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Consensus clustering provides an elegant framework to aggregate multiple weak clustering results to learn

a consensus one that is more robust and stable than a single result. However, most of the existing methods

usually use all data for consensus learning, whereas ignoring the side effects caused by some unreliable or

difficult data. To address this issue, in this article, we propose a novel self-paced consensus clustering method

with adaptive bipartite graph learning to gradually involve data from more reliable to less reliable ones in

consensus learning. At first, we construct an initial bipartite graph from the base results, where the nodes

represent the clusters and instances, and the edges indicate that an instance belongs to a cluster. Then, we

adaptively learn a structured bipartite graph from this initial one by self-paced learning, i.e., we automatically

determine the reliability of each edge with adaptive cluster similarity measuring and involve the edges in

bipartite graph learning in order of their reliability. At last, we obtain the final consensus result from the

learned structured bipartite graph. We conduct extensive experiments on both toy and benchmark datasets,

and the results show the effectiveness and superiority of our method. The codes of this article are released in

http://Doctor-Nobody.github.io/codes/code_SCCABG.zip.
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1 INTRODUCTION

Clustering is a fundamental unsupervised learning problem in machine learning and artificial in-
telligence, and attracts increasingly more attention in recent years. However, it is well known that
conventional clustering methods often suffer from stability and robustness problems [49, 50]. To
tackle these problems, consensus clustering is proposed.

Consensus clustering, also known as clustering ensemble, was first proposed by Strehl et al. [43],
and it aims to ensemble multiple weak base clustering results to obtain a robust and stable con-
sensus clustering result. In recent years, many consensus clustering methods have been pro-
posed [29–31, 44, 52]. For example, Li et al. applied non-negative matrix factorization to ensemble
multiple clusterings [29]; Liu et al. applied the de-noising auto-encoder to learn the consensus
clustering result [31]; Tao et al. proposed a clustering ensemble method with adversarial loss [44].

Although these methods achieve promising performance on clustering, they may still suffer
from robustness problems. We observe that these methods always use all data for consensus learn-
ing. However, since the base clustering results may be imperfect, it is inappropriate to always
apply all data for learning. These methods may be misled by some difficult or unreliable data in
the process of the ensemble. Intuitively, in the beginning, we should not use the difficult or unre-
liable data for ensemble, because this early model may be too weak to handle them. Then, with
consensus learning, the model becomes increasingly stronger and gradually obtains the ability to
tackle those difficult and unreliable data.

To fulfill this idea, we propose a novel Self-paced Consensus Clustering with Adaptive Bi-

partite Graph (SCCABG) method, which applies instances from more reliable to less reliable
ones to learn the consensus result. By observing that the base clustering results can naturally be
represented as a bipartite graph, where the nodes represent the instances and clusters and an edge
indicates that an instance belongs to a cluster, we develop the consensus clustering method on
the bipartite graph. We aim at dynamically learning a structured bipartite graph from an initial
one, which contains exact c components, where c is the number of clusters. Note that, since the
base results are imperfect, the edges in the initial bipartite graph are also unreliable, and thus
the initial bipartite graph may not reveal such a clear clustering structure. Therefore, we plug the
self-paced learning into the structured bipartite graph learning, leading to a self-paced adaptive bi-
partite graph learning. That is, we automatically determine the reliability of each edge, and adopt
the edges in the order of their reliability to adaptively learn the structured graph. On one hand,
the reliable edges are helpful to structured graph learning. On the other hand, in the process of
structured graph learning, increasingly more edges become reliable. To characterize the reliability
of the edges, we carefully design a regularized term with an adaptive cluster similarity measur-
ing method. Due to the reliability characterized term, the proposed model is more robust and can
even handle incomplete data. At last, we directly obtain the final consensus clustering result from
the learned structured bipartite graph by finding its connective components. Therefore, the pro-
posed method is in an end-to-end way without any uncertain postprocessing such as k-means and
spectral clustering.

Although the objective function seems complex due to the carefully designed regularized term,
we develop an effective block coordinate descent algorithm to optimize it, whose convergence is
theoretically guaranteed. The extensive experimental results on benchmark datasets well demon-
strate the effectiveness and superiority of the proposed algorithm.

Notice that this work is an extension of our early work [62]. The present work adds to the
conference version in some significant ways:

— Firstly, the reliability evaluation in [62] uses the fixed cluster similarity matrix of clusters,
which is inappropriate for consensus learning due to the unreliability of the base clusterings.
Notice that, in [62], it constructs the similarity matrix according to the base partitions.
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However, base partitions are often unreliable as introduced before, and thus the similarity
matrix used in [62] is also unreliable and may still mislead the bipartite graph learning.
To address this issue, in this article, we design an adaptive cluster similarity measuring
mechanism, i.e., the cluster similarity matrix updates with the bipartite graph learning.
With the bipartite graph becoming increasingly more reliable, the similarity matrix will
also become more accurate. The ablation study in our experiments demonstrates that.

— Secondly, in real applications, it often happens that some data are missing in some base
results. In this article, we also apply the proposed method to handle this incomplete
consensus clustering setting.

— Thirdly, considerable new theoretical analyses and technical details are provided in this
article.

— Lastly, we extend the experiments by adding a toy example to intuitively show the
effectiveness of the proposed method and adding the most recent state-of-the-art consen-
sus clustering method for comparison on benchmark datasets. We also add some more
experiments to comprehensively show the performance of our method.

The remaining parts of this article are organized as follows. Section 2 provides some related
work. Section 3 introduces our SCCABG in detail. Section 4 shows the experimental results.
Section 5 concludes this article.

2 RELATED WORK

In this section, we briefly review some related works about consensus clustering and self-paced
learning. Firstly, we introduce some notations used in this article. Boldface uppercase and lower-
case letters are used to denote matrices and vectors, respectively. For a matrix A, Ai . and A.i are
used to denote the ith row and column vector of matrix A, respectively. Ai j denotes the (i, j )th
element of A.

2.1 Consensus Clustering

Consensus clustering, also known as clustering ensemble or clustering aggregation, aims to aggre-
gate multiple weak base clustering results to generate a consensus and robust one. More formally,
according to [43, 48, 49], given a data X = {x1, . . . , xn } with n instances, we first generate m
base partitions C1, . . . ,Cm by some standard clustering method, where Ci contains ki clusters

π i
1, . . . ,π

i
ki

, such that X = ⋃ki

j=1 π
i
j and π i

p ∩ π i
q = ∅ for any p,q ∈ {1, 2, . . . ,ki } and p � q. Then

consensus clustering learns a consensus partition by integrating C1, . . . ,Cm .
One related task of consensus clustering is multi-view clustering [8, 11, 21, 32, 41, 65, 67]. They

integrate multiple views of data feature to generate a consensus clustering result. For example, Cai
et al. integrated kmeans and multiple views fusion into a unified objective function, leading to a
multi-view kmeans method [8]; Zhou et al. proposed an incremental multi-view spectral clustering
to handle streaming views data [67]; Peng et al. developed a parameter-free multi-view clustering
method by learning a consensus embedding of multiple views [41]; Liu et al. ensembled incomplete
multi-view data to obtain a robust and consensus clustering result [32]. Note that, these multi-view
methods usually take multi-view features of data as input, and they often integrate information at
the data level or model level. Different from multi-view clustering, consensus clustering often en-
sembles at the decision level, i.e., it only takes the multiple base clustering results as input without
accessing the original data features. Therefore, consensus clustering is a more challenging task.
Moreover, since consensus clustering does not access the original data, it can protect the privacy
of data to some extent [25].

