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Abstract— Feature selection (FS), which identifies the relevant
features in a data set to facilitate subsequent data analysis, is a
fundamental problem in machine learning and has been widely
studied in recent years. Most FS methods rank the features in
order of their scores based on a specific criterion and then
select the k top-ranked features, where k is the number of
desired features. However, these features are usually not the top-
k features and may present a suboptimal choice. To address this
issue, we propose a novel FS framework in this article to select
the exact top-k features in the unsupervised, semisupervised, and
supervised scenarios. The new framework utilizes the �0,2-norm
as the matrix sparsity constraint rather than its relaxations,
such as the �1,2-norm. Since the �0,2-norm constrained problem
is difficult to solve, we transform the discrete �0,2-norm-based
constraint into an equivalent 0-1 integer constraint and replace
the 0-1 integer constraint with two continuous constraints. The
obtained top-k FS framework with two continuous constraints is
theoretically equivalent to the �0,2-norm constrained problem
and can be optimized by the alternating direction method
of multipliers (ADMM). Unsupervised and semisupervised FS
methods are developed based on the proposed framework, and
extensive experiments on real-world data sets are conducted to
demonstrate the effectiveness of the proposed FS framework.

Index Terms— 0-1 integer programming, feature selection (FS),
�0,2-norm, nonconvex optimization.

I. INTRODUCTION

IN MANY applications, such as image classification [1]–[3]
and video recognition [4], [5], data are commonly repre-
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sented by high-dimensional feature vectors. High-dimensional
data are not suitable for learning algorithms because of “the
curse of dimensionality” [6]. Furthermore, high-dimensional
data also contain many noisy and redundant features that
may degrade the performance of the learning algorithms.
Feature selection (FS) has been used to address these prob-
lems, identify the most informative features, and improve the
performance of the learning algorithms. As a result, FS has
become a hot research topic in machine learning and pattern
recognition [7].

Recent studies of sparse representation and compressed
sensing have shown that sparsity is an intrinsic property of
real-world data [8]. FS, which aims to find a sparse selection
of input attributes to represent the data, can be regarded
as an application of the sparse representation theory. Many
FS methods apply sparsity-inducing regularization terms or
constraints, such as the �0-norm, �1-norm, �0,2-norm, and
�1,2-norm for feature evaluation and selection [9]. From a
sparsity perspective, the �0-norm and �0,2-norm, which counts
the number of nonzero elements and columns of a matrix,
respectively, are more desirable for FS because they provide
the sparsest solution, i.e., each feature should be associated
with either a zero score or a large score. However, �0-norm
and �0,2-norm regularized/constrained optimization problems
have been proved to be nondeterministic polynomial-time
hardness (NP-hard) [10] and, thus, are very difficult to solve.
Some theoretical results have shown that the �0 (�0,2)-norm
is usually relaxed to the �1 (�1,2)-norm in order to obtain
a solvable optimization problem. However, to guarantee that
the �1-norm yields the same result as the �0-norm, strong
incoherence conditions have to be imposed [11]. In practice,
these conditions may not be satisfied, so solving with �1
minimizer may fail to provide the desired sparse solution.
Beside, some studies considered the �p-norm (p ∈ (0, 1)) [12]
or �p,r -norm (p ∈ (0, 1), r ∈ [1,∞)) [13], [14] for FS, but
all these nonconvex surrogates still cannot obtain the perfect
sparse solution.

In this article, we propose a novel framework for exact top-
k FS using robust 0-1 integer programming. The framework
deals with the feature evaluation problem using the �0,2-
norm constraint directly without any relaxation. As mentioned
earlier, the optimization of the �0,2-norm constrained problem
is difficult to solve because it is NP-hard. To address this prob-
lem, the �0,2-norm constraint is equivalently transformed into
a 0-1 integer constraint. Subsequently, the discrete 0-1 integer
constraint is replaced with two continuous constraints. The
obtained top-k FS framework with two continuous constraints
is theoretically equivalent to the �0,2-norm constrained feature
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evaluation problem and can be optimized by the alternating
direction method of multipliers (ADMM) [15]. This study is an
extension of our early study [16] that focuses on the supervised
FS problem and can be regarded as a special example of this
framework. Different from [16], in this article, we apply the
framework to unsupervised and semisupervised scenarios by
using the subspace clustering model [17], leading to a top-k
unsupervised FS and a top-k semisupervised FS, respectively.
The main contributions of this article are summarized as
follows.

1) A novel exact top-k FS framework for unsupervised,
semisupervised, and supervised scenarios is proposed
in the formulation of a �0- or �0,2-norm constrained
problem. Then, an unsupervised method and a semi-
supervised method for top-k FS are proposed in the
framework.

2) It is demonstrated that the �0,2-norm constraint in the
framework is equivalent to the 0-1 integer constraint.
The discrete 0-1 integer constraint is further replaced
with two continuous constraints. The obtained top-k FS
framework with two continuous constraints is effectively
optimized by the ADMM method.

3) Two novel top-k FS methods are proposed by consid-
ering the subspace clustering model, in which the two
subtasks, i.e., clustering (or semisupervised learning)
and FS, boost each other’s results. Both algorithms
ensure the selection of the exact top-k features. Exten-
sive experimental results demonstrate the effectiveness
and superiority of the proposed methods.

This article is organized as follows. Section II presents the
related work. Section III introduces some notations and the
proposed top-k FS framework. Section IV presents the unsu-
pervised and semisupervised top-k FS method based on the
proposed FS framework. Section V describes the experimental
results on benchmark data sets, and Section VI concludes this
article.

II. RELATED WORK

FS can be roughly classified into three categories according
to the data labels, i.e., supervised, unsupervised, and semisu-
pervised FSs.

