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Abstract

Active learning is a machine learning technique that
trains a classifier after selecting a subset from an unla-
beled dataset for labeling and using the selected data for
training. Recently, batch mode active learning, which
selects a batch of samples to label in parallel, has at-
tracted a lot of attention. Its challenge lies in the choice
of criteria used for guiding the search of the optimal
batch. In this paper, we propose a novel approach to
selecting the optimal batch of queries by minimizing
the α-relative Pearson divergence (RPE) between the
labeled and the original datasets. This particular diver-
gence is chosen since it can distinguish the optimal
batch more easily than other measures especially when
available candidates are similar. The proposed objective
is a min-max optimization problem, and it is difficult to
solve due to the involvement of both minimization and
maximization. We find that the objective has an equiva-
lent convex form, and thus a global optimal solution can
be obtained. Then the subgradient method can be ap-
plied to solve the simplified convex problem. Our em-
pirical studies on UCI datasets demonstrate the effec-
tiveness of the proposed approach compared with the
state-of-the-art batch mode active learning methods.

Introduction
Active learning is proposed to alleviate the effort of the la-
beling process by selecting informative data samples. It is
useful when unlabeled data are abundant but manual label-
ing is expensive. The challenge of active learning is that,
given a large pool of unlabeled data and a relatively small la-
beling budget, the classifier trained on selected labeled data
must have good generalization performance on unseen data.
In other words, an active learning algorithm selects only a
few data instances for labeling while maintaining certain
classification performance.

Traditional active learning approaches that select the sin-
gle most informative data example usually retrain the clas-
sifier when a new instance is labeled. Under circumstances
where multiple annotators are working concurrently, batch
mode active learning which iteratively selects a batch of
queries to label is more efficient and appropriate. In the
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batch mode active learning process, the learner is given a
labeled set and an unlabeled set, and iteratively chooses a
batch of instances from the unlabeled set to query for the
labels. The main difficulty of batch active learning is under
what criterion the batch is selected.

One of the most recent work in batch mode active learning
uses representative information based on distribution match-
ing (Chattopadhyay et al. 2013). It adopts maximum mean
discrepancy (MMD) (Gretton et al. 2006) to select the batch
that minimizes the empirical MMD score between labeled
and unlabeled data. It turns out that the use of MMD to
capture representative information cannot effectively distin-
guish between the optimal batch and the other candidates
(Settles 2010; Wang and Ye 2013). When more data are
labeled, the induced candidate batches become more simi-
lar, which makes the problem of MMD seems more serious.
Therefore, to handle this issue, we propose to use an alter-
native measure called α-relative Pearson divergence (RPE)
(Yamada et al. 2011) which is more appropriate to com-
pare distributions because of the following distinct proper-
ties. First, divergence, such as K-L divergence (Kullback and
Leibler 1951), is well-known to be suitable for distribution
comparison. Second, the superiority of RPE against MMD
has been shown in two-sample distribution matching. There-
fore, the effectiveness of RPE in distribution-oriented batch
active learning could also be expected. In addition, it is also
shown that RPE often gives larger dissimilarity score when
two distributions are similar but non-identical (Yamada et
al. 2011). It is with the two nice properties that RPE is usu-
ally able to distinguish between the optimal batch and the
other candidates. Such advantages are further enlarged when
the distributions represented by different candidates become
more similar.

Our main contributions can be summarized as follows.

1. We propose a novel batch mode active learning algorithm
based on α-relative Pearson divergence (RPE) whose
properties are suitable for this task.

2. When using RPE in batch active learning, some auxiliary
variable will be introduced. As a result, the overall ob-
jective function becomes a min-max optimization prob-
lem, and generally it is hard to solve because the objec-
tive function is simultaneously maximized and minimized
with respect to the first and second variable. To address
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this issue, we prove that the problem has an equivalent
convex formulation after swapping the two variables, so it
can be solved by applying existing convex programming
methods.

3. Our empirical studies on 6 UCI datasets show that the
proposed method, namely RPEactive, significantly out-
performs the state-of-the-art batch mode active learning
algorithms in general.

Related Work
Active Learning
Different methods for active learning are proposed in the
last decades (Settles 2010). Some of the popular approaches
select the single most informative data point in each iter-
ation. One of the single-instance approaches is the uncer-
tain sampling method, which chooses the most uncertain in-
stance to label at each iteration. Uncertainty can be mea-
sured by the distance to decision boundary (Campbell et
al. 2000; Schohn and Cohn 2000; Tong and Koller 2002)
or entropy of predicted label (Settles and Craven 2008).
Another popular single-instance active learning method is
query-by-committee (Seung, Opper, and Sompolinsky 1992;
Dagan and Engelson 1995; Freund et al. 1997);it trains mul-
tiple classifiers and selects the data instance on which the
classifiers have the most disagreement.