Since consensus clustering can often provide a more robust and stable clustering result than the
single clustering methods and does not need to access original data, it attracts increasingly more
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attention in recent years. One of the most popular schema to ensemble the multiple base results is
using the connective matrices [18, 28, 45, 47, 63, 64, 66]. For each base partition Ci , they construct

an n × n connective matrix H
(i ) , where H (i )

pq = 1 if xp and xq belong to the same cluster in Ci and

H (i )
pq = 0 otherwise. Then, they ensemble H

(1), . . . ,H(m) to learn a consensus matrix H and obtain
the final consensus clustering result from H. For example, Li et al. applied symmetric nonnegative
matrix factorization to obtain the consensus results from connective matrices [28]; Zhou et al.
extracted the noises on connective matrices and recover the clean ones for ensemble [66]; Tao et al.
used spectral clustering to learn the consensus partition from the connective matrices [45, 47];
Zhou et al. perform self-paced learning on the connective matrices to obtain the final consensus
result [63].

Although connective matrix based methods have demonstrated promising performance in lit-
erature, they need to construct m n × n connective matrices which are inappropriate to handle
large scale datasets. Therefore, many methods try to ensemble base clusterings with other data
structures. For example, Strehl et al. constructed hyper-graphs from base clustering results and
obtain final consensus result by partitioning the hyper-graph [43]; Zhou et al. applied an align-
ment method to directly combine the base clustering result matrices [69]; Liu et al. proposed a
new ensemble method to handle missing values in base results, which also directly uses the result
matrices [34]; Huang et al. constructed a factor graph for consensus clustering [14]; Li et al. ap-
plied multiple clustering results to measure the stability of each instance and assigned instances
in the cluster according to the stability [25]; Huang et al. ensembled multiple clustering results by
a fast propagation of cluster-wise similarity [17]; Bai et al. proposed a new graph based consensus
clustering methods which used the k-means as the base clustering methods to handle non-linear
data [4]; Abbasi et al. and Bagherinia et al. applied quality and diversity of base results to guide
the consensus clustering [1, 3].

Besides the above-mentioned works which ensemble all base clustering results, some works aim
at selecting some informative and non-redundant base clustering results for consensus clustering.
For example, Azimi et al. provided an adaptive consensus clustering selection method to select
the informative base results [2]; Parvin et al. developed a weighted locally adaptive clustering
method for consensus clustering selection [39, 40]; Yu et al. transferred the base results selection
to feature selection and proposed a hybrid strategy to select base clusterings [55]. These methods
concentrated on how to select base results. However, in this article, we focus on how to ensemble
base clustering results.

In this article, we learn the consensus result on a bipartite graph. Different from conventional
methods, which may be misled by unreliable data, our bipartite graph learning method is in a
self-paced learning framework, which could alleviate the side effects caused by unreliable data.

2.2 Self-Paced Learning

To mimic the learning process of humans, self-paced learning incrementally involves data in
learning, where easy ones are used first and difficult ones are then involved gradually [22]. More
formally, given a dataset X = {(x1,y1), . . . , (xn ,yn )}, where xi is the feature vector of the ith
instance and yi is its label, in machine learning tasks, we aim at learning a hypothesis h(xi ,θ )
where θ denotes the model parameters. To learn the parameters θ , we need to minimize some
loss function L (h(xi ,θ ),yi ) between the hypothesis and the ground truth. According to [56],
self-paced learning introduces a weighted loss term on instances and a general regularized term
on the weights as follows:

min
w,θ

n∑
i=1

wiL (h(xi ,θ ),yi ) + Ω(wi , λ), (1)
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Fig. 1. The framework of SCCABG. It first generates an initial bipartite graph from base results, and then

adaptively learns a structured bipartite graph with self-paced learning and adaptive cluster similarity mea-

suring. At last, it obtains the final consensus clustering result from the learned structured bipartite graph.

where wi is the weight of the ith instance, λ is an adaptive age parameter that grows in the
process of learning, and Ω(wi , λ) is the self-paced regularized term on the weights.

In Equation (1), when fixing θ , we denote w∗i (λ, li ) as the optimum weight on xi where li =
L (h(xi ,θ ),yi ). Then, according to [19, 35, 58], the regularized term Ω(wi , λ) should satisfy the fol-
lowing properties: (1)w∗i (λ, li ) should decrease monotonically with li because instances with small
loss, i.e., easy instances, should have large weights, so that they could be involved in learning early.
(2) w∗i (λ, li ) should increase monotonically with λ, so that with the process of learning, more and
more instances will be involved in learning. Therefore, in self-paced learning, Equation (1) is solved
in an iterative way. When fixing θ , it optimizes w. This process is to assign weight to each instance.
When fixing w, it learns the model parameter θ . This process is to train the model with easy data.

Due to its promising performance, self-paced learning has already been adopted in many ap-
plications. For example, in [5, 6], it was used to tackle the local optimum problem in non-convex
optimization; in [24, 42], it was plugged in the multi-task learning; Jiang et al. extended it into sub-
space learning [20]; Guo et al. applied it to deep clustering [13]; Pan et al. proposed a self-paced
deep regression forests method [38]. In this article, we will plug self-paced learning into bipartite
graph learning for unsupervised consensus learning.

3 SELF-PACED CONSENSUS CLUSTERING WITH ADAPTIVE BIPARTITE GRAPH

In this section, we introduce the proposed SCCABG method. Figure 1 shows the framework of
SCCABG. We first construct an initial bipartite graph from the given multiple base results. Then
we adaptively learn a structured bipartite graph with self-paced learning and adaptive cluster
similarity measuring. At last, we obtain the final clustering result directly from the structured
bipartite graph. The details of each step are introduced in the following subsections.

3.1 Initial Bipartite Graph Construction

Given m base clustering results C = {C1, . . . ,Cm } of a dataset with n instances X = {x1, . . . , xn },
where Ci = {π i

1, . . . ,π
i
ki
}, we first construct an initial bipartite graph G = {V1,V2,E} from it.
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Fig. 2. An illustration of constructing the bipartite graph. The left side shows the three base clustering results

(C1, C2, and C3) of the 5 instances (x1, . . . , x5). The right side shows the corresponding bipartite graph. The

blue nodes represent the instances and the red nodes represent the clusters. If one instance belongs to a

cluster, then there exists an edge between the corresponding blue and red nodes.