Supervised FS uses the class labels to identify discriminative
features for recognition and classification [18] and evaluates
the features by computing the correlation between the fea-
tures and labels. Gu et al. [19] computed the generalized
Fisher score of each feature. Nie et al. [20] proposed a robust
FS method with �1,2 regression. An efficient incremental
FS method for high-dimensional data based on the Fisher
score was introduced in [21]. In [22], an attention-based
supervised feature evaluation mechanism was proposed.
Peng and Liu [23] proposed a sparsity regularized discrimi-
native FS model that used a novel smooth and robust hinge
loss. In order to screen out irrelevant and noisy features,
an �1,2-norm with an exclusive lasso was developed for flex-
ible FS [24]. In [25], a new perspective called the worst case
was proposed to evaluate the features. Supervised FS methods
usually provide good results because the label information is
used for evaluating the features.

Due to the absence of class labels, unsupervised FS methods
select features that preserve the intrinsic structure of the data.
Yang et al. [26] used local total scatter and between-class scat-
ter matrices to select features. Du and Shen [27] developed an
adaptive graph for FS by preserving the global and local struc-
tures. By representing each feature as a linear combination of
its relevant features, a regularized self-expressive unsupervised
FS method was proposed [28]. Nie et al. [29] proposed a
method for adaptively learning of the local structure based
on the FS results. Luo et al. [30] created an adaptive graph
with structure regularization. Zheng et al. [31] developed a
method for learning a low rank structure for FS. Li et al. [32]
proposed a generalized uncorrelated regression with an adap-
tive graph for FS. Zhou et al. [33] provided an FS method
to select the features to reveal the balanced structure of data.
In an unsupervised spectral FS method [34], features were
selected that preserved the local and global structures of the
features as well as the samples. Graphs representing the feature
space and sample space were used in an unsupervised FS
method [35], which incorporated nonnegative low-dimensional
embedding and sparse feature evaluation. In [36], multiple
graphs were used to select features. In [37], unsupervised FS
was performed using column subset selection and an iterative
Pareto optimization method.

For data with insufficient class labels, semisupervised meth-
ods have been used to propagate the label information and
select features by considering both the label information and
the intrinsic structure of the data. Han et al. [38] utilized
the manifold structure of the data for semisupervised FS.
Chang et al. [39] proposed a convex formulation of semisu-
pervised FS for multilabel data. Chang and Yang [40] pro-
posed a semisupervised FS method for multitask learning.
Luo et al. [41] presented a semisupervised FS method with an
adaptive neighbor assignment strategy. Pearson’s correlation
coefficients were computed for the labeled and unlabeled
data to measure the feature-to-feature and feature-to-label
information using max-relevance and min-redundancy cri-
teria [42]. The semisupervised multiview FS method [43]
grouped high-dimensional input features into several subsets
and then encouraged the features in each subset to be sparse.
A joint semisupervised FS and classification method that
adaptively selected the features and simultaneously trained a
classifier with the selected features was presented in [44].

The framework proposed in this study is able to give a
unified treatment for supervised, unsupervised, and semisu-
pervised FS approaches.

FS can be regarded as an example of the sparsity represen-
tation theory [9]. The �0-norm counts the number of nonzero
entries of a vector or a matrix and is an ideal choice for the
top-k FS problem. However, since the �0-norm constrained
problem is difficult to solve, many FS methods have replaced
the �0-norm with its convex surrogate, the �1-norm, and have
shown promising results. An �1-norm regularized regression
FS method, Lasso, was proposed in [45]. Destrero et al. [46]
utilized the Lagrangian form of Lasso for FS in a face recogni-
tion task. In [47], the elastic net regularization was proposed
to handle features with strong correlations. Yang et al. [48]
proposed a continuous method for the sparse combinatorial
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optimization problem, which significantly improved the fea-
ture matching performance especially when the objective func-
tion is highly nonconvex. The group Lasso was introduced to
integrate the feature structure and then evaluate the importance
of features to remove the feature redundancy, where the
structures included the disjoint groups [49], the overlapping
groups [50], and so on. For multiclass data, Nie et al. [20]
proposed the use of the �1,2-norm instead of the �1-norm as
the regularization term and obtained promising results. Subse-
quently, many FS methods were proposed for �1,2-norm opti-
mization problems [27], [38], [51]. Most recently, the matrix
norm has been extended to �p,r , (p ∈ (0, 1], r ∈ (1,∞]) [13],
[18] for sparser solutions. Some studies [52], [53] have utilized
the �0,2-norm-based constraint for top-k FS to optimize the
discrete problem using an augmented Lagrangian method.
Compared with these studies, the FS framework proposed
in this study first transforms the �0,2-norm constraint into
a 0-1 integer constraint and then replaces the 0-1 integer
constraint with two continuous constraints.

III. TOP-k FEATURE SELECTION FRAMEWORK

A. Notations and Definitions

Throughout this article, we use boldface uppercase and
lowercase letters to denote matrices and vectors, respectively.
For a matrix A, Aij denotes its (i, j) th element. The �p-norm
of a vector v ∈ R

D is defined as �v�p = (
�D

i=1 |vi |p)(1/p),
where vi denotes the i th entry in v. The �0-norm of v is defined
as �v�0 = (

�D
i=1 |vi |0), i.e., the counts of nonzero entries in v.