Batch Mode Active Learning
In recent years, various criteria are proposed to select the
most informative batch of samples. (Guo 2010) proposes an
approach to select the batch that minimizes the mutual in-
formation between labeled and unlabeled data, (Yu, Bi, and
Tresp 2006) chooses data points that have the lowest linear-
reconstruction error, (Hoi et al. 2006) applies the Fisher in-
formation matrix to select the optimal batch, and (Guo and
Schuurmans 2008) proposes a discriminate approach. Most
recently, (Chattopadhyay et al. 2013) proposes a method to
minimize the difference in distribution between labeled and
unlabeled data, after selecting a batch. (Wang and Ye 2013)
further combines the distribution-matching method with dis-
criminative information.

Preliminaries
In this section, we briefly introduce the batch mode active
learning setting and the α-relative Pearson divergence.

Problem Setting Suppose we have a d-dimensional
dataset D = {x1,x2, ...,xn} of n data points. Let the set
U = {x1, ...,xnu} be the set of unlabeled data and let L =
{xnu+1, ...,xnu+nl} (nu + nl = n) be the set of labeled
data, where nl and nu denote the number of labeled data and
unlabeled data respectively. Additionally, labeled dataset L
is associated with labels Yl = {ynu+1, ..., yn} ∈ {−1, 1}nl .
For a predefined batch size ns, the goal of batch mode ac-
tive learning is to select the best batch S with S ⊆ U and
|S| = ns for labeling such that the classifier trained from
labeled data has low generalization error on unseen data
i.i.d. drawn from the same distribution as D. The algorithm
should choose S iteratively until a given budget of labels is

reached.
In this paper, we use K(·, ·) to denote the kernel function

andKij = K(xi,xj) to denote the kernel Gram matrix. We
also denote KXL = K(1 : n, nu + 1 : n) with MATLAB
notations and KLX = (KXL)

T where (·)T is the matrix
transpose operator. Similarly KXU = K(1 : n, 1 : nu),
and KUX = (KXU )

T . 1n is a length n column vector of
all 1s. diag(β) is denoted as the diagonal matrix where β is
its main diagonal. We also denote Ki∗ and and K∗i as the
i-th row and the i-th column of matrixK.

α-relative Pearson divergence We briefly introduce the
α-relative Pearson divergence for two sample test. For two
unknown d-dimensional distribution P andQ, we have V =
{vi}nvi=1 i.i.d. drawn from P and T = {tj}ntj=1 i.i.d. drawn
from Q. The α-relative Pearson divergence is an estimate of
the similarity between P and Q given only V and T . Let
p(x) and q(x) be the probability density functions of P and
Q, respectively.

Intuitively, after calculating the density ratio r(x) =
p(x)/q(x), the goal of RPE is to compute the Pearson di-
vergence PE(P,Q) = Eq(x)[(r(x) − 1)2] of two distri-
butions based on two samples. Since directly calculating
r(x) is hard (Yamada et al. 2011), RPE uses the α-relative
density-ratio rα(x) = p(x)/(αp(x) + (1 − α)q(x)) and
computes the α-relative Pearson divergence PEα(P,Q) =
1
2Eqα(x)[(rα(x) − 1)2]. At last, the estimates r̂α and P̂Eα
are obtained by solving a quadratic objective and replacing
expectations with averages. The details of RPE are presented
as follows, and more comprehensive theoretical analysis can
be found in (Yamada et al. 2011).

The estimate of rα(x) is defined as a linear combination
of kernel functions

r̂α(x) := g(x; θ̂) =

nv∑
i=1

θ̂iK(vi,x) (1)

where K(·, ·) is a kernel function and θ̂ is obtained by mini-
mizing the expected squared loss

L(θ) = Eqα(x)[(g(x;θ)− rα(x))
2] =

α

2
Ep(x)[g(x;θ)2]

+
1− α
2

Eq(x)[g(x;θ)2]− Ep(x)[g(x;θ)] + const

(2)
After replacing the expectations with empirical averages

in Eq. (2), θ̂ is obtained by minimizing a quadratic form by
adding λ

2θ
Tθ as a regularization term:

