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Clustering Ensemble via Diffusion on
Adaptive Multiplex

Peng Zhou , Member, IEEE, Boao Hu , Dengcheng Yan , and Liang Du

Abstract—Existing clustering ensemble methods often directly
integrate multiple weak base results to obtain a consensus one
which can improve the clustering performance. However, since
the base results are weak and the clustering ensemble can im-
prove the performance, why not refine the weak base results via
the clustering ensemble, and then boost the clustering ensemble
with the refined base results? To fulfill this idea, in this article,
we propose a novel clustering ensemble method with an adaptive
multiplex. We first use the multiplex to represent the multiple weak
base results. Then, we learn an updated representation by diffusing
the representation on the multiplex with a manifold ranking model.
Since the multiplex characterizes the structure information of all
base results, the learned representation can ensemble such struc-
ture information during diffusion. Next, the multiplex is refined by
such representation, which is a process of refining base results via
ensemble. We iteratively learn the representation (i.e., do ensemble)
and update the multiplex (i.e., do refinement), which can make the
ensemble and refinement be boosted by each other. At last, the final
consensus result is obtained from the refined multiplex. The exten-
sive experiments demonstrate the effectiveness and superiority of
the proposed framework.

Index Terms—Clustering ensemble, multiplex, multiplex
diffusion.

I. INTRODUCTION

C LUSTERING ensemble has attracted much attention since
it can provide a more stable and robust clustering result

than the conventional single clustering methods [1], [2]. The
setting of clustering ensemble is that it takes multiple weak base
clustering results without any original features of data as inputs
and applies consensus learning to aggregate the multiple weak
base results to a consensus one which often achieves a better
clustering performance. Since it does not access the original
data, it can protect the privacy of data to some extent, which is
also one advantage of the clustering ensemble.
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Existing works of clustering ensemble often focus on how
to learn a consensus result by integrating the information in all
base results. For example, Huang et al. applied factor graph
to aggregate base results [3]; Li et al. aligned the label in-
formation of base results based on Dempster-Shafer evidence
theory to obtain the consensus result [4]; Zhou et al. constructed
a dynamical hypergraph for the ensemble [5]. Among these
methods, one kind of widely studied method is the multiple
graph based method [6], [7], [8], [9], [10], [11]. These methods
first construct multiple graphs from base results, where one
graph corresponds to one base result. In the graph, each vertex
represents an instance, and if two instances belong to the same
cluster, there is an edge between them in the graph. Then these
methods integrate these multiple graphs into a consensus graph
and obtain the final clustering result from the consensus graph.

Although these multiple graph based methods have demon-
strated promising performance, since the multiple graphs are
constructed from weak base results directly and never updated,
they are still unreliable and may deteriorate the ensemble learn-
ing. To see this, let us take a closer look at the base graphs.
According to the construction of the base graphs, we find that
each base graph has a special structure, i.e., it consists of multiple
cliques, where each clique represents a cluster. Notice that a
clique is a complete subgraph, where each instance is linked to all
other instances in the same clique. For example, considering any
two instances xi and xj in one clique, given any other instance
xk, according to the definition of the complete subgraph, either
xk links to both xi and xj or xk links to neither of them. It
means that xi and xj link to the same instances in the graph, and
thus xi and xj are indistinguishable in the graph. Therefore, if
we do not access the original features of instances, all instances
in one clique are indistinguishable. However, in a real cluster,
different instances in a cluster should have different roles and
should be treated differently. For example, some instances in
the center of the cluster are more reliable and thus can be easily
clustered; but some data which stay in the boundary of a cluster
are unreliable and should be handled carefully because they may
be mis-clustered. The base graphs constructed from the base
results do not contain such information.

Therefore, if the ensemble can improve the clustering per-
formance, why not refine the base graphs via the ensemble and
then apply the refined base graphs to boost the ensemble in
turn? To this end, in this article, instead of focusing on how to
ensemble the fixed pre-defined unreliable base graphs, we try
to answer an alternative question which is how to refine the
base graphs with the ensemble. Intuitively, given multiple base
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Fig. 1. Simple example of base clustering results and the corresponding
multiplex graph. There are five instances x1, . . . , x5, and we generate three
base clustering results C1, C2, C3. The left side shows the three base clustering
results. πi is a cluster in a base clustering. For example, x1, x2, and x3 belong
to cluster π1 in the first base clustering C1. The right side shows its multiplex
graph, where each layer indicates a base clustering Cp (p = 1, 2, 3).

results, refining is possible because we can find which data in
a base result are unreliable and can further correct them. For
example, we generate 10 base results with a single clustering
method. Considering data xi and xj , in the first base result, xi

and xj belong to different clusters, i.e., there is no edge between
xi and xj in the first graph. However, the other nine base results
all agree that xi and xj should belong to the same cluster, i.e.,
there is an edge betweenxi andxj in the other nine graphs. In this
case, with a high probability, we can say that the relationship of
xi and xj in the first base result is unreliable, and we can correct
it by adding a weighted edge betweenxi andxj in the first graph.
That is a basic idea to refine the base results.