The �p,r -norm of a matrix A ∈ R
C×D is defined as

�A�p,r =
⎛
⎝ D�

j=1

�
C�

i=1

|Aij |r
� p

r
⎞
⎠

1
p

. (1)

Consequently, the �0,2-norm of A is defined as �A�0,2 =�D
j=1 �A. j�0

2, which counts the number of nonzero columns
in A. Here, A. j denotes the j th column of A. diag(v) (v ∈ R

D)
is a diagonal matrix whose diagonal elements are the entries
of vector v, and diag(�) (� ∈ R

D×D) is a D-dimensional
vector consisting of the diagonal elements of the matrix �.

B. Proposed Framework

The input data matrix is

X = 

x1, · · · , xN

� =
⎛
⎜⎝

fT
1
...

fT
D

⎞
⎟⎠ ∈ R

D×N

where xi ∈ R
D (1 ≤ i ≤ N) denotes the i th data sample and

f j ∈ R
N (1 ≤ j ≤ D) denotes the j th feature vector. The

objective of FS is to select the k most informative features
from D features for use in subsequent learning algorithms.
Considering a projective matrix A ∈ R

C×D , AX admits the
expansion AX = �D

j=1 A. j fT
j . As can be seen, A. j measures

the importance of f j . The larger the value of �A. j �2, the higher
the contribution of f j to AX is. If A. j ≈ 0, then f j is an invalid
feature. Since we need to select the exact top-k features,

the number of nonzero columns of A should be exactly k,
that is, �A�0,2 = k, where k is the number of selected features.

Our general top-k FS framework is defined as follows:
min

A
f (AX), s.t. �A�0,2 = k (2)

where f (·) is the objective function. For supervised and
semisupervised FSs, f (AX) = loss(AX, Yl), where loss is
a loss function that measures the correlation between AX and
Yl , Yl is the label information of all data samples (in the
supervised case) or partial data samples (in the semisupervised
case), and 0 ≤ l ≤ N denotes the number of labeled data
samples. For unsupervised FS, f (AX) is usually designed
to maintain the intrinsic data structure, such as the manifold
structure or sparse representation. Regularization of A should
be considered to avoid a trivial solution

min
A

f (AX) + γ �A�2
F , s.t. �A�0,2 = k (3)

where � ·�F is the Frobenius norm and γ is a nonnegative
hyperparameter. Here, the matrix A has two functions: first,
it is columnwise k-sparse for selecting features; second, it uses
projection mapping to fuse the selected features. We use
Adiag(v) to separate the two functions and replace A, where
v ∈ {0, 1}D is a feature indicator vector, i.e., v j = 1 means
that the j th feature is selected; otherwise, it means that the
j th feature is unselected. The top-k FS framework using
0-1 integer programming is defined as follows:

min
A,v

f (Adiag(v)X) + γ �A�2
F

s.t. 1T
Dv = k, and v ∈ {0, 1}D (4)

where 1D is a D-dimensional vector whose elements are all 1s.
Different from (3), the matrix A in (4) works only as a
projection matrix to fuse the features, and the FS is conducted
by the vector v.

In (4), the optimization of the variable v is a 0-1 inte-
ger programming problem, which is generally challenging to
solve. We resort to an effective method, namely, the �2-box
method [54], to address this problem. The binary set {0, 1}D is
equivalently replaced by the intersection of a solid cube and
a shifted �2-sphere; the result is presented in the following
proposition.

Proposition 1 [54]: Let 1D ∈ R
D be the vector whose

entries are all 1s; therefore, we obtain

v ∈ {0, 1}D ⇔ {v : v ∈ [0, 1]D}
��

v :
����v − 1D

2

����
2

2
= D

4

�
.

Fig. 1 shows an illustrative example of Proposition 1 in 2-D
space. The discrete 2-D binary set is equivalent to the intersec-
tion of two continuous sets. Based on this proposition, the pro-
posed top-k FS framework with two continuous constraints is
defined as

min
A,v

f (Adiag(v)X) + γ �A�2
F

s.t. 1T v = k, v = v1, and v = v2,

v1 ∈ Sb and v2 ∈ Sp (5)
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Fig. 1. Illustrative example of the equivalence between the binary constraint
and the continuous constraints in 2-D space.

where the two continuous sets are Sb = {v : v ∈ [0, 1]D} and
Sp = {v : �v − (1D/2)�2

2 = (D/4)}. It is evident that the
framework formulations in (2)–(5) are essentially equivalent.
The optimization in (5) is generally nonconvex due to the
�2-sphere constraint (v = v2 and v2 ∈ Sp) and possibly the
nature of the objective function f (Adiag(v)X).

C. Optimization

Although the ADMM has been used successful for convex
(especially nonsmooth) optimization problems, there has been
growing interests in using the ADMM in nonconvex optimiza-
tion problems. Inspired by the study [54], a solution for the
FS framework using ADMM is proposed. Using the positive
parameters ρ1, ρ2, and ρ3, the augmented Lagrangian function
for (5) is defined as

L(A, v, v1, v2, η1, η2, η3)

= f (Adiag(v)X) + γ �A�2
F

+ ηT
1 (v − v1) + ηT

2 (v − v2) + η3(1T v − k)

+ ρ1

2
�v − v1�2

2 + ρ2

2
�v − v2�2

2 + ρ3

2
(1T v − k)2 (6)

where η1 ∈ R
D , η2 ∈ R

D , and η3 ∈ R are the Lagrange
multipliers for the three equality constraints. The ADMM
approach then iteratively optimizes the variables individually.
Denote by (A(t), v(t), v(t)

1 , v(t)
2 ) the variables at iterative t and

by (η
(t)
1 , η

(t)
2 , η

(t)
3 ) the Lagrange multipliers at iteration t ; the

update steps of the ADMM implementation are summarized
in Algorithm 1 and are discussed in detail.

