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Abstract—In classification tasks, labeled data is a necessity
but sometimes difficult or expensive to obtain. On the contrary,
unlabeled data is usually abundant. Recently, different active
learning algorithms are proposed to alleviate this issue by
selecting the most informative data points to label. One family
of active learning methods comes from Optimum Experimental
Design (OED) in statistics. Instead of selecting data points one
by one iteratively, OED-based approaches select data in a one-
shot manner, that is, a fixed-sized subset is selected from the
unlabeled dataset for manually labeling. These methods usually
use kernels to represent pair-wise similarities between different
data points. It is well known that choosing optimal kernel types
(e.g. Gaussian kernel) and kernel parameters (e.g. kernel width)
is tricky, and a common way to resolve it is by Multiple Kernel
Learning (MKL), i.e., to construct a few candidate kernels and
merge them to form a consensus kernel. There would be different
ways to combine multiple kernels, one of which, called the the
globalised approach is to assign a weight to each candidate
kernel. In practice different data points in the same candidate
kernel may not have the same contribution in the consensus
kernel; this requires assigning different weights to different data
points in the same candidate kernel, leading to the localized
approach. In this paper, we introduce MKL to OED-based active
learning; specifically we propose globalised and localized multiple
kernel active learning methods, respectively. Our experiments on
six benchmark datasets demonstrate that the proposed methods
have better performance than existing OED-based active learning
methods.

I. INTRODUCTION

Classification is a fundamental task in data mining and
machine learning. One of the important prerequisite of
classification is sufficient labeled data. While unlabeled data
is abundant (one can simply crawl unlabeled data from the
Internet), it usually needs human experts to annotate, thus
requiring considerable amount of time and effort. Active
learning is a methodology to choose the most informative
data points to label so that the classifier learned on the
labeled data can have good generalization performance on
unseen data. One widely-used active learning algorithm is
query-by-committee [1], which trains different classifiers on
the labeled data and iteratively selects the single unlabeled
data point on which the classifiers disagree most. Another
popular approach is uncertainty sampling [2], which selects
the data point about which the classifier is least certain.

Another line of work in active learning is based on
Optimum Experimental Design (OED) [3] [4], which
addresses similar problems as active learning in statistics.
The difference between OED and active learning is that OED
cares more about the variance of the data while active learning
cares more about classification quality. This difference brings

inspiration; active learning via transductive experimental
design (TED) [4] is proposed to minimize the variance of
unlabeled data, which can be interpreted as minimizing the
linear reconstruction error with regularizations. Following
that, the convex version of TED for text classification
(CTED) is studied [3], and a robust version of CTED is
also introduced [5] [6] by replacing the loss function. Unlike
query-by-committee, OED-based active learning methods
select data points at one time instead of selecting data points
iteratively, which runs faster because they do not need to
retrain classifiers.

OED-based active learning methods usually use kernels
to represent the unlabeled data. In practice, choosing kernel
types and parameters can be a problem. Assuming that we
are given a set of candidate kernels, one solution is to use
data-driven approach such as Cross Validation (CV) to select
the best kernel type and kernel parameters. However, we
observe that CV may have some issues in active learning.
Let’s take the standard k-fold CV as an instance. At the very
beginning of the active learning process, there is no label at
all. k-fold CV splits the training set into k parts, training on
the (k-1) folds and testing on the last fold. The trick lies in the
testing part of k-fold CV, which needs to know all the labels
of the training (unlabeled) set. But this situation is unrealistic
in active learning because initially we have no label at all.

To resolve the above problem with OED-based active
learning, we appeal to Multiple Kernel Learning (MKL) [7]
[8].Instead of selecting the best kernel from the candidate
kernel set, MKL uses linear or non-linear combinations of all
the kernel candidates to jointly learn an optimal consensus
kernel in the training process. There would be different
ways to combine multiple kernels. The first one, called the
globalised approach, is to assign the same weight to each
element in the same candidate kernel, assuming all elements
contribute the same to the consensus kernel. However, on the
one hand, different elements in the same candidate kernel
may have different contributions to the consensus kernel; on
the other hand, some data points of the unlabeled dataset may
have been contaminated by noise in practice. This suggests
different elements in the same candidate kernel should have
different weights. This leads to the localized approaches.

In this paper, we propose to incorporate MKL to OED-
based active learning, specifically we present both a globalised
multiple kernel active learning method and a localized one.
The globalised one is optimized using coordinate descend,
which alternatingly optimizes the reconstruction matrix and
the kernel weights so that the objective value is minimized.
The localized one is solved by coordinate and accelerated
proximal descend. We formulate our objective functions based
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on [3] without introducing additional parameters. Extensive
experiments on six benchmark datasets demonstrate that the
proposed methods have better performance than existing
OED-based active learning methods.

Notations. The l2,1 norm of a matrix A ∈ Rn×m is

defined as ||A||2,1 =
∑n

i=1

√∑m
j=1 A

2
ij . The (pseudo) l2,0

norm of a matrix is defined as the number of non-zero rows
of the matrix. We also denote the i-th row and i-th column
of a matrix A as ai and ai, respectively. Additionally, || · ||F
denotes the Frobenius norm. For a matrix A, the entry at the
i-th row and the j-th column of A is denoted as Aij .