To fulfill this, we propose a novel Clustering Ensemble with
Adaptive Multiplex (CEAM) method. The key idea is that we
construct initial multiple base graphs as other clustering en-
semble methods did, but before ensembling them directly, we
refine them by fully considering the connection of data inter- and
intra- multiple graphs. Notice that, given any two base graphs,
their vertices have a one-to-one correspondence. Therefore, to
better propagate information from one base graph to other base
graphs, we apply the multiplex graph to represent the multiple
base graphs. A multiplex graph1 [12] is a multi-layer graph,
where each layer is a traditional graph, and the vertex set of all
layers is the same. The only inter-layer connections are the edges
which link a vertex and all its counterpart vertices in all other
layers. Fig. 1 shows a simple example of 3 base clustering results
and their corresponding multiplex graph. The left side of Fig. 1
shows the 3 base clustering results (i.e., C1, . . . , C3) containing
5 instances (x1, . . . , x5). For example, in the first base result,
instances x1, x2, and x3 belong to cluster π1, and the other two
instances belong to cluster π2. The right side shows the corre-
sponding multiplex. Since there are 3 base results, the multiplex
contains 3 layers where each layer is a base graph constructed
from a base result. The connections of data intra-graph mean
the edges in one layer of the multiplex, which are denoted by
solid lines in Fig. 1, and the connections of data inter-graph
mean the edges link two instances which belong to different
layers, which are denoted by the dotted lines in Fig. 1. Therefore,

1In [12] and some other literature, it is often called a multiplex network.
However, in the machine learning domain, to avoid confusion with the widely-
known neural network, we call it a multiplex graph.

multiplex can well characterize the connections of data inter- and
intra- graphs. Moreover, the node set in different layers of the
multiplex is all the same. xi (i = 1, 2, . . . , 5) in the p-th layer
(p = 1, 2, 3) corresponds to xi in the q-th layer (q = 1, 2, 3 and
q �= p) because there is an inter-layer edge between xi in the
p-th layer and xi in the q-th layer. It characterizes the one-to-one
correspondence in base clustering results.

As discussed before, since the base results are weak, the
pre-defined multiplex is also unreliable and may mislead the
clustering ensemble. To address this issue, in this article, we
refine the multiplex via ensemble. In more detail, after con-
structing the initial multiplex graph, we adaptively refine such
multiplex by learning a representation of the data via ensemble.
Since we do not access the original features of the data, we
can only obtain an initial representation of each instance by
its cluster indicator, which is also indistinguishable from the
data in the same cluster. To tackle this problem, we refine
such representations by diffusing them on the whole multiplex,
which can ensemble the structure information under multiple
base results. After that, we update the multiplex with the refined
representation. We iteratively update the representation (i.e., do
ensemble) and the multiplex (i.e., do refinement), so that they can
be boosted by each other. At last, we obtain the final clustering
result from the refined multiplex. Notice that the proposed
mechanism can be plugged into any off-the-shelf multiple graph
based clustering ensemble methods, such as [7], [10], [13]. In
this article, since our motivation is to show the importance of
base refinement, we use the most straightforward and simplest
way to do the ensemble, i.e., we directly average the multiple
layers in the final multiplex and run spectral clustering on that
averaged graph. The extensive experimental results show that,
even though we use this most straightforward way to generate
the consensus result, it can still outperform most state-of-the-art
ensemble methods, which well demonstrates the effectiveness
of our base refinement.

The main contributions of this article are summarized as
follows:
� We provide an alternative idea for clustering ensemble,

i.e., apply the ensemble to refine the base results and in
turn boost the ensemble by the refined base results.

� We propose a novel clustering ensemble method with an
adaptive multiplex. To the best of our knowledge, this is
the first work to do clustering ensemble on a dynamic
multiplex.

� The extensive experiments show the effectiveness and su-
periority of the proposed method.

II. RELATED WORK AND PRELIMINARIES

In this section, we introduce some related work of clustering
ensemble and preliminaries of the multiplex graph.

A. Clustering Ensemble

Clustering ensemble is first proposed in [1] to integrate mul-
tiple weak base clustering results to obtain a strong consensus
one. The benefits of clustering ensemble are mainly twofold.
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First, it can improve the robustness and stableness of the sin-
gle clustering methods and thus further improve the clustering
performance [2]. Second, since clustering ensemble does not
access the original features of data, it can be easily used in many
scenarios, such as the scenario of distributed data, and can also
protect the privacy of data to some extent [14].

Conventional works often focus on proposing new ensemble
methods. For example, some methods construct new represen-
tations for data based on the cluster indicators of each data and
do the ensemble by the clustering on the categorical data [15],
[16], [17]. Topchy et al. applied an expectation maximization
clustering method on the categorical data for ensemble [15];
Bai et al. proposed an information theoretical based ensemble
method [17].

Some methods applied label alignment methods for the en-
semble. For example, Zhou et al. aligned the cluster indicators
of multiple base kmeans results for ensemble [18]; Hore et al.
proposed a scalable relabel method for the ensemble on Big
Data [19].