Step 1 (Update the Projection Matrix A(t+1)): When the
other variables are fixed, the Lagrangian function (6) with
respect to A is formulated as

A(t+1) = arg min
A

�
f (Adiag(v(t))X) + γ �A�2

F

�
. (7)

It is evident that the optimization strategy is task specific
and highly dependent on the nature of f (·). When f (·) is
convex, the problem admits a global solution and can usually
be optimized efficiently.

Step 2 (Update the FS Indicator Vector v): The subproblem
with respect to variable v when the other variables are fixed

Algorithm 1 General ADMM for Top-k FS Formulation (5)
Input: Data X, label Yl (optional), ρ1 > 1, ρ2 > 1, and

ρ3 > 1, initialize the parameters and variables A(0), v(0) =
1D, v(0)

1 = 0D, v(0)
2 = 0D .

Output: Projective matrix A and vector v.
1: Construct centered data matrix X̄ = [x1 − x̄, . . . , xN − x̄],

where x̄ is the mean of x1, . . . , xN .
2: while not converge do
3: Compute A(t+1) by solving the optimization in Eq. (7).
4: Compute v(t+1) by solving the optimization in Eq. (8).
5: Compute v(t+1)

1 and v(t+1)
2 by using the projection oper-

ators shown in Eq. (10) and Eq. (12).
6: Update η

(t+1)
1 , η

(t+1)
2 , η

(t+1)
3 by Eq. (14).

7: end while

is defined as

v(t+1) = arg min
v

⎧⎨
⎩ f (A(t+1)diag(v)X) + ρ1 + ρ2

2

×
�����v − ρ1v(t)

1 + ρ2v(t)
2 − η

(t)
1 − η

(t)
2

ρ1 + ρ2

�����
2

2

+ρ3

2

�
1T v−k + η

(t)
3

ρ3

�2
⎫⎬
⎭ . (8)

This solution strategy is also dependent on the choice of f (·).
We will provide a detailed description in Section IV on the
optimization of A and v when f (·) is quadratic.

Step 3 (Update v1 and v2 Using Projective Operators): The
v1 subproblem in (6) is formulated as

v(t+1)
1 = arg min

v1∈Sb

�����v1 − v(t+1) − η
(t)
1

ρ1

�����
2

2

. (9)

Equation (9) is a convex problem with a box constraint, which
admits the following closed-form solution:

v(t+1)
1 = PSb

�
v(t+1) + η

(t)
1

ρ1

�
(10)

where PSb is the projection onto the [0, 1]D box space,
which can be presented as the elementwise operator PSb(a) =
min(1D, max(0D, a)) for any a ∈ R

D , where 0D is a
D-dimensional vector whose elements are all 0s.

The problem with respect to v2 is defined as

v(t+1)
2 = arg min

v2∈Sp

�����v2 − v(t+1) − η
(t)
2

ρ2

�����
2

2

. (11)

This problem has a convex objective function with a noncon-
vex constraint on the domain. The optimal solution is obtained
by the Euclidean projection onto the D-dimensional sphere Sp ,
that is

v(t+1)
2 = PSp

�
v(t+1) + η

(t)
2

ρ2

�
(12)
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where

PSp(a) = 1D

2
+

√
D

2

a − 1D
2

�a − 1D
2 �2

, for any a ∈ R
D. (13)

Step 4 (Update the Lagrange Multipliers η
(t+1)
1 , η

(t+1)
2 ,

and η
(t+1)
3 ): The Lagrange multipliers are updated using a

conventional gradient ascent method for the variables

η
(t+1)
1 = η

(t+1)
1 + ρ1



v(t+1) − v(t+1)

1

�
η

(t+1)
2 = η

(t+1)
2 + ρ2



v(t+1) − v(t+1)

2

�
η

(t+1)
3 = η

(t+1)
3 + ρ3



1T

D



v(t+1) − k

��
. (14)

IV. TOP-k UNSUPERVISED AND SEMISUPERVISED

FEATURE SELECTION METHODS

Without sufficient label information, the crucial issue for
unsupervised and semisupervised FS methods is data structure
learning. The relevance of the utilized data structure and the
input data features determine the importance of the features.
Many methods for capturing the data structure using the
weighted affinity graph have been proposed, such as the local
linear reconstruction coefficient-based method [55], the local
similarity-based method [56], and the sparsity-reconstruction
coefficient-based method [57]. Meanwhile, other methods for
capturing the data structure have focused on the prediction of
labels using unsupervised clustering or semisupervised clas-
sification, such as the label propagation method [58] and the
k-means method [59]. Following the structure regularized FS
study [57], we use the weighted affinity graph to determine the
soft data structure because the weights consist of real numbers,
and for label prediction, we use unsupervised/semisupervised
learning to determine the hard data structure because the
integers are used to describe the categories.

A. Learning of Soft and Hard Data Structure

1) Learning of Soft Data Structure: Many studies have
used an affinity graph method for the input data, such as the
low-rank graph [60], the constrained Laplacian graph [61],
and the manifold graph [55]. Inspired by the success of
sparse representation in unsupervised [17] and semisupervised
learning [62], we adopt the sparse coding-based graph for
soft data structure learning. The general self-expressive sparse
coding model is defined as

min
Z,E

|Z�1 + λE�E�1

s.t. X = XZ + E, diag(Z) = 0 (15)

where Z ∈ R
N×N consists of the self-expressive coefficients,

E ∈ RD×N denotes the matrix of data noise, and λE is a
tradeoff parameter. �·�1 is the �1-norm of a matrix, which is
used to ensure the sparsity of the matrix. The basic assumption
in (15) is that the data points are located in an area consisting
of the union of the subspaces, and each point can be sparsely
expressed by a linear combination of the other data points.
Once the coding Z has been determined, we can compute the
affinity matrix W = |Z| + |ZT | as the soft data structure.