II. RELATED WORK

A. Active Learning

A number of active learning strategies are proposed to
select the most informative data points for training a classifier
which has good generalization performance. One the common
strategy is uncertainty sampling [2] [9]. It aims to select the
samples about which the current model is least certain. For
probabilistic models, uncertainty sampling is usually straight-
forward, where criteria such as entropy [2] are used to query
examples. For the non-probabilistic models such as Support
Vector Machines, the data point which is closest to the decision
boundary is considered uncertain and thus selected [9]. Query-
by-committee [1] is another typical active learning strategy,
which trains a group of classifiers and selects the unlabeled
example about which the classifiers disagree the most.

One family of active learning methods comes from Op-
timum Experimental Design (OED) in statistics. Classical
OED criteria include A-optimal design, D-optimal design,
and I-optimal design [10]. TED [4] is similar to I-optimal
Design, which selects those points that minimize the average
predictive variance over one predefined test set. Along this
line of work, many active learning algorithms are proposed
according to different measures and purposes. CTED [3] is
proposed to obtain global optimal solution and another method
called RRSS [5] deals with potential noise in the unlabeled
dataset. Additionally, spatial structure such as neighborhood
reconstruction and manifold are considered in [11] [12][13] .
There is also an accelerated version of RRSS [6].

B. Multiple Kernel Learning

Kernel methods [14] [15] are extensively studied in the
past decades. In practice, it is often hard to choose the
right kernel types and kernel parameters, and it is of vital
importance to the success of kernel methods to learn an optimal
kernel. MKL algorithms [7] [8] provide an effective way to
learn an consensus optimal kernel;they can also be used to
combine multiple data sources. The existing research work
on MKL has made significant contributions in speeding up
computation [16] and improving classification performance
[7]. Given a predefined set of candidate kernels, a straight
forward way to merge the kernels is to assign weights to
different candidate kernels. However, this can be suboptimal
in practice because each input instance may have different
importance under the same similarity measure (kernel) for the
task at hand. So-called localized MKL algorithms are proposed
to alleviate the situation [17] [18]. MKL algorithms can also

be categorized into classification and clustering. For clustering,
multiple kernel k-means [19] [20] and spectral clustering [21]
[22] are widely studied. As for classification, multiple kernel
Support Vector Machines [23] and online algorithms [24] are
proposed.

III. BACKGROUND

In this section, we provide some background knowledge
for OED-based active learning. We also formalize the multiple
kernel active learning problem studied in this paper.

A. Transductive Experimental Design

Transductive Experimental Design (TED) is proposed to
select a subset of the unlabeled dataset X to have a low
reconstruction error [4]. In other words, this method chooses
a subset V from the whole dataset X so that the linear
reconstruction error is minimized, i.e.

min
A,V

n∑
i=1

(||xi −Vai||22 + λ||ai||22)

s.t. A = [a1,a2, ...,an],V ⊂ X, |V| = p

(1)

where p is the number of selected instances, where A is a n
by n matrix, indicating the reconstruction coefficients.

TED chooses the most representative sample such that the
other unlabeled data points can be linearly reconstructed by
the sample with low error. However, Eq. (1) is a combinatorial
optimization problem which is NP-hard, so a greedy algorithm
is used to slove it [3].

Eq. (1) can also be written with the help of the l2,0 norm

min
A

n∑
i=1

(||xi −Xai||22 + λ||ai||22)

s.t. A = [a1, a2, ...,an], ||A||2,0 = p

(2)

The constant p in Eq. (2) makes it difficult to analyze and
we can relax it by formulating it as

min
A

||X−XA||2F + λ||A||2,0 (3)

Later, a convex version of TED (CTED) is proposed for
text classification [3]

min
A

||X−XA||2F + λ||A||2,1 (4)

CTED relaxes the l2,0 norm with its convex hull l2,1 norm
so that it is better than TED in the view of optimization because
Eq. (4) is convex with respect to A and the global optimal
solution can be reached. The square error (Frobenius Norm)
of Eq. (4) is known to be sensitive to outliers. So the robust
version of CTED is proposed to make the model robust to
outliers [5].

min
A

||(X−XA)T ||2,1 + λ||A||2,1 (5)

CTED (Eq. (4)) can be easily extended to a kernel version
by replacing xi with φ(xi), i.e.

min
A

tr(K− 2KA+ATKA) + λ||A||2,1 (6)

where the kernel Gram matrix K is defined as Kij =
〈φ(xi), φ(xj)〉.
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B. Multiple Kernel Active Learning Problem

The above methods (TED, CTED and RRSS) can be
categorized into single kernel active learning, where the kernel
is predefined or selected from a candidate sets by cross
validation. In this section, we introduce the problem setting
of our multiple kernel active learning (MKAL) methods is
formulated as follows.