Among these ensemble methods, one kind of the most popular
methods is the multiple graph based method. These methods
construct a graph for each base result and ensemble the base
results by fusing the multiple graphs. For example, Iam-on et
al. constructed a similarity metric based on the edges of graphs
and did the ensemble with such similarity [13], [20]; Zhou et
al. constructed multiple graphs from base results and proposed
robust multiple graph learning methods to do the ensemble [10],
[21], [22]; Zhou et al. constructed bipartite graphs from base
results for ensemble and obtain the final consensus result by the
partition of the bipartite graphs [23], [24]; Tao et al. proposed
an adversarial learning method on the graphs for clustering
ensemble [9]. Some methods integrate the multiple graphs to
construct a co-association matrix and do the ensemble on that
co-association matrix. For example, Tao et al. proposed a robust
spectral clustering method on the co-association matrix [7],
[8], [25]; Huang et al. designed a scalable spectral clustering
ensemble method on the co-association matrix [26].

In this article, we also focus on the multiple graph based clus-
tering ensemble methods. Notice that all the above-mentioned
methods, including the multiple graph based methods, focus on
how to do the ensemble but ignore the base results refinement.
Our method provides another way for improving the clustering
performance, which means instead of proposing a sophisticated
ensemble method, we refine the base results with the ensemble
and can easily obtain a comparable or even better clustering
result with even the simplest ensemble method.

B. Multiplex Graph

A multiplex graph is a kind of graph with multiple layers,
whose definition is shown as follows:

Definition 1: (Multiplex graph) [12] A multiplex graph or
multiplex network G = {V, E1, . . . , Em, Ê} is a multi-layer
graph with m layers G1, . . . ,Gm, where each layer is an undi-
rected graph Gk = {V, Ek}. V = {x1, . . . , xn} is a vertex set
which contains n vertices, and Ek is the intra-layer edge set
of the k-th layer, where if xi and xj are linked in the k-th

layer, (xi, xj) ∈ Ek. Besides, for any vertex xi ∈ V , denoting
xp
i and xq

i (p �= q) as the vertices of xi in the p-th and q-th layer
respectively, we have (xp

i , x
q
i ) ∈ Ê where Ê is the edge set which

contains the inter-layer edges.
Fig. 1 shows an example of a multiplex graph, where V =

{x1, . . . , x5}, and E1, . . . , E3 contains all the edges denoted by
the solid lines which are the intra-layer edges, and Ê contains
the edges denoted by the dashed lines which are the inter-layer
edges. To show the dynamics of the multiplex, we introduce the
projection graph of a multiplex:

Definition 2: (Projection graph) [12] Given a multi-
plex G = {V = {x1, . . . , xn}, E1, . . . , Em, Ê} which contains
m layers where each layer contains n vertices, its pro-
jection graph is a graph G̃ = {Ṽ, Ẽ}. Ṽ = {x1

1, . . . , x
1
n,

x2
1, . . . , x

2
n, . . . , x

m
1 , . . . , xm

n }, where xk
i denotes the vertex of

xi in the k-th layer. Ẽ contains all inter-layer and intra-layer
edges in G, i.e.,

Ẽ = (∪m
k=1Ek) ∪ Ê . (1)

In this article, we will use the weighted multiplex, and thus we
need to construct the weighted adjacency matrix of the projection
graph. Given the k-th layer Gk of a multiplex, we define W(k) ∈
[0, 1]n×n as its adjacency matrix, i.e., if (xi, xj) ∈ Ek, then the

weight of this edge is W
(k)
ij ; and if (xi, xj) /∈ Ek, the weight

is 0. Then, we consider the weights of inter-layer edges. For
simplicity, in this article, we fix the weights of all inter-layer
edges as 1, i.e., the weights of (xp

i , x
q
i ) (p �= q) are all 1’s, and

the weights of (xp
i , x

q
j) (i �= j) are all 0’s. To sum up, we can

define the adjacency matrix of the projection graph of a multiplex
W ∈ Rmn×mn as:

W =

⎡
⎢⎢⎢⎣

W(1) In · · · In
In W(2) · · · In
...

...
. . .

...
In In · · · W(m)

⎤
⎥⎥⎥⎦ , (2)

where In ∈ Rn×n is an Identity matrix, which characterizes the
weights of the inter-layer edges. In this article, we will adaptively
refine this multiplex structure for the clustering ensemble task.

Multiplex has been applied in many tasks, such as community
detection [27], [28], social network analysis [29], [30], and
bioinformatics [31]. Among them, few works applied multiplex
for clustering ensemble [32], [33]. For example, Rastin et al.
applied the multiplex to clustering ensemble selection prob-
lem [32]. They used multiplex to select the informative base
clusterings for the ensemble. Lyu et al. proposed an evolution-
ary clustering ensemble method with the multiplex graph and
applied this method to the community detection task [33]. Notice
that they both pre-defined a fixed multiplex and used some par-
tition methods to obtain the final results on the fixed multiplex.
As discussed before, since the base results are unreliable, the
multiplex constructed from these unreliable base results is also
unreliable. In this article, we adaptively update the multiplex
with the ensemble to address this problem.
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III. CLUSTERING ENSEMBLE WITH ADAPTIVE MULTIPLEX

In this section, we will introduce our CEAM in more detail.
First, we introduce some notations. We use the bold uppercase
letter to denote the matrix and the bold lowercase letter to denote
the vector. Given a matrixM, we denoteMi. andM.i as the i-th
row and i-th column of matrix M, respectively. Mij denotes the
(i, j)-th element in matrix M.