2) Learning of Hard Data Structure: Once the weight
matrix W of the affinity graph has been learned, we can
apply some advanced clustering techniques, such as spectral
clustering [63] and autonomous data partitioning [64], in the
unsupervised scenario to obtain the estimated labels of the
data. In this article, we use the commonly used spectral
clustering to obtain the partition. The objective function of
spectral clustering is defined as

Y = arg min
Y∈Y

N�
i, j=1

Wi, j �yi − y j�2
2

= arg min
Y∈Y

tr(YLYT ) (16)

where tr(·) is the trace operator, Y is the one-hot coding
space, and Y = [y1, . . . , yN ] is the label matrix. The spectral
clustering method [63] finds a suboptimal solution of (16),
which first computes the smallest eigenvectors (except for the
one with eigenvalue 0) of the graph Laplacian matrix L and
then implements k-means clustering of the eigenvectors to
obtain the clustering results.

Given the partly labeled data X and Yl , a semisupervised
classification [65] can be utilized to estimate the label of the
unlabeled data. The formulation is as follows:

Yu = arg min
Yu∈Y

N�
i, j=1

Wi, j �yi − y j�2
2

= arg min
Yu∈Y

tr([Yl , Yu]L[Yl, Yu ]T ) (17)

where Yu denotes the estimated label of the unlabeled data,
L = D−W is the graph Laplacian matrix, and D is a diagonal
matrix with diagonal elements Dii = �N

j=1 Wij .
Both the given Yl and the estimated Yu of the data represent

the hard data structure Y in the semisupervised scenario.
The clustering results Y are the hard data structure in the
unsupervised scenario.

B. Data Structure for Regularized Discriminant
Feature Selection

To preserve the soft structure W and hard data structure Y,
we can evaluate the features by minimizing the difference
between the feature selected data AX and the structures. More
formally, we can minimize the following formula:

min
A,Y,W

N�
i, j=1

Wij

�
λ�

2
�Axi − Ax j�2

2 + 1 − λ�

2
�yi − y j�2

2

�

= min
A,Y,W

�W 	 ��1 (18)

where A is the projection matrix, 	 is the Hadamard product,
and

�i j = λ�

2
�Axi − Ax j�2

2 + 1 − λ�

2
�yi − y j�2

2 (19)

with λ� ∈ (0, 1) is a balancing parameter. Since W = |Z| +
|ZT |, (18) can be equivalently rewritten as minA,Y,Z �Z	��1.

To preserve the hard structure Y, we also use linear dis-
criminant analysis (LDA) [66], which is a popular supervised
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feature extraction method. It seeks the directions in which the
data points of the same classes are close and the data points
from different classes are far away from each other. Given the
label of the data, the objective function for feature selecting
LDA is

min
A

tr(ASwAT )

tr(ASbAT )
. (20)

Sw and Sb are the within-class scatter and between-class
scatter matrices, respectively. In this analysis, the constraint
�A�0,2 = k applies to the top-k FS.

C. Unsupervised and Semisupervised FS Algorithms

We combine the equations for learning the soft data struc-
ture [see (15)], hard data structure [see (16) or (17)], and the
regularized discriminant FS terms [see (18) and (20)] to obtain
the overall objective function

min
Z,E,Y,A

�Z�1 + λE�E�1 + λZ �Z 	 ��1

+ tr(ASwAT )

tr(ASbAT )
+ λA�A�2

F

s.t. X = XZ + E, diag(Z) = 0, and �A�0,2 = k (21)

where the Frobenius norm on A is used to avoid the overfitting,
� is defined in (19), and λE , λZ , and λA are nonnegative para-
meters. Instead of directly solving the �0,2-norm constrained
problem, as we discussed in Section III-B, we introduce a
feature indicator vector v ∈ {0, 1}D , where vi = 1 indicates
that the i th feature should be selected. We transform the
objective function into an equivalent �0-norm constrained
problem as follows:

min
Z,E,Y,A,v

�Z�1 + λE�E�1 + λZ �Z 	 ��1

+ tr(Adiag(v)Swdiag(v)AT )

tr(Adiag(v)Sbdiag(v)AT )
+ λA�A�2

F

s.t. X = XZ + E, diag(Z) = 0, 1T
Dv = k

and v ∈ {0, 1}D (22)

where 1T
Dv = k, v ∈ {0, 1}D means �v�0 = k, and there are k

1s in v, i.e., we select the exact k features. Here

�i j = λ�

2
�Adiag(v)xi − Adiag(v)x j�2

2

+1 − λ�

2
�yi − y j�2

2. (23)

Once let Â = Adiag(v), we can see that (21) and (22) are
essentially equivalent.

The binary constraint v ∈ {0, 1}D can be replaced with an
equivalent set of continuous constraint, i.e., the intersection
of a box and a shifted �2-sphere. Based on the discussion in
Section III, we can rewrite (22) as follows:

min
Z,E,Y,A,v,v1,v2

�Z�1 + λE�E�1 + λZ �Z 	 ��1

+ tr(Adiag(v)Swdiag(v)AT )

tr(Adiag(v)Sbdiag(v)AT )
+ λA�A�2

F

s.t. X = XZ + E, diag(Z) = 0, 1T
Dv = k

v = v1, v = v2, v1 ∈ Sb, v2 ∈ Sp (24)