We have the unlabeled dataset X ∈ Rd×n consisting of
n unlabeled data points with d dimensions and each column
of X is a data point, i.e. X = [x1,x2, ...,xn]. By abuse of
notation, we use X to denote both the unlabeled dataset and
the data matrix. We also have m different kernels, namely
{Ki(·, ·)}mi=1, each of which is associated with a unique
mapping function φi(·), and according to definition of kernels,
we have Kt(xi,xj) = 〈φt(xi), φt(xj)〉. The goal of MKAL
is to choose a subset L of the dataset X with |L| = p so that
the classifier trained on L has good classification performance
on unseen data, where p is a predefined subset size.

C. Solving CTED

Our MKAL algorithm will involve solving CTED. For
clarity, we write the objective function of Eq. (6) as

min
A

f(A) = tr(K− 2KA+ATKA) + ||A||2,1 (7)

Our goal is to minimize function f(A), and the most intuitive
way is to take derivative w.r.t. A and set the derivative to zero.
However, the l2,1 norm can be tricky because its derivative
does not exist when matrix A has a row of all zeros. Adding
an offset ε to each row of A when it goes to zero, we get

−K+KA+ λDA = 0 (8)

where D is a diagonal matrix and

Dii =
1

2
√
||ai||22 + ε

(9)

where ai is the i-th row of matrix A.
With Eq. (8), we can solve Eq. (7) by alternatingly opti-

mizing A and D iteratively: When D is fixed, we can directly
calculate matrix A according to Eq. (8) as

A = (K+ λD)−1K (10)

and when A is fixed, we can calculate D as in Eq. (9). When
the algorithm converges, the instances are sorted decreasingly
by the row absolute sum of A, and the largest p instances will
be selected.

Algorithm 1 summarizes the process of solving Eq. (6).

Algorithm 1 Solving CTED

Input: kernel matrix K, size p of selected instances
Initialize reconstruction matrix A randomly
repeat

Update D by Eq. (9);
Update the reconstruction matrix A by Eq. (10)

until Converge
Sort all rows of A decreasingly according to the row
absolute sum and let L be indexes of the instances with
the p largest sum

Output: selected indexes L

IV. GLOBALISED MULTIPLE KERNEL ACTIVE LEARNING

In this section, we introduce our globalised multiple ker-
nel active learning (GMKAL) algorithm. It assigns different
weights to different candidate kernels and the consensus kernel
is a weighted combination of all the candidate kernels. In this
way, the kernels that have good performance in data selection
will have larger weight, and vise versa.

A. Motivation and Formulation

One of the central problems with kernel methods in general
is that it is often unclear which kernel is the most suitable
for a particular task. In this section, we extend kernel CTED
to automatically learn an appropriate kernel from the convex
linear combination of several predefined kernel matrices within
the multiple kernel learning framework [25].

Suppose there are altogether m different kernel functions
{Ki(·, ·)}mi=1 available for the active learning task at hand.
Accordingly, there are m different associated feature spaces
denoted as {H}mi . To combine these kernels and also ensure
that the resulted kernel still satisfies Mercer condition, we
consider a nonnegative combination of these feature maps
φw(·) , that is,

φw(x) =
m∑
i=1

wiφi(x) with wi ≥ 0. (11)

Unfortunately, as these implicit mappings do not neces-
sarily have the same dimensionality, such a linear combina-
tion may be unrealistic. Hence, we construct an augmented
Hilbert space H̃ = ⊕m

i=1Hi by concatenating all feature
spaces φw(x) = [w1φ1(x)

Tw2φ2(x)
T . . . wmφm(x)T ]T with

different weight wi(wi ≥ 0) , or equivalently the importance
factor for kernel function Ki(·, ·). So the consensus kernel
Kw(·, ·) can be represented as

Kw(x, z) = 〈φw(x), φw(z)〉 =
m∑
i=1

w2
iKi(x, z). (12)

It is known that the convex combination, with w(wi ≥ 0),
of the positive semi-definite kernel matrices {Ki}mi=1 is still
a positive semi-definite kernel matrix. By replacing the single
kernel in Eq. (4) with the combined kernel, we propose our
novel GMKAL method by solving

min
A,w

tr(Kw − 2KwA+ATKwA) + λ||A||2,1

s.t. Kw =
m∑
i=1

w2
iKi,

m∑
i=1

wi = 1, wi ≥ 0
(13)

where (Ki)ab = Ki(xa,xb) is the kernel Gram matrix of the i-
th predefined kernel function over the unlabeled dataset X, and
(Kw)ab = Kw(xa,xb) is the kernel matrix of the consensus
kernel function Kw(·, ·).

B. Algorithms

The optimization problem in Eq. (13) is convex w.r.t. A
and w respectively. In the following, we introduce an iterative
algorithm based on block coordinate descent to solve it. We
alternatingly update the value of w and A, while holding
the other variable as constant. Thus, a local minima can
be expected by solving a sequence of convex optimization
problems.
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1) Optimizing w.r.t. A when w is fixed: When w is fixed,
we can directly calculate Kw as Kw =

∑m
i=1 w

2
iKi, and the

optimization problem becomes Eq. (6), and can be solved by
Algorithm 1 with Kw as the input kernel matrix.