A. Initial Representation and Multiplex Construction

Given m base clustering results C1, . . . , Cm with n instances,
clustering ensemble wishes to learn a consensus clustering result
C∗ from C1, . . . , Cm without accessing the original features of
data. To achieve this, we first construct an initial represen-
tation of each data and an initial multiplex. Given the p-th
base result Cp, we first construct the p-th representation matrix
Y(p) ∈ {0, 1}n×cp , where cp is the number of clusters in the p-th
base result. Ifxi belongs to the q-th cluster in the p-th result, then
Y

(p)
iq = 1 and otherwise Y

(p)
iq = 0. Then, denote c =

∑m
k=1 ck,

which is the total number of clusters in all base results. We
concatenate Y(p)’s to obtain the representation of all instances
as Y′ = [Y(1),Y(2), . . . ,Y(m)] ∈ Rn×c.

Then, for the k-th base result, we construct an initial base
graph G(k) whose adjacency matrix is W(k) = Y(k)Y(k)T . We
stackG(1), . . . ,G(m) into an initial multiplexG whose projection
graph has the adjacency matrix with W ∈ Rmn×mn which is
defined as (2). Notice that the multiplex G has m layers and the
k-th layer represents the base graph constructed by the k-th base
result Y(k).

Since the projection matrix of the multiplexG containsm× n
vertices, we need to extend the instance set to match the vertices
in the graph. We define the extended instance set as X̃ =
{x1

1, . . . , x
1
n, x

2
1, . . . , x

2
n, . . . , x

m
1 , . . . , xm

n }, where xp
i denotes

the instance xi in the p-th base result. Since x1
i , x

2
i , . . . , x

m
i

represent exactly the same instance (i.e., xi) in the base results,
there are inter-layer edges between any two instances xp

i and xq
i

in the multiplex. We can similarly extend Y′ by replicating it
m times to obtain the representation matrix Y ∈ {0, 1}mn×c of
the extended instance set X̃ :

Y =

⎡
⎢⎢⎢⎢⎣

Y(1) Y(2) · · · Y(m)

Y(1) Y(2) · · · Y(m)

...
...

. . .
...

Y(1) Y(2) · · · Y(m)

⎤
⎥⎥⎥⎥⎦. (3)

Each column of matrix Y is the representation of a cluster in all
base results w.r.t. all extended instances, and each row of matrix
Y is the representation of an instance in the extended set X̃
w.r.t. all clusters. Fig. 2 gives an example of an initial multiplex
and the initial extended representation of the 3 base clustering
results shown in Fig. 1.

Notice that, in the initial multiplex G, since each cluster in
a base result forms a complete subgraph, two instances in the
same cluster in a base result are indistinguishable. To address
this issue, we need to adaptively update G and Y to enrich their
information. We denoteF ∈ Rmn×c andG′ as the representation
matrix and the multiplex we wish to learn, respectively. We

Fig. 2. Example of the representation matrix Y and the adjacency matrix
of the multiplex W. The three base clustering results are denoted by red,
green, and blue font, respectively. In the representation matrix Y, each row
denotes a representation of an instance in one layer and each column denotes a
representation of a cluster.

initialize G′ = G and F = Y first and update F and G′ jointly.
Therefore, our schema is an iterative framework. Fig. 3 shows
an example of the process in one iteration to handle the first base
result. Suppose we needT epochs for updating. In the t-th epoch,
we update the representation and the base graph corresponding
to each base result in turn, i.e., we update F.1, . . . ,F.c1 and
G′(1) first (whose process is illustrated in Fig. 3) which are in
the first base result C1, and then update F.(c1+1), . . . ,F.(c1+c2)

and G′(2) which are in the second base result C2, and so on. At
last, we update F.(c−cm+1), . . . ,F.c and G′(m) which are in the
last base result Cm. Next, we will introduce how to update the
representation and multiplex in more detail.

B. Update Representation With Multiplex

Now, we consider how to update the representation in the p-th
base result Cp, whose procedure is shown in the blue dashed box
in Fig. 3. As introduced before, we update the representation F
column by column. Take the s-th cluster in the p-th base result as
an example. It corresponds to the (r =

∑p−1
q=1 cq + s)-th column

of F. So, here we consider how to update F.r.
F.r is the representation of the r-th cluster. Fir can be seen as

a score of xi w.r.t. the r-th cluster, which is shown as the number
in each vertex in Fig. 3. The larger Fir is, the more likely it is
that xi belongs to the r-th cluster. Therefore, we can update F.r

via a diffusion model on the multiplex G′, which means that we
set Y.r as the initial scores of each vertex and propagate them
through the inter-layer and intra-layer edges in the multiplex G′

to obtain F.r. Due to the inter-layer edges, the information can
be propagated among different base clusterings. Take Fig. 3 as
an example. In the first base result, x1

4 is not in the cluster π1

and thus its initial score w.r.t. π1 is 0. However, in the second
base result, x2

4 and x2
2 are in the same cluster, and there exists an

inter-layer edge between x2
2 and x1

2, which is in π1, and another
inter-layer edge between x1

4 and x2
4. Then, by some steps of

diffusions among these inter-layer and intra-layer edges, x1
4 will
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Fig. 3. Example of updating the representation and multiplex in one iteration, i.e., it handles the clusters π1 and π2 of the first base clustering. The number in
each vertex is the value of Fir which can be seen as the score of the i-th vertex w.r.t. the r-th cluster πr . The blue dotted box shows the process of updating the
representation and the red dotted box shows the process of updating the multiplex.

obtain a positive score w.r.t. π1. Since the diffusion process is
on the whole multiplex, it can be seen as an ensemble of the
structure information of multiple base results.