Algorithm 2 ADMM for Solving (29)
Input: Data matrix X, label matrix Y, Laplacian matrix L,

parameters λθ , λZ and λA .
Output: Projection matrix A and vector v.
1: Initialize v1 = v2 = 0D , ρ = 1, and μ = 1.05.
2: Construct centered data matrix X̄.
3: while not converge do
4: Step 1: Compute A by Eq. (31).
5: Step 2: Compute v by Eq. (32).
6: Step 3: Compute v1 and v2 by Eq. (33).
7: Step 4: Update y1, y2, y3 and ρ by Eq. (34).
8: end while

Algorithm 3 Top-k Unsupervised and Semisupervised FSs
Input: Data matrix X, Yl (semi-supervised scenario) parame-

ters k, the numbers of iteration T , λE , λZ , λθ and λA .
Output: Feature selection vector v.
1: Initialize A as a random matrix and v = 1D .
2: for i = 1, 2, . . . , T do
3: Sub-problem 1: Compute E and Z by the Algorithm 1 in

[57].
4: Sub-problem 2: Implement spectral clustering on W to

obtain the clustering labels in the unsupervised scenario,
or implement semi-supervised classification with W and
Yl in the semi-supervised learning scenario.

5: Sub-problem 3: Compute A, v, v1, v2 by the Algo-
rithm 2.

6: end for

TABLE I

DESCRIPTION OF THE DATA SETS

where � is defined in (23), the two sets Sb and Sp are
defined as Sb = {v : v ∈ [0, 1]D} and Sp = {v : �v −
(1D/2)�2

2 = (D/4)}. In (24), the two continuous constraints
in Proposition 1 are separated by the two additional variables
v1 and v2. If no data labels are provided, the problem is
an unsupervised FS problem; if partial data labels are given,
the problem is a semisupervised FS problem.

However, this problem cannot be optimized directly to
obtain a global solution for the following reasons: 1) the
objective function is nonconvex with respect to the variables A
and Y; 2) the domains of the variables Y and v2 are non-
convex; and 3) the variables are interrelated and have no
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TABLE II

1-NN RESULTS ON ALL THE DATA SETS FOR UNSUPERVISED METHODS

closed-form solutions. Therefore, we decompose this problem
into several interrelated subproblems. Each subproblem is
convex and can be solved.
D. Optimization

In this section, an effective solution to (24) is proposed
by decomposing the problem into several subproblems. The
subproblems are optimized sequentially and iteratively, as will
be described in the following. Because A and v occur in the
numerator, denominator, and the summed terms, it is difficult
to optimize the problem directly. In this study, we use the
spectral regression method [67] to transform (20) into an
equivalent regression form for an easier solution.

Let X̄ = [x1 − x̄, . . . , xN − x̄] be the centered data matrix.
The between-class scatter matrix Sb is rewritten as

Sb = X̄W̄X̄T (25)

where W̄i j = 1/N if xi and x j belong to the same cluster and
0 otherwise. The following theorem is obtained:

Theorem 1 [57]: Let T ∈ R
C×N be a matrix in which each

row vector is an eigenvector of the eigenproblem W̄t = λt.
If there exists a matrix A ∈ R

C×D where AX̄ = T, then
each row vector of T is an eigenvector of the generalized
eigenproblem X̄W̄X̄T α = λX̄X̄T α (i.e., the eigenproblem for
LDA) with the same eigenvalue λ.

Theorem 1 indicates that under mild conditions, the LDA
term in (20) is equivalent to the regression formulation
minA �AX̄−T�2

F , where the row vectors in T are eigenvectors

of W̄. One advantage of this transformation is that we do
not need to really solve the eigenproblem to obtain T. The
C +1 eigenvectors of W̄ are given as {1}∪{wc}C

c=1 ⊂ {0, 1}N ,
where the j th entry of wc is 1 if and only if x j is in class c.
Subsequently, we obtain the C useful orthogonal eigenvectors
{tc}C

c=1 by implementing the Gram–Schmidt orthogonalization
algorithm on {1} ∪ {wc}C

c=1. We rewrite (24) as

min
Z,E,Y,A,v,v1,v2

�Z�1 + λE�E�1 + λZ �Z 	 ��1

+ �Adiag(v)X̄ − T�2
F + λA�A�2

F

s.t. X = XZ + E, diag(Z) = 0, 1T
Dv = k

v = v1, v = v2, v1 ∈ Sb, v2 ∈ Sp . (26)

We initialize variables A and Yu as zero matrices, and
v = 1D .

Subproblem 1 (Given A and v, Optimize the Variables Z
and E): The problem defined in (26) with respect to Z and E
is transformed into the following structured sparse problem:

min
Z,E

�Z�1 + λE�E�1 + λZ�Z 	 ��1

s.t. X = XZ + E, diag(Z) = 0. (27)

To optimize (27), we introduce an auxiliary variable Q and
optimize the following equivalent problem:

min
Z,E,Q

�Z�1 + λE�E�1 + λZ �Z 	 ��1

s.t. X = XQ + E, Q = Z − diag(Z) (28)
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TABLE III

ARI RESULTS ON ALL THE DATA SETS FOR UNSUPERVISED METHODS

which can be effectively solved, as described in [57] and
presented in the supplemental material. Subsequently, the soft
data structure W = |Z| + |ZT | is also updated.

