100, 50, and 100 on STL-10, CIFAR-10, and CIFAR-
100-20, respectively. The dimension of embedding m is fixed
as 200. In the supervised module, γ is set as 0.001, 1, 0.01 on
STL-10, CIFAR-10, and CIFAR-100-20, respectively. In the
unsupervised module, when setting the self-paced parameter
λ, we first sort ∥F (xi;θ)−cxi

∥22 by ascending order, and then
set λ as the first twenty quantile value of ∥F (xi;θ)− cxi

∥22,
which means the 5% farthest data from the centers will have
the weights 0 and other 95% data have non-zero weights. In the
active selection module, the size of the candidate set k1 is fixed
to 6 on all data sets. When computing the compactness, we

TABLE I
ARI RESULTS WITH DIFFERENT NUMBERS OF SELECTION ANNOTATIONS ON ALL THE DATA SETS.

Data sets Number of SDEC AutoEmbedder SRAAL TOD CoreGCN ADC MCDAL Number of DSAC-R DSACannotations [5] [19] [20] [21] [22] [15] [23] annotations

STL-10

200 0.0458 0.3552 0.1409 0.1248 0.0104 0.0418 0.1100 20 0.1809 0.7590
400 0.0457 0.5193 0.1941 0.1610 0.1022 0.0596 0.2555 40 0.3610 0.8058
600 0.0456 0.5621 0.2236 0.1862 0.0599 0.0804 0.4214 60 0.5116 0.8069
800 0.0459 0.6120 0.2274 0.2026 0.1487 0.0955 0.5265 80 0.6076 0.8123

1000 0.0475 0.5690 0.2471 0.2159 0.1076 0.1024 0.5114 100 0.6619 0.8210

CIFAR-10

1000 0.0544 0.2794 0.2119 0.2188 0.1103 0.0510 0.2870 20 0.3005 0.4354
2000 0.0514 0.4038 0.2604 0.3277 0.1438 0.0686 0.3699 40 0.4004 0.7553
3000 0.0699 0.4057 0.3739 0.4778 0.1685 0.0769 0.4772 60 0.4440 0.7646
4000 0.0509 0.4511 0.3879 0.6124 0.2264 0.0767 0.5531 80 0.4417 0.7672
5000 0.0503 0.4790 0.3931 0.6797 0.2668 0.0792 0.5971 100 0.4158 0.7664

CIFAR-100

1000 0.0365 0.1450 0.1276 0.0937 0.0556 0.0134 0.1080 20 0.1498 0.2233
2000 0.0261 0.1553 0.1850 0.1245 0.0597 0.0137 0.1290 40 0.1732 0.3021
3000 0.0330 0.1430 0.2101 0.1760 0.0762 0.0158 0.1746 60 0.1876 0.3158

-20 4000 0.0360 0.1912 0.2552 0.2421 0.0992 0.0171 0.2009 80 0.1975 0.3352
5000 0.0325 0.2318 0.2883 0.3294 0.1142 0.0167 0.2591 100 0.1963 0.3497

fix k = 6 on all data sets. We initialize k2 = 50 and increase
it by 1000 in each iteration. The experiments are conducted
on a PC with an NIVDIA GTX 3090Ti GPU.

B. Experimental Results
Tables I and II show the ARI and NMI results of all methods

on all data sets, respectively. The increase of our performance
with the increase of annotations is fast in the first several
iterations. It demonstrates that our selected data are indeed
helpful for clustering. DSAC often achieves good results with
very few annotations on all data sets, which only needs about
60 to 80 annotations to achieve better performance than other
methods, which often need several thousands of annotations.
When compared with the random selection version DSAC-
R, DSAC achieves better performance. It well demonstrates
the effectiveness of the active selection module of DSAC.
More experimental results, such as the ACC results and
hyperparameter study, are shown in Appendix.

Fig. 3. The examples of selection data on STL-10 data set.

Figure 3 shows an example of selection data on STL-10.
We show the representative data and difficult data selected by
our method in 5 clusters. From Figure 3, we can find that the
representative data can well represent their classes, whereas
the difficult data are hard to recognize.

C. Ablation Study
We show the effects of the active selection module by

ablation study. Firstly, we show the effects of the pseudo-
labels. To this end, we design a degenerated version without

generating pseudo-labels. Then, we show the effects of se-
lecting the difficult and representative data. To achieve this,
we design two variants, where the first one only selects the
difficult data and the second one only selects the representative
data. Notice that when only selecting the difficult data, we
cannot generate the pseudo-labels with the representative data.
In this case, we generate the pseudo-labels according to the
clustering results. We show the results on STL-10 in Table III.
The performance of the variant without pseudo-labels is the
worst, which shows the necessity of the pseudo-labels. It is
reasonable because the number of annotations is very small
and thus we need more data with pseudo-labels to guide the
training. The version only selecting the difficult data performs
better than the one selecting representative data. The reason is
that the difficult data are hard to handle and thus have a greater
need for human annotations. Furthermore, DSAC outperforms
the one only selecting the difficult data, which means the
representative data can further improve the performance.