θ̂ = argmin
θ

(
1

2
θTAθ − hTθ +

λ

2
θTθ) (3)

where

Aij =
α

nv

nv∑
k=1

K(vi,vk)K(vj ,vk)

+
1− α
nt

nt∑
k=1

K(vi, tk)K(vj , tk)

hi =
1

nv

nv∑
k=1

K(vk,vi)

(4)
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The α-relative Pearson divergence PEα is defined based
on the α-relative density-ratio rα(x):

PEα(P,Q) =
1

2
Eqα(x)[(rα(x)− 1)2] (5)

Expanding Eq. (5) and again replacing expectations with av-
erages, the final estimate of α-relative PE divergence can be
obtained by the following definition.

Definition 1. (Yamada et al. 2011) The estimate of α-
relative PE divergence given V = {vi}nvi=1 and T =
{tj}ntj=1 is defined as

P̂Eα(V, T ) = −
α

2nv

nv∑
i=1

r̂α(vi)
2 − 1− α

2nt

nt∑
i=1

r̂α(ti)
2

+
1

nv

nv∑
i=1

r̂α(vi)−
1

2

Proposed Framework
In this section, we apply the α-relative Pearson divergence
to batch active learning by minimizing the divergence esti-
mate between labeled data and the original dataset. Then we
obtain a min-max objective and prove that it has an equiva-
lent convex form. Finally, we apply the subgradient method
to solve the convex objective.

Min-Max Objective
Since the α-relative Pearson divergence can choose the opti-
mal batch among its competitors when the candidate batches
are similar, we propose a batch mode active learning algo-
rithm which iteratively selects the most representative batch
of samples. More specifically, we minimize the α-relative
Pearson divergence between L ∪ S and D at each iteration.
After substituting V withD and T withL∪S in Definition 1,
our objective is to solve the following problem

min
S⊆U,|S|=ns

P̂Eα(D,L ∪ S) (6)

We further introduce variable β of length nu as the indi-
cator variable. βi equals 1 when xi is selected in the batch,
and 0 otherwise. Expanding Eq. (6), we reformulate it as a
function I(β) with respect to β.

I(β) =− α

2n

n∑
i=1

r̂α(xi)
2 +

1

n

n∑
i=1

r̂α(xi)

− 1− α
2(nl + ns)

nu∑
i=1

βir̂α(xi)
2

(7)

Then the objective (6) becomes

min
β∈{0,1}nu ,‖β‖1=ns

I(β) (8)

Note that in the third term of Eq. (7), when xi is not se-
lected in the batch, βi becomes 0 and the term βir̂α(xi)
is not included in the summation. Substituting Eq. (1) into
Eq. (8), we get θ̂ by minimizing the squared loss in Eq. (2)

and replace expectations with empirical averages. After a
few lines of calculation, we get

θ̂ = argmin
θ

1

2
θTHθ − bTθ +

λ

2
θTθ (9)

where

H = c0(KXLKLX+KXUdiag(β)KUX)+c1K
2 (10)

and
b =

1

n
K1n (11)

with c0 = (1 − α)/(nl + ns) and c1 = α/n. Thus the
objective function in Eq. (9) can be reformulated as

J (θ,β) = 1

2
θTHθ − bTθ +

λ

2
θTθ (12)

By substituting r̂α(x) =
∑n
i=1 θ̂iK(xi,x) into Eq. (7) and

rewriting function I(β) in matrix form, we get the relation
between J (θ̂,β) and I(β) as follows:

I(β) + J (θ̂,β) + λ

2
θ̂
T
θ̂ = 0 (13)

Since the regularization parameter λ is usually small, we
drop the regularization term λ

2θ
Tθ in Eq. (13) and formulate

our objective (8) to a min-max optimization problem

max
β∈B

min
θ∈Rn

J (θ,β) (14)

where β is relaxed from {0, 1}nu to [0, 1]nu , and B is de-
noted as the domain of β

B := {x|0 ≤ xi ≤ 1, ‖x‖1 = ns, i = 1, 2, ..., nu} (15)

Note that objective (14) is hard to solve because two vari-
ables are involved, and we need to maximize the objective
w.r.t. β while minimizing it w.r.t. θ. In the next section, we
present an important solution to address this issue.

Convex Reformulation
Our careful analysis reveals that the objective (14) has an
equivalent form by eliminating variable β. We further
prove the equivalent function G(θ) is a convex function.
Such reformulation greatly simplifying the objective, with-
out the involvement of the variable β in the optimization
procedure, and the optimal β̂ can be computed by θ̂.