2) Optimizing w.r.t. w when A is fixed: the optimization
of Eq. (13) with respect to w can be simplified as solving the
following problem

min
w

m∑
i=1

w2
i ei, s.t.

m∑
i=1

wi = 1, wi ≥ 0. (14)

where

ei = tr(Ki(I− 2A+AAT )) (15)

The above optimization problem falls into the category
of quadratic programming (QP) and can be solved by so-
phisticated QP tool boxes. However, since Eq. (14) has only
quadratic terms of the same variable (without terms like wiwj),
we can utilize this structure to form an analytic solution:

First we write the Lagrange function of Eq. (14) as

J (w) =

m∑
i=1

w2
i ei + λ(1−

m∑
i=1

wi). (16)

By combining the KKT condition
∂J (w)
∂wi

= 0 and the con-

straint
∑m

i=1 wi = 1, the optimal solution of w can be obtained
by

wi =
1
ei∑m

j=1
1
ej

, i = 1, 2, ...,m. (17)

3) Selecting sample with a sequential method: When the
optimization process ends, there are two results to select the
sample, i.e., consensus kernel Kw and data reconstruction
matrix A. CTED uses matrix A to select the unlabeled
data. However, in our empirical study, we find that using the
sequential method described in [4] will have better results.

Algorithm 2 summarizes the steps of GMKAL algorithm
in detail.

Algorithm 2 GMKAL

Input: A set of kernel matrices {Ki}mi=1, the number of
selected data points p
Initialize the kernel weight wi = 1/m for each kernel;
repeat

Update the estimated kernel Kw by Eq. (12)
Update the reconstruction matrix A by Algorithm 1 with
K = Kw

Calculate e by Eq. (15)
Update the kernel weight w by Eq. (17)

until Converge
Use the sequential algorithm in [4] to obtain selected indexes
L

Output: selected indexes L

V. LOCALIZED MULTIPLE KERNEL ACTIVE LEARNING

As mentioned before, sometimes giving one weight to one
candidate kernel may not be the optimal solution, because
some data points may be corrupted by noise in practice and
different data points in the unlabeled dataset may contribute
differently to the consensus kernel. In this section, we propose
a localized multiple kernel active learning algorithm (LMKAL)
by assigning weights to each pair of unlabeled data points and
candidate kernel.

A. Motivation and Formulation

In the globalised case, we assign a fixed weight to a
kernel over the whole input space. However, assigning different
weights to a kernel in different regions of the input space
may produce a better performance. Especially, if the data has
underlying local structure, different similarity measures may be
suited in different regions. Additionally, some entries in some
kernel datasets may be contaminated by noise, and assigning
different weights to different regions of the same kernel may
alleviate the problem.

In the localized setting, we assign a weight to each datum-
kernel pair, that is, we assign weight Zij for the i-th data point
and the j-th candidate kernel. Similar with the global case, we
concatenating all the feature space as

φz(xi) = [Zi1φ1(xi)
TZi2φ2(xi)

T ...Zimφm(xi)
T ]T

According to the definition of kernel, the consensus kernel
function Kz becomes

Kz(xi,xj) = 〈φz(xi), φz(xj)〉

=
m∑
t=1

ZitZjtKt(xi,xj)
(18)

Similar with the globalised case, we define consensus kernel
matrix over the unlabeled dataset X as

(Kz)ij = Kz(xi,xj) =

m∑
t=1

ZitZjt(Kt)ij (19)

In the following, we prove that the function defined in
Eq. (18) is indeed a kernel function. And then we propose
our localized MKAL algorithm.

Theorem 1. The function Kz(·, ·) defined in Eq. (19) is a
positive semi-definite kernel function.

Proof: To prove that Kz(·, ·) is a positive semi-definite
kernel function, we introduce the following lemma which can
be found in linear algebra textbooks:

Lemma 1. Let K : X × X → R be a symmetric function.
The necessary and sufficient condition that K(·, ·) is a positive
semi-definite kernel function is that the Leading Principle
Submatrix K = [K(xi,xj)]1:m×1:m of the kernel Gram matrix
[K(xi,xj)]n×n over arbitrary n samples {xi}ni=1 (xi ∈ X ) is
a positive semi-definite matrix for all positive integer n and
all m ∈ {1, 2, ..., n}.

According to Lemma 1, we just need to prove that for any
x1, ...,xn, the Gram matrix Kz is positive semi-definite. Let
Kz be the Gram matrix of consensus kernel Kz(·, ·) and Kt
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be the Gram Matrix of the t-th candidate kernel Kt(·, ·). We
just need to prove that (ztz

T
t ) ◦Kt is positive semi-definite,

where zt is the t-th column of Z and ◦ is the element-wise
dot product operator.

Since Kt(·, ·) is positive semi-definite kernel function,
according to Lemma 1, Kt is positive semi-definite. Thus
all the leading principal minors of Kt are all positive. Now
consider the j-th leading principal minor of Kz:∣∣∣∣∣∣∣

Kz(x1,x1) · · · Kz(x1,xj)
...

...
...