In more detail, V1 contains n nodes and each node represents an instance. V2 contains k =∑m
i=1 ki nodes and each node represents a cluster π i

j (i = 1, . . . ,m, and j = 1, . . . ,ki ). E is a set of

edges which link nodes between V1 and V2. If instance xi belongs to the cluster π
q
p , then there

is an edge between xi and π
q
p . Figure 2 shows an illustration of constructing the bipartite graph.

In this example, we have five instances x1, . . . , x5 and three base clusterings. For example, in the
first clustering C1, x1 and x2 belong to cluster π 1

1 , and x3, x4 and x5 belong to the cluster π 1
2 . The

right side of Figure 2 shows the corresponding bipartite graph G. V1 contains the blue nodes,
V2 contains the red nodes, and E denotes the set of edges. In the following, for the simplicity of
notations, we use π1, . . . ,πk to denote all base clusters.

After obtaining the bipartite graph G, we can get its adjacent matrix:

G =

[
0 Y

Y
T

0

]
, (2)

where Y ∈ {0, 1}n×k and Yi j = 1 means there is an edge linking the ith instance (xi ) and the jth
cluster (πj ), and Yi j = 0 means there is no edge between them. Taking Figure 2 as an example, its
Y is defined as

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 1 0 1 0 0 1
0 1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.2 Structured Bipartite Graph Learning

After obtaining the initial bipartite graph G, we need to learn a partition on G as the consensus
clustering result. However, this initial bipartite graph may not have a very clear clustering struc-
ture since each base clustering may not be perfect. Taking Figure 2 as an example again, we find
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Fig. 3. An illustration of constructing structured hypergraph.

that there is only one connective component in G, since all instances are entangled together. To
make it have a clearer clustering structure and obtain the final consensus partition, we need to
learn a structured bipartite graph G′ which has exact c connective components where c is the
number of clusters. Figure 3 is an illustration of the structured bipartite graph learning. The left
side of Figure 3 is the initial bipartite graph G in Figure 2. The right side of Figure 3 is the learned
structured bipartite graph G′, which contains two connective components (i.e., one is denoted in
the red lines and the other is denoted in black lines). We find that we just need to adjust one edge
in the initial bipartite graph, which is denoted as the green dotted line, and we can obtain the
structured one. Then clustering on G′ is trivial because we just need to put instances in the same
connective components into the same cluster.

Similar to G, we can write the adjacent matrix of G′ as follows:

G
′ =

[
0 S

S
T

0

]
, (3)

where S ∈ [0, 1]n×k . To make G′ preserve G as well as possible, we should minimize the difference
‖S − Y‖2F . Moreover, we also need to impose some constraints on S to make sure that G′ has c
connective components.

Given G
′, we first obtain its normalized Laplacian matrix L = I−D

− 1
2 G
′
D
− 1

2 , where I is an iden-

tity matrix and D is a diagonal matrix whose diagonal element Dii =
∑k+n

j=1 G ′i j . Then, according

to [36], we have that the number of connected components in G′ is equal to n + k minus the rank
of L, i.e., rank (L) = n + k − c . To this end, we obtain the following formula:

min
S

‖S − Y‖2F , (4)

s .t . 0 ≤ Si j ≤ 1, rank (L) = n + k − c .

3.3 Self-Paced Bipartite Graph Learning

Equation (4) provides a framework to learn an adaptive structured bipartite graph. However, as
introduced before, since the base clusterings may be imperfect, each edge obtained from the base
clusterings may also be unreliable. To characterize the reliability of each edge, we introduce a
weight matrix W ∈ [0, 1]n×k where the largerWi j is, the more reliable the corresponding edge is.
With W we can integrate our consensus clustering task into a self-paced learning framework seam-
lessly, which involves edges gradually from more reliable ones to less reliable ones. As suggested
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in [19], we set Ω(wi , λ) in Equation (1) as −λ‖W‖1, and obtain:

min
S,W

‖W 
 (S − Y)‖2F − λ‖W‖1, (5)

s .t . 0 ≤ Si j ≤ 1, rank (L) = n + k − c, 0 ≤Wi j ≤ 1,

where 
 is the Hadamard product, which means the element-wise production of two matrices; the
second term is the self-paced regularized term, and λ is the age parameter and becomes increas-
ingly larger in the process of optimization.

Unfortunately, it is not enough to characterize the reliability of edges only by the first term in
Equation (5). We need to take a closer look at the W. Notice that, if two clusters πp and πq are
very similar, then for any instance xi , it is very likely that either xi belongs to both clusters or xi

belongs to neither. Therefore, if (Sip −Siq )2 is large, which means xi is more likely to belong to one
of the clusters, then at least one of Sip and Siq is unreliable, i.e., at least one ofWip andWiq should
be small. More formally, we use the following carefully designed regularized term to characterize
the reliability of edges:

min
W

n∑
i=1

k∑
p,q=1

Cpq (Sip − Siq )2WipWiq , (6)

where Cpq is the (p,q)th element in C ∈ Rk×k , which characterizes the similarity of two clusters.

In our previous work [62], we simply fix C as C = Y
T

Y. We can find that, if Cpq is large (i.e., πp

and πq are similar) and (Sip −Siq )2 is large (i.e., xi only belongs to one of the clusters and does not
belong to the other cluster), then the only chance to minimize Equation (6), which is a production
ofCpq , (Sip − Siq )2,Wip andWiq , is that at least one ofWip andWiq should be small, which means
at least one of the relationship Sip and Siq is unreliable. Taking it into our self-paced framework
(Equation (5)), we obtain the following objective function:

min
S,W

‖W 
 (S − Y)‖2F − λ‖W‖1 + γ1

n∑
i=1

k∑
p,q=1

Cpq (Sip − Siq )2WipWiq (7)

s .t . 0 ≤ Si j ≤ 1, rank (L) = n + k − c, 0 ≤Wi j ≤ 1,

where γ1 is a balanced parameter. In practice, γ1 is small to make the subproblems involving W

and S convex.
Figure 4 provides a simple toy example to show the effects of the regularized term of reliability.

There are five instances x1, . . . , x5, wherein the first base clustering result, x1, x2, x3 belong to π1,
and x4 and x5 belong to π2. In the second base result, x1 and x2 belong to π3 and the other three
instances belong to π4. Its Y and initial similarity matrix of clusters C are shown on the right side
of Figure 4. Notice that π1 and π3 are similar, because the only difference between them is x3. π2

and π4 are also similar, and the only difference is also x3. Intuitively, since π1 and π3 are similar, and
x3 only belongs to π1 but does not belong to π3, at least one of S31 and S33 is unreliable. Similarly,
at least one of S32 and S34 is unreliable.

Considering the subproblem w.r.t. W3. , which is corresponding to x3, we minimize the following
formula:

min
W3.