We first prove that the variables θ and β can be swapped
in the min-max optimization problem (14).

Lemma 1. The min and max operations in Eq. (14) can be
swapped, i.e.,

max
β∈B

min
θ∈Rn

J (θ,β) = min
θ∈Rn

max
β∈B
J (θ,β) (16)

Proof. It can be verified that the following properties hold:

• B in Eq. (15) is a compact set under Euclidean distance.
• J (·,β) is continuous and convex w.r.t. θ.
• J (θ, ·) is continuous and concave (linear) w.r.t. β.
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Therefore, Sion’s Minimax Theorem (Komiya 1988; Sion
1958) can be applied to Eq. (14) to swap the min and max
operations.

We denote G(θ) as the objective function when β is set to
its optimal value

G(θ) = max
β∈B
J (θ,β) (17)

Then we obtain the following objective which is equivalent
to our min-max optimization problem (14)

min
θ∈Rn

G(θ) (18)

Eqs. (10) and (12) show that J (θ,β) is a linear function
w.r.t. β over convex set B, and we formulate it as

max
β∈B

βTφ (19)

where φ denotes the coefficient of β

φi = (Ki∗θ)
2, i = 1, 2, ..., nu (20)

In the next few paragraphs, we show that the optimal so-
lution of linear objective (19) can be easily obtained by just
sorting all entries ofφ. Therefore the objective function (19)
is viewed as the sum of the largest ns of entries. Addition-
ally, this sum of entries is reformulated as point-wise maxi-
mum of several convex functions of θ. At this stage, we are
pleased to find that G(θ) is actually a convex function w.r.t.
θ.

Lemma 2. Sort {φk}nuk=1 in descend order as φπ1
≥ φπ2

≥
... ≥ φπnu . Let β̂ ∈ argmaxβ∈B β

Tφ; then an optimal β̂
can be obtained by

β̂i =

{
1 i ∈ {π1, π2, ...πns}
0 otherwise

(21)

Proof. The problem of Eq. (19) can be reformulated as an
fractionalknapsackproblem (Cormen et al. 2001), where
the objective is to select items with total weight of ns from
nu items to obtain the largest total value. The i-th item has
weight 1 and value φi, and items can be selected fraction-
ally. βi is the selected weight of the i-th item. The fractional
knapsack problem can be solved by choosing the item with
largest value-weight ratio iteratively (Cormen et al. 2001),
so β̂ can be obtained by setting the entries corresponding to
the largest ns number of value φi to 1, and others to 0.

Theorem 1. G(θ) is a convex function with respect to θ.

Proof. We rewrite G(θ) in the following form

G(θ) = 1

2
θTH0θ +

1

2
λθTθ − bTθ + c0 max

β
βTφ (22)

where H0 = c0KXLKLX + c1K
2, λ, b and c0 are con-

stants.
The last term of Eq. (22) is a function of θ, and we de-

note it as c0F(θ). We further show that F(θ) can be seen as

point-wise maximum of convex functions with respect to to
θ:

F(θ) = β̂
T
φ = max

a∈{0,1}nu
aT 1=ns

nu∑
i=1

φiai (23)

In last step of the above equation, we used Lemma 2 and
the simple fact that the sum of the largest ns of entries is
equivalent to the maximum sum of all combinations of ns
entries. From Eq. (20) we know that φi(i = 1, ...ns) is con-
vex with respect to θ, and

∑nu
i=1 φiai is non-negative sum-

mation of φi. Additionally F(θ) is a point-wise maximum
of
∑nu
i=1 φiai. According to rules of convex functions, point-

wise maximum and nonnegative summation preserve con-
vexity, so f(θ) is a convex function with respect to θ.

It is easy to check that matrixH0 is semi-positive definite
and c0 = (1 − α)/(ns + nl) > 0, so G(θ) is also a convex
function w.r.t. θ.

Now we have proved that the min-max objective G is a
convex function. It is well known that convex functions al-
ways have global optimal solutions, and there are many so-
phisticated algorithms to solve them.

Optimization

The subgradient method (Boyd, Xiao, and Mutapcic 2003)
is shown to be a simple and effective technique to solve
the non-differentiable convex programming problems with-
out constraints (Boyd, Xiao, and Mutapcic 2003). It is also
well-known that the subgradient method does not guarantee
decreasing of the objective function at each iteration, but it
lowers the Euclidean distance between the current point and
the optimal point iteratively.