Subproblem 2 (Unsupervised or Semisupervised Learning
Based on W): In the unsupervised scenario, spectral clustering
[63] is implemented on W to obtain the clustering result Y.
In the semisupervised scenario, semisupervised classification
is implemented to obtain Yu whose details are also presented
in the supplemental material. The combination of Yl and Yu

represents the hard data structure Y.
Subproblem 3 (Optimize the Variables A, v, v1, and v2 When

the Other Variables Are Fixed): After obtaining the soft and
hard data structures, we rewrite the subproblem with respect
to A, v, v1, and v2 as follows:

min
A,v,v1,v2

�Adiag(v)X̄ − T�2
F + λA�A�2

F

+ λZ tr(Adiag(v)XLXT diag(v)AT )

s.t. 1T
Dv = k, v = v1, v = v2

v1 ∈ Sb, v2 ∈ Sp (29)

where L = D − W is the graph Laplacian matrix
and D is a diagonal matrix with the diagonal elements
Dii = �N

j=1 Wij .
Then, we optimize (29) for A, v, v1, and v2 using the

ADMM. By introducing the Lagrange multipliers y1, y2,

and y3, we obtain the following augmented Lagrange function
of (29):

L2 = �Adiag(v)X̄ − T�2
F + λA�A�2

F

+ λZ tr(Adiag(v)XLXT diag(v)AT ) + yT
1 (v − v1)

+ yT
2 (v − v2) + y3(1T

Dv − k)

+ ρ

2


�v − v1�2
2 + �v − v2�2

2 + 

1T

Dv − k
�2�

(30)

where ρ > 0 is an adaptive parameter.
Step 1: We set the partial derivative of (30) with respect to

A to zero and obtain its closed-form solution

A = TX̄T diag(v)(diag(v)(X̄X̄T +λZ XLXT )diag(v) + λAI)−1

(31)

where I denotes the identity matrix.
Step 2: When optimizing v, since it is an unconstraint

quadratic optimization problem, we can also set the partial
derivative of L2 with respect to v to zero and obtain its
closed-form solution

v = 

2(AT A) 	 (X̄X̄ + λZ XLXT ) + ρ



2I + 1D1T

D

��−1

· (2diag(X̄TT A) − y1 − y2 + ρ(v1 + v2)

+ (y3 − ρk)1D). (32)
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TABLE IV

NMI RESULTS ON ALL THE DATA SETS FOR UNSUPERVISED METHODS

Step 3: We update v1 and v2 by projecting v into Sb and Sp .
They are updated as follows:⎧⎪⎪⎨

⎪⎪⎩
v1 = PSb

�
v + y1

ρ

�

v2 = PSp

�
v + y2

ρ

� (33)

where the definitions of the projection operators PSb and PSp

are given in Section III-C.
Step 4: We update the Lagrange multipliers and step size ρ

as follows: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 = y1 + ρ(v − v1)

y2 = y2 + ρ(v − v2)

y3 = y3 + ρ


1T

Dv − k
�

ρ = αρ

(34)

where α > 1 is a given parameter.
The updates for the details of the ADMM implementation

for (29) are summarized in Algorithm 2.
To sum up, the whole algorithms for the proposed top-

k unsupervised and semisupervised FSs are summarized in
Algorithm 3.

E. Time Complexity Analysis

In Algorithm 3, the three subproblems are optimized itera-
tively for T times. Subproblem 1 is a structure regularized

sparse representation problem, and it can be solved by an
ADMM procedure. The most expensive step in this ADMM
procedure is computing the inverse of an n×n matrix that costs
O(N3) time. Therefore, the total complexity of this procedure
is O(K1 N3), where K1 is the number of iterations in the
corresponding ADMM procedure. For Subproblem 2, spectral
clustering consumes O(N2c) computational time, where c
is the number of clusters and the semisupervised learning
algorithm consumes O((N−l)2) computational time where l is
the number of labeled instances. For Subproblem 3, we assume
that the steps 1-4 are repeated K2 times until convergence.
The major computations of Subproblem 3 come from steps
1 and 2 in (31) and (32), where the inversions of matrices of
size D × D are involved. Therefore, the major computational
time of Subproblem 3 scales to O(K2 D3). In summary,
the computation time of the proposed algorithm scales to
O(T (K1 N3 + K2 D3)). Note that the time complexity is
comparable with some other subspace-based FS methods, such
as in [68]. In the future, we will further study how to reduce
the computation complexity of the proposed method.

V. EXPERIMENTS

In this section, experiments are conducted to compare the
results of the proposed methods with those of several state-
of-the-art unsupervised and semisupervised FS methods on
benchmark data sets.
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Fig. 2. 1-NN results of unsupervised methods with different numbers of features. (a) Banc. (b) Coil20. (c) Isolet. (d) MSRA. (e) ORL. (f) TOX. (g) WarpPIE.
(h) Xm2v. (i) Yale. (j) YaleB. (k) Legends.

Fig. 3. ARI results of unsupervised methods with different numbers of features. (a) Banc. (b) Coil20. (c) Isolet. (d) MSRA. (e) ORL. (f) TOX. (g) WarpPIE.
(h) Xm2v. (i) Yale. (j) YaleB. (k) Legends.

A. Data Sets

We use ten data sets, including Banc,1 Coil20,2 Isolet,2

ORL,2 TOX,1 WarpPIE,1 Xm2v,1 Yale,2 and YaleB.2 The
details of the data sets are summarized in Table I.

1http://www.escience.cn/people/fpnie/papers.html
2http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

B. Experiments on Unsupervised Learning

In this section, we present the setup and results of the
unsupervised learning experiments.

1) Experimental Setup: We compare the unsupervised ver-
sion of the proposed method with the following unsupervised
FS methods.
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Fig. 4. NMI results of unsupervised methods with different numbers of features. (a) Banc. (b) Coil20. (c) Isolet. (d) MSRA. (e) ORL. (f) TOX. (g) WarpPIE.
(h) Xm2v. (i) Yale. (j) YaleB. (k) Legends.