‖W3. 
 (S3. − Y3. )‖22 +
4∑

p,q=1

Cpq (S3p − S3q )2W3pW3q − ‖W3. ‖1

For simplicity, we set γ1 = 1 and λ = 1. In the first iteration, we initialize S = Y and initialize C

as shown in Figure 4. Notice thatC12,C21,C23,C32,C34, andC43 are zeros, and S31−S34 and S32−S33
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Fig. 4. A toy example of the reliability. There are five instances x1, . . . , x5, wherein the first base clustering

result, x1, . . . , x3 belong to π1, and x4 and x5 belong to π2. In the second base result, x1 and x2 belong to π3

and the other three instances belong to π4. The middle side shows the initial bipartite graph, and the right

side shows the corresponding Y and initial similarity matrix of clusters C.

are zeros. When removing the zero terms, we have

min
W3.

4(S31 − S33)2W31W33 + 4(S32 − S34)2W32W34 − ‖W3. ‖1

= 4W31W33 + 4W32W34 − ‖W3. ‖1

Since in the first term, we need to minimize W31W33, at least one of W31 and W33 should be
small. Similarly, at least one ofW32 andW34 should be small. In fact, when minimizing it, we obtain
W31 =W32 =W33 =W34 = 0.25 which are all small. It is consistent with our intuition.

3.4 Adaptive Cluster Similarity Measuring

In our previous work [62], we use Y
T

Y as the cluster similarity matrix C. However, as mentioned
before, the base clustering results Y may be unreliable, and thus C = Y

T
Y is also unreliable. Since

we evaluate the reliability W of edges according to C as shown in Equation (6), unreliable C may
also mislead the evaluation of W. Therefore, to better evaluate the reliability of the edges, we need
a more accurate measurement of the cluster similarity.

An ideal cluster similarity measuring method is that the similarity of clusters should be adap-
tively adjusted during the bipartite graph learning process. On one hand, a more reliable bipartite
graph can lead to a more accurate cluster similarity measuring; and on the other hand, a more
accurate cluster similarity measuring can guide us to determine the reliability of edges more accu-
rately and further be helpful to learning a better structured graph. To this end, C in Equation (7)
should be learned as a variable instead of being predefined.

To adaptively learn the similarity matrix, we need some prior knowledge on C. Although pre-
defining C = Y

T
Y may be inappropriate, Y

T
Y can still be regarded as a good prior on C. Before

graph learning, we have no extra information on C except Y, and thus we can initialize C = Y
T

Y

and hope C should not be too far away from Y
T

Y. Then, in the process of learning, we can
adaptively fine-tune C based on S and W. More formally, we can obtain the following objective
function:

min
S,W,C

‖W 
 (S − Y)‖2F − λ‖W‖1 + γ1

n∑
i=1

k∑
p,q=1

Cpq (Sip − Siq )2WipWiq + γ2‖C − Y
T

Y‖2F ,

s .t . 0 ≤ Si j ≤ 1, rank (L) = n + k − c, 0 ≤Wi j ≤ 1, Cpq ≥ 0, C = C
T , (8)

where γ2 is another parameter to control the prior of C. Since C is a similarity matrix, it should
satisfy the nonnegative and symmetric constraints as denoted in Equation (8).
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It is worthy to take a close look at the carefully designed regularized term
∑n

i=1

∑k
p,q=1Cpq (Sip −

Siq )2WipWiq again. Although the motivation of this term is to characterize the reliability of edges,
it has three functions in total:

— when fixing S and C to learn W, it evaluates the reliability of edges;
— when fixing W and C to optimize S, it propagates the connection information on the bipartite

graph;
— when fixing W and S to learn C, it adaptively learns the similarity of all clusters.

3.5 Optimization

Equation (8) involves the constraint rank (L) = n+k −c , which is hard to optimize. We first handle

this constraint. According to [37], by introducing the auxiliary orthogonal matrix F ∈ R(n+k )×c

and a large enough parameter ρ, Equation (7) is equivalent to the following formula:

min
S,W,C,F

‖W 
 (S − Y)‖2F − λ‖W‖1 + γ1

n∑
i=1

k∑
p,q=1

Cpq (Sip − Siq )2WipWiq + γ2‖C − Y
T

Y‖2F

+ ρtr (FT
LF)

s .t . 0 ≤ Si j ≤ 1, 0 ≤Wi j ≤ 1, F
T

F = I, Cpq ≥ 0, C = C
T . (9)

Then, we optimize W, F, S, and C, respectively, by fixing the other variables as many other
machine learning methods do [36, 37, 61].

3.5.1 Optimizing W. When optimizing W, we find that Equation (9) can be decoupled into n
independent subproblems by rows. Considering the ith subproblem, we have

min
Wi .

k∑
p=1

W 2
ipAip − λ

k∑
p=1

Wip + γ1

k∑
p,q=1

WipBpqWiq , (10)

s .t . 0 ≤Wi j ≤ 1,

where Aip = (Sip − Yip )2 and Bpq = Cpq (Sip − Siq )2.
Note that, Equation (10) is a quadratic programming problem with bounded constraint and can

be solved by some standard optimization methods, such as trust-region reflective algorithm [9]. In
our implementation, we use quadprog function provided in Matlab.

3.5.2 Optimizing F. When optimizing F, we need to solve the following subproblem:

min
F

tr (FT
LF) (11)

s .t . F
T

F = I.

According to Ky Fan Theory [10], Equation (11) can be solved by computing the eigen-
decomposition of L. However, conducting eigen-decomposition on an (n + k ) × (n + k ) matrix
is often in O ((n + k )3) time and is very time consuming. Fortunately, since L is a Laplacian matrix
of a bipartite graph, according to [36], Equation (11) can be solved by conducting Singular Valued

Decomposition (SVD) on a small rectangle matrix.

In more detail, define diagonal matrices D̂ ∈ Rn×n and D̃ ∈ Rk×k whose diagonal elements are

D̂ii =
∑k

j=1 Si j and D̃ j j =
∑n

i=1 Si j , respectively, and write F as the block matrices F = [UT ,VT ]T ,
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where U ∈ Rn×c and V ∈ Rk×c . Equation (11) can be rewritten as

min
FT F=I

tr (FT
LF) (12)

⇔ max
UT U+VT V=I

tr 
�
[

U
T

V
T

] ⎡⎢⎢⎢⎢⎣ D̂
− 1

2 0

0 D̃
− 1

2

⎤⎥⎥⎥⎥⎦
[

0 S

S
T

0

] ⎡⎢⎢⎢⎢⎣ D̂
− 1

2 0

0 D̃
− 1

2

⎤⎥⎥⎥⎥⎦
[

U

V

]��
⇔ max

UT U+VT V=I

tr 
�
[

U
T

V
T

] ⎡⎢⎢⎢⎢⎣ 0 D̂
− 1

2 SD̃
− 1

2

D̃
− 1

2 S
T

D̂
− 1

2 0

⎤⎥⎥⎥⎥⎦
[

U

V

]��
⇔ max

UT U+VT V=I

2tr (UT
D̂
− 1

2 SD̃
− 1

2 V).

Equation (12) can be solved by the following Theorem:

Theorem 1. [36] The optimal solutions to the problem (12):

max
UT U+VT V=I

tr (UT
D̂
− 1

2 SD̃
− 1

2 V)

are U =
√

2
2 U

′ and V =
√

2
2 V
′, where U

′ and V
′ are the leading c left and right singular vectors of

D̂
− 1

2 SD̃
− 1

2 .