Kz(xj ,x1) · · · Kz(xj ,xj)

∣∣∣∣∣∣∣
(20)

=

∣∣∣∣∣∣∣

⎛
⎜⎝

Z1tZ1t · Z1tZjt

...
...

...
ZjtZ1t · ZjtZjt

⎞
⎟⎠ ◦

⎛
⎜⎝

(Kt)11 · (Kt)1j
...

...
...

(Kt)j1 · (Kt)jj

⎞
⎟⎠
∣∣∣∣∣∣∣

=Z2
1tZ

2
2t · · ·Z2

jt

∣∣∣∣∣∣∣
Kt(x1,x1) · · · Kt(x1,xj)

...
...

...
Kt(xj ,x1) · · · Kt(xj ,xj)

∣∣∣∣∣∣∣
where | · | is determinant of a matrix.

Since Kt is positive semi-definite, we have∣∣∣∣∣∣∣
Kt(x1,x1) · · · Kt(x1,xj)

...
...

...
Kt(xj ,x1) · · · Kt(xj ,xj)

∣∣∣∣∣∣∣
≥ 0 (21)

Thus, we obtain:∣∣∣∣∣∣∣
Kz(x1,x1) · · · Kz(x1,xj)

...
...

...
Kz(xj ,x1) · · · Kz(xj ,xj)

∣∣∣∣∣∣∣
≥ 0 (22)

Eq. (22) holds for any 1 ≤ j ≤ n, thus Kz is positive semi-
definite and Kz(·, ·) is a positive semi-definite kernel function.

Now that we have proved that the function defined in
Eq. (18) is indeed a kernel function and kernel matrix Kz

is positive semi-definite, by substituting Eq. (19) into Eq. (6),
we obtain our LMKAL formulation:

min
A,Z

tr(Kz − 2KzA+ATKzA) + λ||A||2,1

s.t. (Kz)ij =
m∑
t=1

ZitZjt(Kt)ij ,

m∑
j=1

Zij = 1, Zij ≥ 0, i = 1, 2, ..., n

(23)

Now we illustrate intuitive explanation of our objective
Eq. (23) in the perspective of different data samples and kernel
matrices. In the unlabeled dataset X, we do not have bias
towards any data samples, because each row of matrix Z sums
to 1 (

∑m
j=1 Zij = 1). In other words, each data sample has

the same importance to the consensus kernel, but when the
same sample faces different kernels, we assign different non-
negative weight to the pair of i-th sample and t-th kernel (i.e.
Zit). So each data sample has different importance to the same
candidate kernel. The entry in the i-th row and the j-th column

of the consensus kernel matrix Kz demonstrates how the pair
of i-th and j-th sample contributes to the kernel matrix Kz.

B. Algorithms

Similar to the globalised case, the optimization problem
in Eq. (23) is convex w.r.t. A and Z respectively. In the
following, we also introduce an iterative algorithm based on
block coordinate descent to solve it. We alternatingly update
the value of Z and A. By solving a sequence of convex
optimization problems, we obtain a local minimum solution.

1) Optimizing w.r.t. Z when A is fixed: When A is fixed,
the original optimization problem can be written in a more
condensed form:

min
Z

tr(Kz − 2KzA+ATKzA)

s.t. Kz =
m∑
i=1

(ziz
T
i ) ◦Ki, Z1m = 1n

(24)

where zi is the i-th column of matrix Z.
We can also eliminate Kz and obtain an optimization

problem w.r.t. Z:

min
Z

m∑
i=1

zTi (Ki ◦ ((A− I)(AT − I)))zi

s.t. Z1m = 1n

(25)

where zi is the i-th column of matrix Z and ◦ is the element-
wise matrix dot product.

The above equation is formulated using matrix properties

tr(DT ((ccT ) ◦B)D) = cT (DDT ◦B)c

tr(((ccT ) ◦B)D) = cT (DT ◦B)c

for matrix B, D and vector c of suitable size.
Denote G as G = ((A − I)(AT − I)). It is trivial to see

that matrix G is positive-semidefinite, and Eq. (25) becomes

min
Z

f(Z) =
m∑
i=1

zTi (Ki ◦G)zi

s.t. Z1m = 1n

(26)

To optimize Eq. (26), we can apply Proximal Gradient De-
scent [26] to solve Z. More precisely, we denote Mt = Kt◦G
and f(Z) =

∑m
t=1 z

T
t Mtzt, then linearize f(Z) at Zk and add

a proximal term:

gμ(Z,Z
k) = f(Zk) + 〈∇f(Zk),Z− Zk〉+ μ

2
‖Z− Zk‖2F

(27)

where ∇f(·) is the gradient of f(·), and μ > L(f) where
L(f) is Lipschitz constant of f(·) and Zk denotes Z at the
k-th iteration.

Then we update Z by solving:

Zk+1 = arg min
Z≥0,Z1m=1n

‖Z−
(
Zk − 1

μ
∇f(Zk)

)
‖2F (28)

Let H = Zk − 1
μ∇f(Zk). To get Zk+1, we need to solve the

following optimization problem:

min
Z

‖Z−H‖2F (29)

s.t. Z ≥ 0,Z1m = 1n
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Eq. (29) is row-decoupled and can be decomposed into n
similar subproblems. The i-th subproblem can be seen as

min
zi

‖zi − hi‖2F (30)

s.t. zi ≥ 0, |zi| = 1.