Since our objective function in Eq. (22) is a convex but
non-differential function, we adopt the subgradient method
to solve objective (18) directly. One of the prerequisite of
the subgradient method is a subgradient of the given convex
function. Here we compute a subgradient in Lemma 3.

Lemma 3. In Eq. (22), a subgradient of G(θ) is

g(θ) = (H0 + λI)θ − b+ 2c0

nu∑
i=1

β̂iK
(i)θ (24)

WhereK(i) =K∗iKi∗ and β̂ is obtained in Lemma 2.

Proof. We calculate f(θ) as a subgradient of F(θ) by defi-
nition. Substituing φi into Eq. (23), we get

F(θ) =
nu∑
i=1

β̂iθ
TK(i)θ

For all x ∈ Rn, we have
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F(x)−F(θ)

= max
a∈{0,1}nu
aT 1=ns

nu∑
i=1

aix
TK(i)x−

nu∑
i=1

β̂iθ
TK(i)θ

≥
nu∑
i=1

β̂i(x
TK(i)x− θTK(i)θ)

≥ (x− θ)T
nu∑
i=1

2β̂iK
(i)θ

The last step is obtained by expanding the inequality
(x − θ)TK(i)(x − θ) ≥ 0 which holds for all x − θ
because K(i) is symmetrical positive semi-definite. There-
fore, f(θ) =

∑nu
i=1 2β̂iK

(i)θ is the subgradient of function
F(θ). Taking derivatives of the rest terms of G(θ) w.r.t. θ
and noticing c0 > 0, the lemma is then proved according to
the sum rule of subgradient.

By denoting θ(0) as the starting point of the algorithm,
and θ(k) as the point in the k-th iteration, we obtain the up-
date rule

θ(k+1) = θ(k) − dkg(θ(k)) (25)

where dk is the step size. Since the objective does not guar-
antee to decrease in each iteration, a variable θ̂ is introduced
to obtain the best θ. Instead of a random initial point, we em-
pirically choose the minimizer of 1

2θ
TH0θ+

1
2λθ

Tθ−bTθ
as the starting point θ(0):

θ(0) = (H0 + λI)−1b (26)

Algorithm 1 describes our proposed batch active learning
approach RPEactive in detail. It can be seen from lines 5 to
7 that our algorithm runs inO((nl+nu)2ns) each iteration.

Algorithm 1 Algorithm of RPEactive
Input: parameters α,λ; kernel matrix K; constants nu, nl,

ns
Output: indicator variable β

1: compute θ(0) according to (26)
2: θ̂ ← θ(0)

3: k ← 0
4: while not converge do
5: compute β̂ according to (21)
6: compute g(θ(k)) according to (24)
7: update θ(k+1) according to (25)
8: k ← k + 1
9: if G(θ(k)) < G(θ̂) then

10: θ̂ ← θ(k)

11: end if
12: end while
13: compute φ according to (20) with θ = θ̂
14: compute β according to (21)

Experimental Results
Experiment Setting
In our experiment, we evaluate the performance of our pro-
posed RPEactive algorithm on 6 datasets from the UCI
repository, namely iris, australian, sonar, heart, wine and
arcene. Table 1 shows the detailed description of each
dataset.

Table 1: Datasets Description
Dataset #Instance #Feature

iris 150 4
australian 690 14

sonar 208 60
heart 270 13
wine 178 13

arcene 100 10000

We compare our method to several state-of-art batch
mode active learning algorithms. First, we consider the
distribution-matching-based method using maximum mean
discrepancy, denoted as Mean (Chattopadhyay et al. 2013).
It is most related to our method. Second, we compare with
batch active learning based on transductive experimental de-
sign, denoted asDesign (Yu, Bi, and Tresp 2006). The third
method is batch active learning using Fisher information ma-
trix, denoted as Fisher (Hoi et al. 2006). Finally, a baseline
of random sampling is used and denoted as Rand.

We randomly divide each dataset into unlabeled set (60%)
and testing set (40%). Each active learning algorithm selects
data instances in the unlabeled set (60%) to query for labels
and then the performance of each algorithm is measured by
the classification accuracy on testing set (40%).