Notice that since D̂
− 1

2 SD̃
− 1

2 is an n × k matrix and often has n � k , the time complexity of
computing its SVD is O (nk2) which is much smaller than O ((n + k )3).

3.5.3 Optimizing S. When optimizing S, notice that L is relative to S, and thus we should handle

tr (FT
LF) first. Let F

′ = D
− 1

2 F, and we have

tr (FT
LF) = tr (F′T DF

′) − tr (F′T G
′
F
′)

=
1

2

��

c∑
i=1

n+k∑
j,l=1

F
′2
jiG
′
jl +

c∑
i=1

n+k∑
j,l=1

F
′2
l iG

′
jl −

c∑
i=1

n+k∑
j,l=1

2F ′jiG
′
jlF
′
l i
���

=
1

2

��

n+k∑
j,l=1

G ′jl

c∑
i=1

(F ′ji − F ′l i )2���
=

n∑
j=1

n+k∑
l=n+1

S j (l−n)

������
Fj .√
dj

− Fl .√
dl

������
2

2

, (13)

where dj =
∑k

m=1 S jm and dl =
∑k

m=1 Slm , respectively.
Taking Equation (13) back into Equation (9), we can find that Equation (9) can also be decoupled

into n subproblems by rows. Considering the ith subproblem, we have:

min
Si .

k∑
p=1

W 2
ip (Sip − Yip )2 + γ1

k∑
p,q=1

Epq (Sip − Siq )2 + ρ
k∑

p=1

HipSip

s .t . 0 ≤ Sip ≤ 1, (14)

where Epq = CpqWipWiq , and Hip = ‖ Fi .√
di
− Fn+p .√

dn+p

‖22 .

Equation (14) is also a quadratic programming problem with bounded constraint and can be
solved by the same way as solving Equation (10).
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3.5.4 Optimizing C. When optimizing C, we need to optimize the following problem:

min
C

γ1

n∑
i=1

k∑
p,q=1

Cpq (Sip − Siq )2WipWiq + γ2‖C − Y
T

Y‖2F ,

s .t . Cpq ≥ 0, C = C
T . (15)

For simplicity, we first remove the symmetric constraint C = C
T , and then show that the learned

C can satisfy the constraint naturally. We decouple Equation (15) into k × k independent subprob-
lems. Considering the (p,q)th subproblem, we obtain:

min
Cpq

CpqGpq + τ (Cpq − Kpq )2,

s .t . Cpq ≥ 0, (16)

where Gpq =
∑n

i=1 (Sip − Siq )2WipWiq , K = Y
T

Y and τ =
γ2

γ1
. Setting the derivative of Equation (16)

w.r.t. Cpq to zero, we obtain:

Cpq =
2τKpq −Gpq

2τ
. (17)

If 2τKpq − Gpq < 0, it is easy to verify that Equation (16) increases monotonically in the range
[0,∞), and thus the optima is 0. Therefore, the optima of Cpq is

Cpq = max

(
2τKpq −Gpq

2τ
, 0

)
. (18)

Note that Gpq = Gqp and Kpq = Kqp , and thus C computed by Equation (18) also satisfies that

C = C
T .

3.6 Algorithm and Discussion

Algorithm 1 summarizes the whole process of SCCABG. The following Theorem provides the
convergence analysis of SCCABG.

Theorem 2. With bounded hyper-parameter γ1, Algorithm 1 always converges.

Proof. Since the self-paced parameter λ always changes, it is difficult to analyze the conver-
gence of Algorithm 1 directly. To address this issue, we should focus on λ first. Notice that λ only
directly influences W, and thus we review the solution of W again. We can rewrite the subproblem
w.r.t. Wi . (Equation (10)) as a more concise form:

min
Wi .

W
T
i .MWi . − λ1

T
Wi .,

s .t . 0 ≤ Wi . ≤ 1, (19)

where M = γ1B + diaд(Ai . ) and diaд(Ai . ) denotes the diagonal matrix whose diagonal vector is
Ai . , 1 and 0 denotes the vectors whose elements are all 1’s and 0’s, respectively. Note that for any
p,q, 0 ≤ Spq ≤ 1, and thus 0 ≤ Ai . ≤ 1. According to Equation (18), we have 0 ≤ Cpq ≤ Kpq and

K = Y
T

Y which is constant, and thus all elements in C have lower and upper bounds. Therefore, B

also has lower and upper bound. With boundedγ1, M also has a lower and upper bound. Obviously,
M is non-negative, and thus the lower bound of the elements in M is zero. Denote u as the upper
bound of tr (M) + 1

T
M1, i.e., u = sup(tr (M) + 1

T
M1). We have the following lemma.

Lemma 1. When λ > u, the global optima of Equation (19) is Wi . = 1.
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Proof. We use the proof by contradiction. Here, we wish to prove that when λ > u, all elements
in the global optima Wi . of Equation (19) (denoted by w

∗) are 1’s. To apply the proof by contra-
diction, we assume the contrary is true, i.e., there exists at least one element in w

∗ (denoted by
w∗j ), which is t where t < 1, and then we try to find a contradiction. To find the contradiction, we

construct a new vector ŵ which is the same with w
∗, except that the jth element of ŵ (denoted by

ŵ j ) is 1 instead of t .
Now, we compute the difference between ŵ

T
Mŵ − λ1

T
ŵ and w

∗T
Mw

∗ − λ1
T

w
∗:

ŵ
T

Mŵ − λ1
T

ŵ −w
∗T

Mw
∗ + λ1

T
w
∗ (20)

= 2
∑
k�j

(ŵ j −w∗j )Mk jw
∗
k +Mj j (ŵ2

j − (w∗j )2) − λ(ŵ j −w∗j )

= 2
∑
k�j

(1 − t )Mk jw
∗
k +Mj j (1 − t2) − λ(1 − t )

= (1 − t ) 
��2
∑
k�j

Mk jw
∗
k +Mj j (1 + t ) − λ���

< (1 − t ) 
��2
∑
k�j

Mk j + 2Mj j − λ���
< (1 − t ) 
��2

∑
k�j

Mk j + 2Mj j − u���
≤ 0,

where the first inequality is due to that all Mi j is non-negative, t < 1, and all w∗
k
≤ 1. The last

inequality is due to u ≥ tr (M) + 1
T

M1.
Equation (20) shows that, ŵ

T
Mŵ−λ1

T
ŵ < w

∗T
Mw

∗−λ1
T

w
∗, which means ŵ leads to a smaller

objective value than the optima w
∗. It is a contradiction, which means the assumption (i.e., there

exists at least one element in w
∗ is not 1) is false. Therefore, all elements in w

∗ should be 1’s. This
concludes the proof. �

Now get back to the proof of Theorem 2. Note that, in Algorithm 1, we double λ in each iteration.
If Algorithm 1 does not converge before λ > u, when λ > u, according to Lemma 1, all elements
in Wi . should be 1 to obtain the minimum of Equation (19).