In this article, we apply the manifold ranking [34] as the
diffusion model. Manifold ranking first assigns an initial score
to each vertex, and then propagates the scores in the vertices
through the inter-layer and intra-layer edges to make the learned
score preserve the manifold structure. More formally, suppose
W is the adjacency matrix of the current projection graph of G′,
which is defined as (2). Manifold ranking wishes to learn the
new representation F.r by optimizing the following objective
function:

min
F.r

α
mn∑

i,j=1

Wij

2

(
Fir√
di

− Fjr√
dj

)2

+(1−α)‖F.r −Y.r‖22,

(4)

where di is the sum of the i-th row of W, and 0 < α < 1 is a
hyper-parameter. The second term is a fitting term, which makes
the learned F.r not far away from its prior Y.r. The first term is
the propagation term, which makes that if xi and xj are closed
in the multiplex, their representation Fir and Fjr should also be
closed.

Eq. (4) can be rewritten as the following form:

min
F.r

αFT
.r(I−D−1/2WD−1/2)F.r + (1− α)‖F.r −Y.r‖22,

where D is a diagonal matrix, whose diagonal element is Dii =∑mn
j=1 Wij . It has a closed-form solution:

F.r = (1− α)
(
I− αD−1/2WD−1/2

)−1

Y.r (5)

However, (5) needs to compute the inversion of an mn-by-
mn matrix, whose time complexity is O(m3n3), which is
untractable in practice. To address this issue, Zhou et al. [34]
provides an iterative method to compute F.r. We first initialize
F.r as the same as the last epoch, and if it is the first epoch, we
initialize F.r = Y.r. Then, we update it by:

F.r = αD−1/2WD−1/2F.r + (1− α)Y.r. (6)

According to [34], updating F.r by (6) will converge to the
closed-form solution in (5). Although W is still an mn-by-mn
matrix, since it is an adjacency matrix of a multiplex, which has
a special structure as (2), we can further speed up the matrix
multiplication. To see it, we denote D(k) as a diagonal matrix
whose diagonal elementD(k)

ii = (
∑n

j=1 W
(k)
ij +m− 1)−1/2. It

is easy to verify D−1/2 consists of D(1), . . . ,D(m). Then, we
have

D−1/2WD−1/2

=

⎡
⎢⎢⎢⎣
D(1) 0 · · · 0
0 D(2) · · · 0
...

...
. . .

...
0 0 · · · D(m)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
W(1) In · · · In
In W(2) · · · In
...

...
. . .

...
In In · · · W(m)

⎤
⎥⎥⎥⎦

∗

⎡
⎢⎢⎢⎣
D(1) 0 · · · 0
0 D(2) · · · 0
...

...
. . .

...
0 0 · · · D(m)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
D(1)W(1)D(1) D(1)D(2) · · · D(1)D(m)

D(2)D(1) D(2)W(2)D(2) · · · D(2)D(m)

...
...

. . .
...

D(m)D(1) D(m)D(2) · · · D(m)W(m)D(m)

⎤
⎥⎥⎥⎦

(7)

Denote F.r = [f (1)T , f (2)T , . . . , f (m)T ]T , where f (k) ∈ Rn,
and Y.r = [Y

(p)T
.s ,Y

(p)T
.s , . . . ,Y

(p)T
.s ]T where Y

(p)T
.s ∈ Rn is

the s-th column in matrix Y(p). Taking them back into (6), for
any q = 1, . . . ,m, we have

f (q) = αD(q)W(q)D(q)f (q) + α
∑
l �=q

D(q)D(l)f (l)

+ (1− α)Y(p)
.s . (8)

Therefore, we can update F.r by using (8) when q = 1,
. . . ,m. Notice that, D(q)’s are diagonal matrices, and W(q)’s
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are often sparse matrices. Therefore, the time complexity may be
reduced further. The detailed time complexity analysis is shown
in the following subsection.

C. Update Multiplex With Representation

After updating the representations of clusters in the p-th base
result, which areF.(

∑p−1
q=1 cq+1), . . . ,F.(

∑p
q=1 cq), we will update

the p-th layer of the multiplex.
The updation is quite simple. We first extract the representa-

tion matrix F(p) ∈ Rn×c of the instances {xp
1, . . . , x

p
n} in the

p-th layer from F. F(p) is a submatrix of F, which contains n
rows of F (i.e., from the (n(p− 1) + 1)-th row to the np-th row
of F). Then, we construct a k-nn graph with F(p). The process
is shown in the red dashed box in Fig. 3.

When constructing the k-nn graph, we need to compute the
similarity between any two vertices. Here we use the cosine
similarity as we did when constructing the initial graph. More
formally, for data xp

i and xp
j , we extract the representations of

these two vertices, which are F(p)
i. and F

(p)
j. , respectively. Then,

we compute the similarity matrix S whose (i, j)-th element is
defined as:

Sij =

〈
F

(p)
i. ,F

(p)
j.