Eq. (30) is equivalent to finding the point in the simplex
which has smallest Euclidean distance to a given point. This
problem is also known as Euclidean Projection onto Simplex
and can be efficiently solved by root finding algorithm [27].
For completeness of this paper, we introduce this method as
Algorithm 3. According to [27], Algorithm 3 provides the

Algorithm 3 The optimization algorithm of Euclidean Projec-
tion onto Simplex to solve Eq. (30)

Input: h
sort h into b where b1 ≥ b2 ≥, ..., bn
find ρ = max{1 ≤ j ≤ n : bj +

1
j (1−

∑j
i=1 bi) > 0}

define z = 1
ρ (1−

∑ρ
i=1 bi)

Output: z with zj = max{hj + z, 0}, j = 1, ..., n

Algorithm 4 The accelerated Proximal Gradient Descent al-
gorithm to solve Eq. (26)

Input: The initial constant L0, Y0 = Z0, γ.
Set t = 0, L̄candi = L0, a0 = 1
repeat

Set L̄candi = Lt

While f(pL̄candi
(Yt)) > gL̄candi

(pL̄candi
(Yt),Yt) do

Set L̄candi = γL̄candi

end while
Set Lt+1 = L̄candi

Set Zt+1 = pLt(Y
t)

Set at+1 =
1+
√

1+4a2
t

2
Set Yt+1 = Zt+1 + (at−1

at+1
)(Zt+1 − Zt)

Set t = t+ 1
until Converge

Output: Zt

global optimal solution of (30). So we can use the result of
Algorithm 3 to update Z.

Although Proximal Gradient Descent can be used to solve
Eq. (26), the converge rate is slow, i.e. O( 1ε ) [28] [29].
To achieve more efficient optimization, we apply accelerated
Proximal Gradient Descent [30] to accelerate the proximal
gradient descent, which has the convergence rate as O( 1√

ε
).

We construct a linear combination of Zk and Zk−1 to
update Yk as follows:

Yk = Zk +
αk − 1

αk+1
(Zk − Zk−1) (31)

Then we substitute Zk in Eq. (28) with Yk,

Zk+1 = argmin
Z≥0,Z1m=1n

‖Z−
(
Yk − 1

μ
∇f(Yk)

)
‖2F (32)

Eq. (32) can be solved by Algorithm 3 as discussed before.
Algorithm 4 shows the process of the accelerated Proximal

Algorithm 5 The algorithm of LMKAL

Input: A set of kernel matrices {Ki}mi=1, size of selected
subset p

Output: selected subset L
Initialize the kernel weight Zij = 1/m for each kernel
repeat

Update the reconstruction matrix A by Algorithm 1
Update the kernel weight Z by Algorithm 4
Update the estimated kernel Kz by Eq. (19)

until Converge
Use the sequential algorithm in [4] to obtain selected indexes
L

Output: selected indexes L

Gradient Descent to solve Eq. (26)) where gL(·) is defined
in Eq. (27), and pL(·) is defined as Eq. (29) and solved with
Algorithm 3.

The convergence of this algorithm is stated in the following
theorem.

Theorem 2. [30] Let Zk be the sequence generated by
Algorithm 4, then for any k ≥ 1, we have

f(Zk)− f(Z∗) ≤ 2γL‖Z1 − Z∗‖2F
(k + 1)2

, (33)

where L is the Lipschitz constant of the gradient of f(Z),
and Z∗ = argminZ f(Z).

It is easy to verify that f(Z) is Lipschitz continuous. Thus
Theorem 2 shows that the convergence rate of the accelerated
proximal gradient descent method is O( 1√

ε
).

2) Optimizing w.r.t. A when Z is fixed: When Z is fixed,
The optimization problem becomes Eq. (4) and can be solved
exactly as in the globalised method using Algorithm 1.
We summarize our LMKAL method in Algorithm 5.

VI. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of out methods, we apply
GMKAL and LMKAL for active learning tasks and com-
pare them with several state-of-the-art single kernel active
learning methods. Code of the experiment can be found in
https://github.com/Ericcwang/MKAL

A. Datasets Description

In our experiment, we evaluate the performance of our
proposed GMKAL and LMKAL algorithms on six datasets,
four from the UCI machine learning repository and two
real world datasets, namely Reuters21578 and ORL. Detailed
descriptions of each dataset are illustrated on table III. UCI
datasets. The first four datasets come from UCI repository,
including dataset australian, sonar, image segmentation and
glass. All these four datasets are binary datasets.

Reuters21578. The fifth dataset is a subset of the
Reuters21578 text dataset. This subset has 2,919 documents,
including categories ‘acq’, ‘crude’, ‘trade’, and ‘money’, each
with 2,025, 321, 298, and 245 documents respectively.