IV. CONCLUSION

In this paper, we propose a novel deep active image
clustering method, which integrates self-paced learning and
active learning into a unified deep clustering framework. In the
unsupervised module, we apply self-paced learning to evaluate
the difficulty of each data. Then, in the active selection
module, we carefully select the representative and difficult data
for annotations, and generate pseudo-labels to further guide
the training. At last, in the supervised module, we design
a weighted supervised loss to train the neural network. The
extensive experimental results demonstrate the superiority of
the proposed method.

ACKNOWLEDGMENTS

This paper is supported by the National Natural Science
Foundation of China grants 62176001, and the Natural Science
Project of Anhui Provincial Education Department under grant
2023AH030004.

TABLE II
NMI RESULTS WITH DIFFERENT NUMBERS OF SELECTION ANNOTATIONS ON ALL THE DATA SETS.

Data sets Number of SDEC AutoEmbedder SRAAL TOD CoreGCN ADC MCDAL Number of DSAC-R DSACannotations [5] [19] [20] [21] [22] [15] [23] annotations

STL-10

200 0.1193 0.5024 0.0874 0.2061 0.0296 0.0905 0.1906 20 0.2700 0.7965
400 0.1191 0.5944 0.1221 0.2498 0.1779 0.1197 0.3583 40 0.5134 0.8284
600 0.1191 0.6506 0.1454 0.2695 0.1162 0.1616 0.5033 60 0.6431 0.8312
800 0.1195 0.6753 0.1548 0.2872 0.2461 0.1903 0.5841 80 0.7165 0.8353

1000 0.1192 0.6568 0.1736 0.2935 0.1763 0.2011 0.5858 100 0.7506 0.8406

CIFAR-10

1000 0.1207 0.4001 0.1431 0.2901 0.1920 0.0973 0.3535 20 0.4422 0.5953
2000 0.1168 0.4905 0.1941 0.3925 0.2120 0.1243 0.4380 40 0.5587 0.7850
3000 0.1104 0.5202 0.3147 0.5205 0.2295 0.1459 0.5300 60 0.5895 0.7926
4000 0.1174 0.5495 0.3358 0.6354 0.3144 0.1534 0.5889 80 0.5788 0.7936
5000 0.1173 0.5479 0.3479 0.6927 0.3349 0.1594 0.6391 100 0.5897 0.7928

CIFAR-100

1000 0.0879 0.3010 0.0696 0.1594 0.1250 0.0401 0.1777 20 0.2967 0.4004
2000 0.1142 0.3490 0.1178 0.2002 0.1438 0.0413 0.2106 40 0.3710 0.5023
3000 0.0920 0.3674 0.1389 0.2574 0.1545 0.0554 0.2598 60 0.3871 0.5234

-20 4000 0.0923 0.3672 0.1795 0.3234 0.1940 0.0488 0.2913 80 0.3974 0.5305
5000 0.0871 0.4270 0.2093 0.4122 0.2086 0.0503 0.3514 100 0.4037 0.5295

TABLE III
ABLATION STUDY ON STL-10 DATA SET.

Number of Without pseudo-labels Only difficult data Only representative data DSAC
annotations NMI ARI NMI ARI NMI ARI NMI ARI

20 0.3585 0.2516 0.6992 0.6479 0.7104 0.6650 0.7965 0.7591
40 0.5773 0.4322 0.7505 0.7073 0.7618 0.7244 0.8285 0.8059
60 0.7060 0.6191 0.7649 0.7211 0.7467 0.7804 0.8312 0.8069
80 0.7481 0.6662 0.7730 0.7289 0.7501 0.6978 0.8362 0.8156

100 0.7662 0.6789 0.7883 0.7489 0.7527 0.6982 0.8407 0.8210

REFERENCES

[1] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep
embedding for clustering analysis. In ICML, volume 48, pages 478–
487, 2016.

[2] Xi Peng, Jiashi Feng, Joey Tianyi Zhou, Yingjie Lei, and Shuicheng
Yan. Deep subspace clustering. IEEE TNNLS, 31(12):5509–5521, Feb.
2020.

[3] Qianqian Wang, Wei Xia, Zhiqiang Tao, Quanxue Gao, and Xiaochun
Cao. Deep self-supervised t-sne for multi-modal subspace clustering. In
ACM MM, pages 1748–1755. ACM, 2021.