In our experiment, we mainly consider binary classifica-
tion, and one instance of either class is randomly selected
as the initial labeled data. All the algorithms start with the
same initial, unlabeled and testing dataset. For a fixed batch
size ns, each method selects ns data samples for labeling at
each iteration. The batch size ns is set to 5 in dateset iris
and arcene due to their small sizes, and 10 in other datasets.
The experiment is repeated 20 times and the average result is
reported. Support Vector Machines is used as classification
model to evaluate the performance of the labeled instances.
Parameters α and λ are chosen from {0, 0.05, ..., 0.95} and
{10−5, 10−4, ..., 1} respectively. We use Gaussian kernel for
all datasets where the kernel width is searched in a relative

Table 2: The win/loss(%) of two-sided paired-t test in
RPEactive vs Fisher, Mean, and Design with p < 0.05

Dataset vs Fisher vs Mean vs Design
Win Loss Win Loss Win Loss

iris 78 0 33 0 78 0
australian 71 0 71 0 71 0

sonar 43 0 14 0 100 0
heart 0 0 9 0 9 0
wine 40 0 20 0 60 0

arcene 18 0 9 0 18 0
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Figure 1: Average accuracy of RPEactive, Mean, Fisher, Design and Rand over 6 UCI datasets

large range. All the parameters are selected using ‘greedy
search’ method which searches all combinations of param-
eters and the one with the best average accuracy on test
data(40%) is chosen. The parameters are searched in each
split of the total dataset. We use this scheme to all the meth-
ods in the experiment for fair comparison.

Comparative study
In this section, we conduct the two-sided paired t-test with
p < 0.05 of our proposed method against Fisher, Mean
and Design over all 6 datasets. Table 2 shows the perfor-
mance of our method against the compared algorithms on
each evaluation point of every dataset. The win/loss per-
centage shows the proportion of evaluation points that our
method significantly outperforms/underperforms the com-
pared algorithms. Figure 1 reveals the average accuracy
over 20 runs on the 6 datasets. We can see that RPEactive
outperforms all other methods on almost every evaluation
points. Besides that, we can conclude from Table 2 that
RPEactive outperforms other methods on all the datasets
becauseRPEactive often significantly outperforms other al-
gorithms and never loses in the t-test. Note that Mean has
slightly lower performance than our method in dataset heart
and arcene, while Design and Fisher are the closest com-
petitor in heart. Most importantly, our method has the best
performance in australian, with a significantly large margin
(71%) than other methods.

In the end, we compare RPEactive with Mean because
they are both based on distribution matching. From Figure 2
and Table 2, we find that RPEactive significantly performs
Mean on most datasets. On the other hand, Mean never
significantly outperforms our method although it only loses
9% in heart and arcene. Besides, all the results show that

RPEactive outperforms Mean when the labeled data be-
comes large, thus demonstrating the superiority of RPE over
MMD in choosing the optimal batch.

Parameter Selection

The most important parameter of our proposed method is
α. It is used to construct the relative distribution qα(x) =
αp(x) + (1 − α)q(x), with p(x) the distribution of D and
q(x) the distribution of L ∪ S. We study the influence of
α on classification accuracy by computing the average ac-
curacy of RPEactive on two UCI datasets, namely heart
and sonar, with α selected from {0.1, 0.5, 0.9} and λ fixed
to 10−5. Figure 2 shows that the proposed RPEactive al-
gorithm prefers the parameter α which is close to 1. Intu-
itively, our method minimizes the expected error on qα(x)
(see Eq. (2)). It is obvious that D is much larger than L ∪ S
at the beginning and contains more information, so qα(x)
can be more precisely approximated with more proportions
of the whole dataset.

Figure 2: Average accuracy of RPEactive on heart and
sonar with α = 0.1, 0.5, 0.9.
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Conclusion and Future Work
In this paper, we proposed a novel batch mode active sam-
pling method that iteratively selects the batch of samples and
minimizes the α-relative Pearson divergence (RPE) between
the labeled and original data. We formulated the objective
as a min-max optimization problem, and proved that it has
an equivalent convex form. Then we applied a subgradient
method to solve the convex objective. Our experiments on
6 UCI datasets demonstrated that our method significantly
outperforms other state-of-the-art methods in general.

As future work, some problems of this framework remain
unsolved. First, up to now, there is no theoretical solution to
choose the direction of divergence estimation in active learn-
ing setting. In other words, we do not know how to choose
between P̂Eα(L ∪ S,D) and P̂Eα(D,L ∪ S). Second, it
is interesting to combine divergence estimation with other
helpful information, such as label information, to further im-
prove the performance. Third, due to that our method aims to
find a global optimal solution, the computation is relatively
slow to handle large datasets. It remains a challenge to de-
velop faster algorithms to optimize the convex objective.
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