〉
‖F(p)

i. ‖2‖F(p)
j. ‖2

, (9)

where< ·, · > denotes the inner production of two vectors. Then
we update the p-th layer of the multiplex as the k-nn graph from
S, i.e., if xp

i is one of the k neighbors of xp
j or xp

j is one of
the k neighbors of xp

i according to S, then there is an edge

whose weight is W
(p)
ij = Sij between xp

i and xp
j . Notice that,

according to (9), we have Sij ≤ 1, which means the weights of
the intra-layer edges are no larger than the weights of inter-layer
edges (which are fixed to 1). It is reasonable. The inter-layer
edges link xp

i and xq
i , which are exactly the same instance, and

thus they should be stronger than the intra-layer edges, which
link two different instances.

D. Implementation Details and Discussion

We jointly update the representations and the base graphs in
the m layers of the multiplex with T epochs. For simplicity, in
our implementation, we fix T = 5. After T epochs, we obtain
the final multiplex G′, whose adjacency matrices of m layers are
W(1), . . . ,W(m). We fix the hyper-parameter α = 0.85. If the
data is a small size data, which means the number of instances
is smaller than 1000, we fix k = 10 for k-nn graph construction,
and otherwise, we fix k = 20. The whole process is summarized
in Algorithm 1.

After learning the final multiplex, we can use any
multiple graph based clustering ensemble methods with
W(1), . . . ,W(m) as inputs to obtain the final clustering result.
In this article, since the motivation is to show the importance
of base refinement, we just use the most straightforward way
to obtain the final clustering result. We compress the multi-
plex by averaging all layers to obtain a single matrix W′ as:

Algorithm 1: Clustering Ensemble With Adaptive Multi-
plex.

Input: Multiple base clustering results C1, . . . , Cm,
number of iterations T = 5, α = 0.85, number k = 10 or
20 of neighbors in k-nn graph.

Output: The final multiplex G′.
1: Obtain Y(1), . . . ,Y(m) from base results, construct

the initial representation Y, and initialize F = Y
2: Construct the initial multiplex G from

Y(1), . . . ,Y(m), and initialize G′ = G.
3: for t = 1, . . . , T do
4: for p = 1, . . . ,m do
5: Update each column from the (

∑p−1
q=1 cq + 1)-th to

(
∑p

q=1 cq)-th column in F by (8) until
convergence.

6: Update the p-th layer of multiplex by constructing
the k-nn graph on the similarity matrix defined in
(9).

7: end for
8: end for

W′ = 1
m

∑m
p=1 W

(p). Then, we run spectral clustering on W′

to obtain the final result.
Now, we analyze the space and time complexity of Algo-

rithm 1. Notice that, given a multiplex, we only need to save the
m diagonal blocks W(1), . . . ,W(m). Other blocks are all iden-
tity matrices which we do not need to save. Therefore, the space
complexity of the multiplex is O(mn2). The space complexity
of saving F and Y are O(mnc) which is smaller than O(mn2).
To sum up, the whole space complexity is O(mn2), which is
comparable with the multiple graph based methods. Moreover,
if the graph in each layer is sparse, the space complexity can
be further reduced. For example, if the graph is k-nn graph,
which means in each row, there are O(k) non-zero elements, the
space complexity can be reduced to O(mnk). When updating
the representation, we use the manifold ranking, which is an
iterative method. Here, we suppose the number of iterations
is t1, where in our implementation, we fix t1 = 20. In one
iteration, we apply (8) to update F. Notice that, in all iterations
except the first one, W(q) is a sparse adjacency matrix of a
k-nn graph. Therefore, in each row, the number of non-zero
elements is O(k). The number of multiplication operation when
computing D(q)W(q)D(q)f (q) is O(nk). In the first iteration,
we compute D(q)f (q) with O(n) multiplication operations, and
notice that W(q) in the first iteration only contains 0 and 1,
and thus W(q)D(q)f (q) only involves add operations (which
are much faster than multiplication operations) without any
multiplication operations. The time complexity of computing∑

l �=q D
(q)D(l)f (l) is O((m− 1)n). Hence, the time complex-

ity of Line 5 in Algorithm 1 is O(m(nk +mn)t1c), which is
linear with the number of instances. Line 6 is to construct the
k-nn graph whose time complexity is O(n2c). Therefore, the
whole time complexity is O(mT (m(k +m)t1cn+ n2c)). In
practice, we often have m,T, t1, k, c 
 n, and thus the bot-
tleneck of the time complexity is to construct the k-nn graph.
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TABLE I
DESCRIPTION OF THE DATA SETS

Fortunately, there are several ways to speed up the k-nn graph
construction, such as kd-tree and locality sensitivity hashing. In
the future, we will study how to plug them into our framework
to speed up the method.

IV. EXPERIMENTS

In this section, we compare CEAM with some state-of-the-art
clustering ensemble methods on benchmark data sets.

A. Data Sets

We use 10 data sets, including 20NG [38], AR [39], BBC [40],
HAPT [41], Hitech [40], News4a [42], News4b [42], ORL [43],
Orlraws,2 Yale [44]. The detailed information can be found in
Table I.