TABLE V

1-NN RESULTS ON ALL THE DATA SETS FOR SEMISUPERVISED METHODS

1) AllFea: It uses all features for learning.
2) PCA [69]: It is the principal component analysis.
3) Lap [56]: It sorts all features by their Laplacian score.
4) MCFS [70]: It is an FS method for multiclass data.
5) UDFS [26]: It applies the �1,2-norm to select features.
6) SPFS [71]: It selects features to preserve the similarity.
7) JELSR [72]: It jointly selects features and learns the

embeddings.
8) RUFS [73]: It is a robust FS method.

9) TRACK [74]: It is a k-means-based FS method.
10) SEFS21 [14]: It selects features for data reconstruction.
11) SCUFS [68]: It selects features by applying subspace

clustering.
12) URAFS [32]: It is a generalized uncorrelated regression

with an adaptive graph for FS.
After FS, we evaluate the performance in classifica-

tion and clustering. For the classification experiments,
we choose the 1-nearest neighbor (1-NN) classifier because
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Fig. 5. 1-NN results of semisupervised methods with different numbers of features. (a) Banc. (b) Coil20. (c) Isolet. (d) MSRA. (e) ORL. (f) TOX.
(g) WarpPIE. (h) Xm2v. (i) Yale. (j) YaleB. (k) Legends.

it is parameter-free and the results are easily reproducible.
The average classification accuracy is determined by tenfold
cross validation, i.e., we use 90% instances as a training set
and the remaining 10% as a testing set, and we repeat it
ten times. For the clustering experiments, we use k-means
clustering and evaluate the performance using the adjusted
rand index (ARI) [75] and normalized mutual information
(NMI) [75]. Since the optimal number of selected features
is unknown in advance, we report the average results and
standard deviation for different numbers of selected features
(in the range {5, 10, . . . , 50}). Moreover, we also report the
average results and standard deviation over the range of the
selected features. We use the fixed values λE = 10, λZ = 0.05,
and λA = 0.01 to ensure reproducibility. For the compared
methods, we tune the parameters as suggested in the cited
literature.

2) Experimental Results: Tables II–IV show the 1-NN, ARI,
and NMI results, respectively. The results indicate that, for
most data sets, the proposed method outperforms the state-of-
the-art unsupervised FS methods for all evaluation indices.
This demonstrates the effectiveness and superiority of the
proposed method.

The details of 1-NN, ARI, and NMI results on each data
set with different numbers of features are shown in Figs. 2–4.
As can be seen, in most cases and for most data sets, the pro-
posed method outperforms the other methods. On some data
sets, such as ORL and Yale, our method performs better for all

numbers of features. Moreover, our method often performs as
well as or better than AllFea. The results demonstrate that the
proposed method not only significantly reduces the number
of features used for learning but also often ensures or even
improves learning performance.

C. Experiments on Semisupervised Learning

In this section, we evaluate the performances of the semi-
supervised version of our method and several state-of-the-art
semisupervised FS methods.

1) Experimental Setup: We compare the semisupervised
version of our method with the following semisupervised FS
methods.

1) AllFea: It uses all features for learning.
2) SemiMCFS [70]: It is a semisupervised version of

MCFS.
3) SFSS [76]: It jointly selects features and learns the

manifold.
4) TRCFS [77]: It is an FS method with a noise insensitive

trace ratio criterion.
5) CSFS [39]: It formulates the FS in a convex formulation.
6) LSDF [78]: It is a locally sensitive semisupervised FS

method.

In each data set and each class, we randomly select three
instances as labeled data, and the remaining are unlabeled
data. We repeat this ten times and report the average and
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Fig. 6. Performance variation of our method on Isolet and MSRA with respect to different values of λA and λZ (number of features = 50). (a) 1-NN on
Isolet. (b) ARI on Isolet. (c) NMI on Isolet. (d) 1-NN on MSRA. (e) ARI on MSRA. (f) NMI on MSRA.

standard deviation. After FS, we use the 1-NN classifier to
classify the unlabeled data. Similar to the setting of the unsu-
pervised learning experiment, we report the results for differ-
ent numbers of selected features (in the range {5, 10, . . . , 50}).
We fix λE = 10, λZ = 0.05, λA = 0.01, and λ� = 0.95. For
the other methods, we tune the parameters as suggested in the
cited literature.

2) Experimental Results: Table V shows the 1-NN accuracy
results of the proposed method and the other semisuper-
vised methods. The proposed method outperforms the other
semisupervised FS methods. Similar to the experiments on
unsupervised learning, we also show the 1-NN results of each
data set for different numbers of features in Fig. 5. For many
data sets, such as WarpPIE and Yale, our method outperforms
AllFea by only selecting a few features, which demonstrates
the effectiveness of the proposed method. In addition, our
method performs better than the other methods in most cases
on all data sets.

D. Parameter Study

The two key parameters λZ and λE are used in the pro-
posed framework. We tune these parameters in the range
{0.01, 0.05, 0.1, 0.5, 1} and show the results of the unsuper-
vised version on the Isolet and MSRA data sets in Fig. 6. The
results for the other data sets and those of the semisupervised
learning version are similar. It is demonstrated that the perfor-
mance of the proposed method is stable across a wide range
of parameters.

VI. CONCLUSION

In this article, we proposed a novel exact top-k FS frame-
work and applied it to the unsupervised and semisupervised

learning scenarios. We directly used the �0-norm to select
features and transformed the original integer programming
problem into an optimization problem with two continuous
constraints. We captured the soft and hard structures of the
data and selected the features that preserved both structures.
The extensive experiments showed that the proposed methods
outperformed state-of-the-art methods for both unsupervised
and semisupervised tasks on benchmark data sets, which
demonstrated the effectiveness and superiority of the proposed
framework.
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