Therefore, after several iterations, either Algorithm 1 converges or all elements of W become 1.
When all elements of W reach 1, according to Algorithm 1, λ will be fixed, and thus λ and W will not
change. We just need to focus on F, S, and C. When updating F, we find the closed-form solution
of Equation (11), which makes the objective function Equation (9) decrease. When updating S,
we solve Equation (14) by the trust region reflective method, which can also make the objective
function decrease. When updating C, we also obtain its closed-form solution as Equation (18), and
thus also makes the objective function decrease. Since Equation (9) has a lower bound, Algorithm 1
always converges. �

In fact, SCCABG often converges very fast. In our experiments, it often converges within 10
iterations.

Then, we analyze the space and time complexity of the proposed method. Since the graph we
used is a bipartite graph and C is a k ×k matrix, the space complexity of our method isO (nk +k2).
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ALGORITHM 1: SCCABG Algorithm

Input: m base clustering results, number of clusters c , hyper-parameters γ1 and γ2.
Output: Consensus clustering results

1: Construct the initial bipartite graph from m based clustering and obtain Y, and initialize the
age parameter λ = 0.5, S = Y, and C = Y

T
Y.

2: while not converge do

3: Update W by solving Equation (10).
4: Update F by Theorem 1.
5: Update S by solving Equation (14).
6: Update C by Equation (18)
7: Update the age parameter by λ = λ ∗ 2, until all elements in W reach 1.
8: end while

9: Obtain the final bipartite graph G′ from S.
10: Obtain the final clustering result from the c connective component in G′.

For the time complexity, we analyze it step by step. In each iteration, when updating W and
S, we need to solve n quadratic programming problem and each problem involves k variables,
respectively. Note that, in practice, we set γ1 a small value to make sure the quadratic program-
ming problem is convex. Therefore, each subproblem costsO (k3) time and updating W and S costs
O (nk3) time. Updating F needs O (nk2) as introduced in the previous subsection. When updating
C, we need to compute G whose time complexity isO (nk2). Supposing the number of iterations is
l , the whole time complexity is O (lnk3). In practice, we often have n � k , and thus the time com-
plexity is linear with n. Notice that, when optimizing S and W, the n subproblems are independent,
and thus they can be solved in parallel for a further speedup.

At last, we discuss the relationship between our self-paced consensus clustering and robust
consensus clustering, which is very related to our self-paced schema. Robust consensus clustering
extracts noises from original data or base results and recovers the clean results for consensus learn-
ing. For example, Tao et al. proposed spectral based robust consensus clustering methods [46, 47];
Huang et al. adopted probability trajectories to robust consensus clustering [15]; Wang et al. devel-
oped an ensemble method to handle incomplete data [52]. Although these methods often provide
more robust results than conventional consensus clustering methods, they only pay attention to
the outliers or noises without distinguishing between uncontaminated data. However, in our self-
paced schema, the contaminated data can be viewed as the most unreliable ones. In addition, the
uncontaminated data can also be handled in order of reliability. Therefore, our method provides a
more sophisticated framework to handle all instances, no matter contaminated ones or uncontam-
inated ones. Moreover, in our framework, the reliability of each edge is changing in the process of
learning. With the growth of λ, W will be increasingly large until it reaches 1, which means the
edges become increasingly more reliable with learning. At last, we will obtain a reliable structured
bipartite graph G′ for clustering.

3.7 Hanldle Incomplete Data

In many real applications, it often happens that some data are missing in some base results, espe-
cially in some federated learning scenarios. For example, in the bank system of a city, most people
are the customers of only a few banks in the city. When these banks do the base clustering locally,
the data of many people are missing in each base result. Then, they upload the incomplete base
results to the cloud server, and learn the consensus result from the incomplete base results in the
cloud server. Most existing consensus clustering methods may fail because they need complete
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Fig. 5. A toy example of the incomplete consensus clustering. There are five instances x1, . . . , x5, wherein the

first base clustering result, x1, . . . , x3 belong to π1, and x4 and x5 belong to π2. The second base clustering

result is the same as the first one. In the third base result, x1 and x2 belong to π5, x4 and x5 belong to π4, and

x3 is missing. The middle side shows the initial bipartite graph, and the right side shows the corresponding

Y and initial similarity matrix of clusters C.

data for consensus learning. The problem is also different from the widely studied incomplete
multi-view learning [33, 53, 54, 57]. Incomplete multi-view clustering needs to use the original
features of data, whereas incomplete consensus clustering does not access the original features of
data, which is more challenging and is quite under-explored.

Fortunately, since the proposed method applies self-paced learning to characterize the reliabil-
ity of each edge and re-learns the bipartite graph according to its reliability, it is robust and can
handle the incomplete setting easily. In more detail, when constructing the initial bipartite graph,
we construct Y directly by observed base results. For example, if xi is missing in the pth base clus-

tering Cp , then for any clusters in Cp (i.e., π
p
1 , . . . ,π

p

ki
), we do not set any edges between xi and

π
p
1 , . . . ,π

p

ki
initially. Then, we learn the final S by optimizing Equation (9). Due to the regularized

term
∑n

i=1

∑k
p,q=1Cpq (Sip − Siq )2WipWiq , it can fill the initial bipartite graph automatically. To see

this, if xi is missing in the base clustering which contains πq , and πq is similar to πp (i.e., Cpq

is large), and it is reliable that xi belongs to πp (i.e., Sip and Wip are large), then by minimizing
Equation (9), Siq will be large with high reliabilityWiq , which means that in the learned bipartite
graph S, it is more likely that there is an edge between xi and πq in the final graph, although xi

is missing in the initial graph. Since some values are missing in the initial bipartite graph, some
values in the initial W are small, because they are unreliable due to the absence in the initial ob-
servation, and the initial similarity matrix C is often not accurate. With the learning, more and
more edges become increasingly more reliable and C also becomes more accurate. Therefore, the
adaptive cluster similarity measuring mechanism is also necessary to handle the incomplete data.

Figure 5 shows a simple toy example. Notice that x3 is missing in the base clustering C3. There-
fore, in the initial bipartite graph, there are no edges between x3 and π5 or π6. Despite this, the
proposed one can automatically learn the relationship between x3 and π5 or π6 by minimizing the

carefully designed term
∑n

i=1

∑k
p,q=1Cpq (Sip−Siq )2WipWiq . In the first iteration, we initialize S = Y,

and then we evaluate the reliability W3. . Notice that π5 is similar to π1, which leads to a largeC15.
When minimizing C15 (S31 − S35)2W31W35 w.r.t.W35, since C15 is large and S31 = 1 and S35 = 0,W35

should be small, which means S35 = 0 is unreliable and thus there may be an edge between x3 and
π5. In fact, in the first iteration, after optimizing W, we obtain W3. = [1, 1, 1, 1, 0.3976, 1], where
W35 = 0.3976 which is small.