B. Experimental Setup

We run kmeans 100 times with random initializations to obtain
100 base results, and then partition them into 10 groups, where
each group contains 10 base results. We run clustering ensemble
methods on each group and report the average results over the
10 groups. We report km-avg which is the average result of
the base results, and km-best which is the best result of the
base results, as the baselines. Moreover, we compare with the
following clustering ensemble methods:
� CSPA [1]: It is a cluster-based similarity partition algo-

rithm, which constructs the similarity with the base results
and obtains the consensus result from the similarity.

� HGPA [1]: It is a hypergraph partitioning based algorithm
for clustering ensemble.

� MCLA [1]: It is a meta-clustering algorithm for clusterin
ensemble which reformulate the clustering ensemble prob-
lem to a cluster correspondence problem.

� NMFC [35]: It is a clustering ensemble method with non-
negative matrix factorization.

� LWEA [36]: It is an evidence accumulation method for
clustering ensemble with a local weighting strategy.

� LWGP [36]: It is a graph partitioning method for clustering
ensemble with a local weighting strategy.

� RSEC [8]: It is a robust spectral clustering method on the
co-association matrix.

2https://jundongl.github.io/scikit-feature/datasets.html

� DREC [37]: It is a clustering ensemble method with dense
representation learning.

� SCCBG [23]: It is a clustering ensemble method with
structured bipartite graph learning.

� SPCE [22]: It is a self-paced clustering ensemble method
by multiple graph learning.

� TRCE [10]: It is a tri-level robust multiple graph learning
method for clustering ensemble.

� CESHL [5]: It is a clustering ensemble method based on a
structured dynamical hypergraph.

For all methods on all data sets, the number of clusters is set
as the true number of the classes for a fair comparison. Since the
hyper-parameter selection is difficult for unsupervised learning,
the hyper-parameters of our method are fixed as introduced in
the previous section and we do not tune them in experiments.
We use Accuracy (ACC) and Normalized Mutual Information
(NMI) to evaluate the performance.

C. Experimental Results

Tables II and III show the ACC and NMI results of the pro-
posed CEAM and other compared methods. CEAM outperforms
the km-avg significantly which shows the effectiveness of the
ensemble. Even compared with km-best, CEAM outperforms it
on most data sets, whereas many other ensemble methods cannot
outperform km-best on many data sets. It shows that although
CEAM uses some unreliable base results, these weak results do
not mislead CEAM as they do to other methods. The reason may
be that CEAM refines the base results by the ensemble, and thus
it ensembles the better base results instead of the weak initial
ones, which can easily achieve better performance.

When compared with other state-of-the-art clustering en-
semble methods, CEAM also achieves better performance on
most data sets. Notice that, the ensemble process in CEAM is
very simple and straightforward, which is just running spectral
clustering on the averaged graph of the refined multiplex. It
well demonstrates that the performance gain may mainly come
from the base results refinement. Notice that on some data sets,
the improvements of our CEAM are limited and on some data
sets, such as HAPT, the compared method can even perform
better than our CEAM. We think the reason may be that on
some data sets the performance improvement caused by our
base results refining is limited. According to the ablation study
in Table IV, we can see that, although on all data sets our base
refining can improve the performance, on some data sets, such as
HAPT and AR, the improvement is limited. This may limit the
performance of our method because the main part of CEAM is
the base refining and our ensemble strategy is quite simple. So,
there is another interesting question here why on some data sets
the improvement caused by our base refining is large while on
some other data sets the improvement is limited? We think it
may be related to the quality or diversity of the base results.
For example, if all base results are too similar, which means the
diversity is low, the base refining process will hardly work, be-
cause other base results cannot provide more useful information
to refine one base result. On the contrary, if the diversity is high,
which means other base results often contain much different
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TABLE II
ACC RESULTS ON ALL THE DATA SETS

TABLE III
NMI RESULTS ON ALL THE DATA SETS

Authorized licensed use limited to: Anhui University. Downloaded on March 19,2024 at 04:14:43 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: CLUSTERING ENSEMBLE VIA DIFFUSION ON ADAPTIVE MULTIPLEX 1471

TABLE IV
ABLATION STUDY

Fig. 4. ACC of each base result (before updating multiplex (blue bars) v.s.
after updating multiplex (red bars)).

information which may have a large chance to improve one base
result.

To verify it, given any two base results, we compute the NMI
between these two base results. If the NMI is high, it means that
the two base results are similar and thus the diversity is low.
On the contrary, if the NMI is low, which means these two base
results are dissimilar, the diversity between them is high. We
compute the average NMI between all these base result pairs
to evaluate the overall diversity of the base results. On some
data sets with large improvements, such as 20NG and News4a,
we obtain the average NMI of 0.4444 and 0.3612, respectively.
However, on some data sets with limited improvements, such
as HAPT and ORL, we obtain the average NMI of 0.7778
and 0.7490, which are relatively higher. Therefore, given the
base results with large diversity, our method can improve more
remarkably.

To further show the effectiveness of updating the multiplex,
we show the comparison of the 10 base results before and after
updating the multiplex in Fig. 4. Fig. 4 shows ACC on 20NG,
News4b, ORL, and Yale, and the other results are similar. The
blue bars represent the ACC of the initial base result before
updating, and the red ones represent the ACC of each base result

after updating. Fig. 4 clearly shows that the multiplex updation
indeed improves the quality of base results, which demonstrates
our motivation. Moreover, on 20NG data set, the improvements
in base results are more remarkable, which also demonstrates
the previous discussion.