ORL. The last datasets contains ten different images of
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Fig. 1. Average accuracy of GMKAL and LMKAL against single kernel CTED over 6 datasets: australian, sonar, image segmentation, glass, ORL, Reuters,
CTED1, CTED2, CTED3, CTEDm, CTEDa represent the top-3 single kernel, the median kernel and the average kernel, respectively

Fig. 2. Average accuracy of GMKAL and LMKAL against single kernel RRSS over 6 datasets: australian, sonar, image segmentation, glass, ORL, Reuters,
RRSS1, RRSS2, RRSS3, RRSSm, RRSSa represent the top-3 single kernel, the median kernel and the average kernel, respectively

425425



TABLE I. THE WIN/LOSS(%) PERCENTAGE OF GLOBALISED MKAL AGAINST KERNEL CTED AND RRSS ON EVALUATION POINTS

(WIN% AND LOSS% OVER 70% ARE HIGHLIGHTED)

australian sonar image segmentation glass ORL Reuters
win(%) loss(%) win(%) loss(%) win(%) loss(%) win(%) losss(%) win(%) loss(%) win(%) loss(%)

CTED1 20 80 100 0 90 10 100 0 100 0 100 0
CTED2 60 40 100 0 100 0 100 0 100 0 100 0
CTED3 60 40 80 20 100 0 100 0 73 27 70 30
CTEDm 70 30 80 20 100 0 100 0 100 0 100 0
CTEDa 90 10 100 0 100 0 100 0 87 13 100 0
RRSS1 80 20 70 30 70 30 80 20 87 13 55 45
RRSS2 70 30 70 30 80 20 90 10 87 13 100 0
RRSS3 100 0 80 20 50 50 100 10 100 27 70 30
RRSSm 100 0 70 30 100 0 100 0 100 27 100 0
RRSSa 85 15 100 0 100 0 100 0 87 13 100 0

TABLE II. THE WIN/LOSS(%) PERCENTAGE OF LOCALIZED MKAL AGAINST KERNEL CTED AND RRSS ON EVALUATION POINTS

(WIN% AND LOSS% OVER 70% ARE HIGHLIGHTED)

australian sonar image segmentation glass ORL Reuters
win(%) loss(%) win(%) loss(%) win(%) loss(%) win(%) losss(%) win(%) loss(%) win(%) loss(%)

CTED1 40 60 100 0 70 30 100 0 100 0 100 0
CTED2 45 55 100 0 90 10 100 0 100 0 100 0
CTED3 50 50 70 30 100 0 100 0 100 0 75 25
CTEDm 55 45 60 40 70 30 100 0 100 0 100 0
CTEDa 70 30 100 0 100 0 100 0 100 0 100 0
RRSS1 50 50 40 60 50 50 70 30 93 7 100 0
RRSS2 75 25 60 40 50 50 100 0 100 0 100 0
RRSS3 100 0 60 40 40 60 100 0 100 0 85 15
RRSSm 100 0 50 50 90 10 100 0 100 0 100 0
RRSSa 80 20 100 0 100 0 100 0 100 0 100 0

TABLE III. DATASETS DESCRIPTION

Dataset #Instance #Feature #Class
australian 690 14 2

sonar 208 60 2
image segmentation 210 19 2

glass 214 10 2
ORL 400 1024 40

Reuters 2919 18933 4

40 distinct subjects. For some subjects, the images were
taken at different times, varying the lighting, facial expres-
sions (open/closed eyes, smiling/not smiling) and facial details
(glasses/no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright,
frontal position (with tolerance for some side movement).
We use the resized version of ORL where each image has
resolution of 32× 32[13].

B. Experimental Details

In our experiment, we apply in total 10 different kernel
functions as basis for MKAL. These kernels are 7 RBF kernels,
2 polynomial kernels and a linear kernel. The RBF kernel we
use is defined as K(xi,xj) = exp(||xi − xj ||2/(2t2)) with
t = t0 × dmax , where dmax is the maximal distance between
samples and t0 varies in the range of {10−3, 10−2, . . . , 103},
and polynomial kernels as K(xi,xj) = (xT

i xj)
a with a = 2, 4

. Finally, all kernels are normalized by dividing each entry by
the largest pair-wise squared distance so that each entry lies
in [0, 1].

We randomly divide each dataset into unlabeled set (70%)
and testing set (30%). Each active learning algorithm selects

data instances in the unlabeled set (70%) to query for labels
and then the performance of each algorithm is measured by
the classification accuracy on testing set (30%). For each
single kernel algorithm, we fix the kernel as one of the 10
candidate kernels. And then we use the fixed single kernel
active learning algorithm to select data examples form the
unlabeled dataset. In total, we get 10 different results for
each single kernel method. We sort the 10 different results
in terms of average accuracy on all the evaluation points and
report the top-3 and the median results in terms of average
accuracy. Additionally, we average all the candidate kernels
and report the single kernel methods with this averaged kernel.
The evaluation point of each dataset is set as {5, 10, 15, . . .}
depending on the dataset size. So when the algorithms select k
samples (k = 5, 10, 15...), a classifier is trained on the selected
labeled data samples and tests on the testing data.

Three baseline methods are compared in our experiment.