Then, we optimize S by fixing other variables. When minimizingC15 (S31−S35)2W31W35 w.r.t. S35,
since initial S31 = 1, it will pull S35 away from 0 to 1, i.e., it automatically fills the missing edges. In

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 62. Publication date: February 2023.



62:16 P. Zhou et al.

fact, after optimizing S, we obtain S3. = [0.93, 0, 0.93, 0, 0.886, 0]. Notice that although in the initial
bipartite graph, S35 is missing and we initialize it as 0, after the first iteration, it can automatically
fill it with a large value (i.e., 0.886) which means there should be an edge between x3 and π5. It
well demonstrates that the proposed method is robust and can handle the incomplete consensus
clustering setting.

4 EXPERIMENTS

In this section, we first use a toy example to show the effectiveness of the proposed method, and
then we compare it with other state-of-the-art consensus clustering methods on several benchmark
datasets.

4.1 Toy Example

Before comparing with other methods on benchmark datasets, we first provide a toy example to
show the effectiveness of SCCABG intuitively.

We use the two-moon data as the toy example. We run k-means five times with different num-
bers of clusters (in the range 2, 4, . . . , 10) as the five base clustering results. The five base results
are shown in Figure 6(a)–(e). It can be seen that k-means cannot handle this non-linear manifold
data well. We use the five base results to construct the initial bipartite graph G and show it in
Figure 6(f). The red points indicate the instances and the black points indicate the clusters. We
can find that, in Figure 6(f), all instances and clusters are entangled together because of the un-
reliable base results. Then, we run our SCCABG on G to learn the structured bipartite graph G′.
Our SCCABG converges in nine iterations. Figure 6(g) and 6(h) show the learned G′ in the 4th
and 9th iteration, respectively. Note that in the 9th iteration, our method can already discover the
two-moon structure of data.

From Figure 6, we have some interesting observations. Firstly, although all base k-means meth-
ods fail on the non-linear manifold data, our consensus clustering can handle it well. Secondly,
from Figure 6(f) and (g), we find that in the first several iterations, our method prefers to prop-
agate the connective information on the graph, so that it will add some new edges to the graph.
From Figure 6(g) and (h), it is shown that in the last several iterations, SCCABG prefers to parti-
tion the graph by removing some edges to make sure the learned graph contains just c connec-
tive components. The process is reasonable. If we partition the graph before propagating connec-
tive information, the graph will be broken into a lot of pieces and the propagation will be more
difficult.

4.2 Benchmark Datasets

We conduct experiments on the following eight benchmark datasets:

— ALLAML [12]. It is a dataset that consists of 72 bone marrow samples for leukemia diagnosis.
It contains 7,129 probes from 6,817 human genes.

— GLIOMA [26]. It is a microarray data for glioma subtypes. It contains 50 samples with 4,434
features in four subtypes of glioma.

— Tr41 [59]. It is a text dataset from Text Retrieval Conference (TREC). It contains 878 texts
with 7,454 features in 10 classes.

— Tdt2 [7]. It is a text dataset containing 10,212 documents with 36,771 features in 96 categories.
— TOX [26]. It is a gene dataset containing 171 instances with 5,748 features in four classes.
— K1b [59]. It is a text dataset from the WebACE project, where each document is a web page.

It contains 2,340 documents with 21,839 features in five classes.
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Fig. 6. Toy example results on the two-moon data. (a)–(e) show the 5 k-means base clustering results. (f)

shows the initial bipartite graph G constructed by the five base results. (g) shows the learned bipartite graph

G′ in the 4th iteration of SCCABG. (h) shows the final learned bipartite graph G′ of SCCABG (it is obtained

in the 9th iteration).
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Table 1. Description of the Datasets

#instances #features #classes

ALLAML 72 7,129 2

GLIOMA 50 4,434 4

Tr41 878 7,454 10

Tdt2 10,212 36,771 96

TOX 171 5,748 4

K1b 2,340 21,839 6

Medical 706 1,449 17

USPS 11,000 256 10

— Medical [27]. It is originally a multi-label text dataset. Following [27, 66], we use the 706
instances with single label. It contains 1,449 features and 17 classes.

— USPS.1 It is an image dataset containing 11,000 16×16 handwritten digit images in 10 classes.

The information of these datasets is summarized in Table 1.

4.3 Experimental Setup

Following the setup in [51, 66], we also apply k-means to generate the base clustering results. In
more detail, we run k-means 200 times with different random initializations to obtain 200 base
results. Then, we partition them into 10 subsets, with 20 in each one. Next, we run consensus
clustering methods on each subset and report the average results on the 10 subsets. We compare
the proposed SCCABG with the following algorithms:

— KM. It is the mean result of all base k-means clustering.
— KM-best. It is the best result among all base k-means results.
— CSPA [43]. Cluster-based Similarity Partitioning Algorithm (CSPA) adopts the rela-

tionship between instances to construct a measure of pairwise similarity and applies the
similarity to recluster the data to obtain the final consensus clustering result.

— HGPA [43]. HyperGraph Partitioning Algorithm (HGPA) combines the base results to
generate a hypergraph and applies a constrained minimum cut objective on the hypergraph
for consensus clustering.

— MCLA[43]. Meta-CLustering Algorithm (MCLA) transforms the consensus clustering
into a cluster correspondence problem. Then, the groups of clusters, which are called meta-
clusters, are identified and combined.

— NMFC [28]. Nonnegative Matrix Factorization based Consensus clustering (NMFC)
uses nonnegative matrix factorization to learn the consensus clustering result.

— RCE [66]. Robust Clustering Ensemble (RCE) explicitly extracts the noises on the con-
nective matrices to recover the clean connective matrices, and then it ensembles the clean
matrices by minimizing the KL-divergence between the base matrices and consensus matrix.

— MEC [45], Multi-view Ensemble Clustering (MEC) is a robust consensus clustering
method on connective matrices, which uses sparse and low-rank decomposition to integrate
base clustering and extract the noises. Notice that, although it is proposed to handle multi-
view clustering, since it only takes the connective matrices as inputs without access to the
original data, it can be used as a baseline in our consensus clustering task.