[4] Mimi Zhang. Weighted clustering ensemble: A review. Pattern
Recognit., 124:108428, 2022.

[5] Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven C. H. Hoi, and
Zenglin Xu. Semi-supervised deep embedded clustering. Neurocomput-
ing, 325:121–130, 2019.

[6] D. M. Huang, Jie Hu, Tianrui Li, Shengdong Du, and Hongmei Chen.
Consistency regularization for deep semi-supervised clustering with
pairwise constraints. IJMLC, 13:3359 – 3372, 2022.

[7] Arezoo Hatefi, Xuan-Son Vu, Monowar H. Bhuyan, and Frank Drewes.
Cformer: Semi-supervised text clustering based on pseudo labeling.
CIKM, 2021.

[8] Ying Zhang, Xiangli Li, and Mengxue Jia. Semi-supervised nonnegative
matrix factorization with pairwise constraints for image clustering.
IJMLC, 13:3577 – 3587, 2022.

[9] Xiaocui Li, Hongzhi Yin, Ke Zhou, and Xiaofang Zhou. Semi-
supervised clustering with deep metric learning and graph embedding.
WWW, 23:781–798, 2019.

[10] Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu. Batch mode
active learning and its application to medical image classification. In
Proceedings of the 23rd international conference on Machine learning,
pages 417–424. ACM, 2006.

[11] Rita Chattopadhyay, Zheng Wang, Wei Fan, Ian Davidson, Sethuraman
Panchanathan, and Jieping Ye. Batch mode active sampling based
on marginal probability distribution matching. ACM Transactions on
Knowledge Discovery from Data (TKDD), 7(3):13, 2013.

[12] Hanmo Wang, Liang Du, Peng Zhou, Lei Shi, and Yi-Dong Shen.
Convex batch mode active sampling via α-relative pearson divergence.
In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[13] Hanmo Wang, Liang Du, Lei Shi, Peng Zhou, Yuhua Qian, and Yi-
Dong Shen. Experimental design with multiple kernels. In 2015

IEEE International Conference on Data Mining, ICDM 2015, Atlantic
City, NJ, USA, November 14-17, 2015, pages 419–428. IEEE Computer
Society, 2015.

[14] Peng Zhou, Bicheng Sun, Xinwang Liu, Liang Du, and Xuejun Li.
Active clustering ensemble with self-paced learning. IEEE Transactions
on Neural Networks and Learning Systems, pages 1–15, 2023.

[15] Bicheng Sun, Peng Zhou, Liang Du, and Xuejun Li. Active deep image
clustering. KBS, 252:109346, 2022.

[16] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. A convnet for the 2020s. In CVPR,
pages 11966–11976, 2022.

[17] Jordan Yoder and Carey E Priebe. Semi-supervised k-means++. Journal
of Statistical Computation and Simulation, 87(13):2597–2608, 2017.

[18] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G. Hauptmann.
Easy samples first: Self-paced reranking for zero-example multimedia
search. In ACM MM, pages 547–556. ACM, 2014.

[19] Abu Quwsar Ohi, Muhammad F. Mridha, Farisa Benta Safir, Md. Abdul
Hamid, and Muhammad Mostafa Monowar. Autoembedder: A semi-
supervised DNN embedding system for clustering. KBS, 204:106190,
2020.

[20] Beichen Zhang, Liang Li, Shijie Yang, Shuhui Wang, Zheng-Jun Zha,
and Qingming Huang. State-relabeling adversarial active learning. In
CVPR, pages 8753–8762, 2020.

[21] Siyu Huang, Tianyang Wang, Haoyi Xiong, Jun Huan, and Dejing Dou.
Semi-supervised active learning with temporal output discrepancy. In
ICCV, pages 3427–3436, 2021.

[22] Razvan Caramalau, Binod Bhattarai, and Tae-Kyun Kim. Sequential
graph convolutional network for active learning. In CVPR, pages 9583–
9592, 2021.

[23] Jae Won Cho, Dong-Jin Kim, Yunjae Jung, and In So Kweon. Mcdal:
Maximum classifier discrepancy for active learning. IEEE TNNLS, pages
1–11, 2022.

[24] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer
networks in unsupervised feature learning. In AISTATS, pages 215–223,
2011.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[26] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E.
Hinton. A simple framework for contrastive learning of visual rep-
resentations. In ICML, volume 119, pages 1597–1607. PMLR, 2020.

	Introduction
	Deep Self-paced Active Clustering
	Unsupervised Module
	Active Selection Module
	Supervised Module

	Experiments
	Experimental Setup and Implementation Details
	Experimental Results
	Ablation Study

	Conclusion
	References