• The first baseline is random sampling

• The second is the kernel version of CTED [3], denoted
as Kernel CTED (See Section IV).

• The third is the robust version of CTED [5] based on
robust representation and structured sparsity, denoted
as RRSS

In our experiment, all the algorithms start with the same unla-
beled and testing dataset. The experiment is repeated 10 times
and the average result is reported. Support Vector Machines
is used as classification model to evaluate the performance of
the labeled instances. Trade-off parameters of all methods are
empirically set to be 0.1. We use this scheme to all the methods
in the experiment for fair comparison.
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C. Comparative study

In this section, we evaluate the performance of our methods
(GMKAL and LMKAL) in terms of classification accuracy.
We fix the single kernel methods with 10 different candidate
kernels used in our multiple kernel versions. For the 10 dif-
ferent results, we sort them according to the average accuracy
over all the evaluation points. For each method, we compare
our multiple kernel versions with the top-3, the median, and
the results with averaged kernel. Note that using average of
kernels as a baseline is a common strategy in multiple kernel
learning, and the effectiveness of MKL mainly depends on
the performance against single kernel methods with averaged
kernels. Tables I and II show the win/loss percentage of
GMKAL and LMKAL against the single kernel methods on
all different evaluation points for every dataset.

1) Compare with kernel CTED: Figure 1 reveals the av-
erage accuracy of our two methods against the kernel CTED
algorithms on each evaluation point of 6 datasets over 10 runs.
Tables I and II show that GMKAL has comparable data selec-
tion performance against the top-3 single kernels in datasets
australian and sonar, for which the best kernel is not known
in advance in practical applications. Additionally, we find that
GMKAL outperforms all the single kernel algorithms with
averaged candidate kernels (CTEDa in Table I), along with 5
of the median kernel results (except CTEDm in australian).
Table II shows that the Localized MKAL outperform baseline
methods significantly in terms of top-3 results in dataset glass,
ORL, Reuters. Additionally, LMKAL has better performance
(over 50% win) than the average kernel CTED and RRSS
results in all the datasets.

2) Compare with RRSS: RRSS [5] is the robust version
of kernel CTED in that it replaces the Frobenius Norm with
the l2,1 norm which suffers less from outliers. We compare
our GMKAL and LMKAL methods with RRSS on the same
6 datasets as in the previous section.

Our GMKAL and LMKAL algorithms have significant
improvement against RRSS on the 6 datasets illustrated in
Fig. 2. Our two methods usually outperform the top-3 best
fixed kernel RRSS in datasets glass and Reuters. From Tables
I and II, we can conclude that our GMKAL and LMKAL
methods outperform the methods with averaged kernels and
median-performance kernels (over 50% win), which shows the
superiority of our methods against the common baseline RRSS.

VII. DISCUSSION OF GLOBAL AND LOCAL METHODS

From the experiments with the six different datasets above,
we can conclude that global and local MKAL have similar
performance on all the 6 datasets. We find it necessary to
compare the global and local methods because they all have
advantages and disadvantages. For the globalised MKAL algo-
rithms, the formulation is straightforward, and the calculation
is easier because the weight w on candidate kernels has
analytic solution (Eq. (17)). The disadvantage of the globalised
method is that it assigns the same weight to the same kernel,
which is prone to noise and cannot discover local structures.
On the other hand, the localized MKAL methods assign weight
to each datum-kernel pair, because some kernels may be useful
to some input data points and noisy to others.

However, the localized MKAL methods come with a price:

There are more variables to calculate. Instead of selecting
m different variables, it assigns n × m variables which is
linear to the number of input data points. When the size
of input data goes up, the localized MKAL algorithms will
suffer from computation and storage issues. The experimental
results in Tables I and II illustrate the empirical performance
of globalised MKAL and localized MKAL. We can see from
the two tables that localized MKAL outperforms globalised
MKAL in datasets Reuters ORL and glass. And the two meth-
ods has similar performance on dataset australian and image
segmentation. We can conclude that the localized approach has
better performance in large datasets and the globalised one has
better performance in small datasets. This is because for small
datasets, the localized approach becomes too complex and may
lead to over-fitting.

VIII. CONCLUSION

Active Learning is a methodology that selects informative
instances to label and trains a classifier using the selected
samples. One family of active learning algorithms is based
on Optimum Experimental Design in statistics. This line of
work usually can be transformed into kernel based algorithms,
and the performance of such active learning algorithms is
highly related to the kernel of choice. However, in practice
the optimal kernel for data selection is usually not known in
advance, and data-driven kernel selection approaches such as
cross validation can not be applied in the early stage of active
learning where no labeled data can be found. Fortunately, MKL
can be of help,which combines different candidate kernels
to form a consensus kernel. In this paper, we for the first
time introduced MKL to active learning and proposed both
Globalised Multiple Kernel Active Learning (GMKAL) and
Localized Multiple Kernel Active Learning (LMKAL). The
globalised one treats all candidate kernels equally, while the
localized one assigns different weights to different data-kernel
pairs. Extensive experimental results on six benchmark datasets
demonstrate that our globalised and localized methods have
better performance than existing OED-based active learning
methods.
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