D. Ablation Study

In this subsection, we conduct some ablation studies to show
the effects of the multiplex and multiplex updation. In more
detail, we compare our method with two degenerated versions
of CEAM. The first is the one without the multiplex, which is
denoted as w.o. multiplex. It does not construct the multiplex
and does not learn the representation. It directly runs spectral
clustering on the averaged graph. The second is the one that uses
the multiplex but does not update it, which is denoted as w.o.
updating multiplex. It constructs the initial multiplex, learns the
representation on the multiplex, and at last obtains the consensus
clustering result from the representation without updating the
multiplex. The results are shown in Table IV.

From Table IV, we can see that, on most data sets, the version
using multiplex performs better than the version without multi-
plex, which shows the effectiveness of the multiplex. Moreover,
when comparing CEAM with the one without updating the
multiplex, we can find that if we update the multiplex, the
performance can further be improved. It well demonstrates
the motivation of refining base results.

E. Effects of Base Results Refining

As claimed in Section Introduction, our base results refining
method can be followed by any multiple graph based methods.
To further show the effects of the base results refining, we
run SPCE [22], which is a multiple graph based clustering
ensemble, with the original graphs and with the refined graphs
for comparison. The results are shown in Table V. SPCE w.o.
refining denotes the SPCE with original base graphs as inputs
and SPCE w. refining denotes the SPCE with the refined graphs
obtained by our method as inputs. From Table V, we can find
that the refined graphs can indeed improve the performance of
SPCE. Even on some data sets, e.g. 20NG and News4a, the
improvements are also large. It well demonstrates the superiority
of the multiplex refining in our method.
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TABLE V
RESULTS OF SPCE WITH AND WITHOUT THE REFINED BASE RESULTS

Fig. 5. Running time (Sec.) of all methods on all data sets.

F. Effects of Numbers of Iterations

In our method, we fix the numbers of iterations with T = 5.
In this subsection, we show the ACC performance with different
numbers of iterations T . The results on AR, News4a, News4b,
and Yale are shown in Fig. 6. The results on other data sets
are similar. From 6, we can see that, our method can achieve
relatively good results when T = 5. Although on some data
sets more iterations can lead to better results, more iterations
also increase the running time. By considering the trade-off of
effectiveness and efficiency, we choose T = 5 for our method.

G. Efficiency Experiments

We show the running time of all methods on all data sets in
Fig. 6. From Fig. 6, we can see that CEAM is faster than recent

graph based methods, such as RSEC, SPCE, and SCCBG, on
most data sets. Especially on the largest data set HAPT, CEAM
needs 349 s and RSEC needs 14883 s. CEAM is about 42
times faster than RSEC. It demonstrates the efficiency of CEAM
among the graph based clustering ensemble methods.

H. Hyper-Parameter Study

Although in our experiments, we fix the hyper-parameters α
and k, in this subsection, we still show the sensitivity of these
hyper-parameters. Sinceα is suggested to be set large in previous
study [34], [45], we show α in the set {0.5, 0.55, . . . , 0.95}. We
show the k-nn parameter k in the set {10, 20, 30, 40}. The results
on AR and ORL are shown in Fig. 5. Results on other data sets
are similar. From Fig. 5, we can see that CEAM is insensitive
w.r.t. α and k in the given range. Therefore, we do not need to
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Fig. 6. ACC results w.r.t. different numbers of iterations on AR, News4a,
News4b, and YAle.

Fig. 7. ACC and NMI w.r.t. different α and k on AR and ORL.

tune k and α in the experiments. Notice that, sometimes, the
performance decreases when α is very large, e.g. when α =
0.95. The reason is that, if α is too large, which means the term
‖F.r −Y.r‖22 hardly works, and we almost only optimize the
first term

∑mn
i,j=1

Wij

2 ( Fir√
di

− Fjr√
dj

)2, which is prone to obtain a

trivial solution that all elements in F.r are the same and cause
the over-smoothing problem.

V. CONCLUSION

This article proposed a simple yet effective clustering ensem-
ble method via adaptive multiplex. Different from conventional
methods, which focus on how to do the ensemble, this article
presented an alternative idea, which applied the ensemble to
refine the base results. We constructed the initial multiplex and
representations from the base results, and then simultaneously
updated them to make the ensemble and refinement boost each

other. At last, we obtained the final consensus clustering result
directly from the refined multiplex. Extensive experiments shew
that the proposed method outperformed the state-of-the-art clus-
tering ensemble methods, which revealed its effectiveness and
superiority.

Although the proposed method achieves good performance,
there still exist some limitations. One is the high space complex-
ity of the multiplex, which limits more complicated operations
on the multiplex. In our method, we apply the sparse matrix to
alleviate this limitation. In the future, we will explore some more
sophisticated methods which can further reduce the space and
time complexity and try to apply this method to some large-scale
data. Moreover, the experimental results show that on some data
sets the performance improvement of our base refining is limited.
In the future, we will further study the reason and solution of
this problem.
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