1https://cs.nyu.edu/~roweis/data.html.
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Table 2. Average ACC and Standard Deviation on All Datasets

Methods ALLAML GLIOMA Tr41 Tdt2 Tox K1b Medical USPS

KM
0.6545 0.4239 0.5626 0.4104 0.4229 0.6726 0.3996 0.4435
±0.0644 ±0.0347 ±0.0717 ±0.0188 ±0.0322 ±0.0980 ±0.0364 ±0.0289

KM-best
0.7292 0.4880 0.6946 0.4460 0.4825 0.8559 0.4707 0.5057
±0.0118 ±0.0193 ±0.0468 ±0.0081 ±0.0152 ±0.0246 ±0.0268 ±0.0141

CSPA [43]
0.6583 0.4100 0.5213 0.2850 0.4246 0.4531 0.3500 0.4475
±0.0134 ±0.0271 ±0.0282 ±0.0047 ±0.0373 ±0.0027 ±0.0150 ±0138

HGPA [43]
0.5444 0.4180 0.4894 0.2959 0.3854 0.5326 0.2950 0.1004
±0.0403 ±0.0394 ±0.0549 ±0.0041 ±0.0286 ±0.0469 ±0.0283 ±0.0000

MCLA [43]
0.6722 0.4000 0.5698 0.4000 0.4152 0.7383 0.4017 0.4438
±0.0149 ±0.0133 ±0.0392 ±0.0088 ±0.0242 ±0.0913 ±0.0197 ±0.0239

NMFC [28]
0.6722 0.4140 0.6323 0.3716 0.4269 0.5860 0.3789 0.4362
±0.0149 ±0.0212 ±0.0370 ±0.0169 ±0.0226 ±0.0348 ±0.0183 ±0.0320

RCE [66]
0.6708 0.4260 0.6391 – 0.4105 0.6887 0.3851 –
±0.0161 ±0.0097 ±0.0227 ±0.0264 ±0.0372 ±0.0301

MEC [45]
0.6056 0.3940 0.6559 – 0.4304 0.8190 0.3627 –
±0.0360 ±0.0366 ±0.0444 ±0.0310 ±0.0901 ±0.0167

LWEA [16]
0.6736 0.4320 0.6719 0.5744 0.4234 0.8279 0.4208 0.4111
±0.0210 ±0.0140 ±0.0473 ±0.0273 ±0.0127 ±0.0760 ±0.0076 ±0.0108

LWGP [16]
0.6750 0.4320 0.6483 0.4288 0.4193 0.7172 0.4047 0.4477
±0.0176 ±0.0103 ±0.0340 ±0.0103 ±0.0259 ±0.0773 ±0.0141 ±0.0215

RSEC [46]
0.5917 0.4180 0.6367 0.3029 0.4041 0.8409 0.3490 0.3032
±0.0908 ±0.0503 ±0.0435 ±0.0772 ±0.0243 ±0.0511 ±0.0303 ±0.0624

DREC [60]
0.6819 0.4280 0.6243 0.3657 0.4205 0.6462 0.3926 0.4354
±0.0249 ±0.0103 ±0.0271 ±0.0036 ±0.0408 ±0.0654 ±0.0195 ±0.0161

SPCE [63]
0.6861 0.4420 0.7346 0.6653 0.4485 0.8663 0.4534 0.3259
±0.0238 ±0.0199 ±0.0757 ±0.0741 ±0.0185 ±0.0201 ±0.0127 ±0.0339

TRCE [64]
0.6917 0.4400 0.6812 0.6273 0.4491 0.8899 0.4356 0.4505
±0.0333 ±0.0063 ±0.0403 ±0.0457 ±0.0189 ±0.0134 ±0.0227 ±0.0168

CESHL [68]
0.6736 0.4420 0.6952 0.5301 0.4404 0.8619 0.4574 0.4495
±0.0220 ±0.0063 ±0.0658 ±0.0479 ±0.0247 ±0.0501 ±0.0205 ±0.0237

SCCABG
0.7139 0.4620 0.7244 0.8350 0.4427 0.8881 0.4720 0.4620

±0.0450 ±0.0247 ±0.0505 ±0.0672 ±0.0168 ±0.0207 ±0.0140 ±0.0193

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

— LWEA [16]. Locally Weighted Evidence Accumulation (LWEA) designs a local weight-
ing strategy and applies a hierarchical agglomerative consensus clustering method based on
such a local weighting strategy.

— LWGP [16]. Locally Weighted Graph Partitioning (LWGP) designs a local weighting
strategy and applies a graph partition consensus clustering method on such a local weighting
strategy.

— RSEC [46]. Robust Spectral Ensemble Clustering (RSEC) is a spectral based robust con-
sensus clustering method on connective matrices, which can reduce the noises on the con-
nective matrices.

— DREC [60]. Dense Representation Ensemble Clustering (DREC) learns a dense repre-
sentation from base results and applies it to construct a pairwise similarity matrix for the
consensus clustering.
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Table 3. Average NMI and Standard Deviation on All Datasets

Methods ALLAML GLIOMA Tr41 Tdt2 Tox K1b Medical USPS

KM
0.0882 0.1629 0.5843 0.6111 0.1374 0.5493 0.4209 0.4406
±0.0490 ±0.0391 ±0.0512 ±0.0072 ±0.0397 ±0.0608 ±0.0286 ±0.0166

KM-best
0.1772 0.2347 0.6713 0.6240 0.2164 0.6853 0.4806 0.4762
±0.0547 ±0.0227 ±0.0253 ±0.0055 ±0.0269 ±0.0302 ±0.0194 ±0.0047

CSPA [43]
0.0815 0.1716 0.5919 0.5589 0.1436 0.4071 0.3992 0.4342
±0.0137 ±0.0281 ±0.0154 ±0.0028 ±0.0446 ±0.0067 ±0.0125 ±0.0163

HGPA [43]
0.0110 0.1509 0.5084 0.5385 0.1083 0.3917 0.3613 0.0000
±0.0141 ±0.0362 ±0.0351 ±0.0088 ±0.0211 ±0.0742 ±0.0329 ±0.0000

MCLA [43]
0.0909 0.1327 0.6044 0.6070 0.1329 0.5944 0.4296 0.4446
±0.0117 ±0.0291 ±0.0242 ±0.0044 ±0.0165 ±0.0695 ±0.0185 ±0.0149

NMFC [28]
0.0909 0.1550 0.6512 0.5930 0.1434 0.4995 0.4259 0.4471
±0.0117 ±0.0270 ±0.0188 ±0.0042 ±0.0286 ±0.0212 ±0.0187 ±0.0138

RCE [66]
0.0899 0.1624 0.6499 – 0.1344 0.6068 0.4475 –
±0.0125 ±0.0163 ±0.0183 ±0.0204 ±0.0104 ±0.0190

MEC [45]
0.0485 0.1312 0.6758 – 0.1313 0.6818 0.4089 –
±0.0429 ±0.0433 ±0.0270 ±0.0308 ±0.0707 ±0.0289

LWEA [16]
0.0935 0.1686 0.6666 0.7183 0.1236 0.6948 0.4185 0.4211
±0.0192 ±0.0207 ±0.0394 ±0.0091 ±0.0289 ±0.0645 ±0.0148 ±0.0074

LWGP [16]
0.0932 0.1682 0.6535 0.6266 0.1333 0.6115 0.4266 0.4452
±0.0142 ±0.0177 ±0.0281 ±0.0053 ±0.0280 ±0.0493 ±0.0109 ±0.0136

RSEC [46]
0.0495 0.1544 0.6449 0.4670 0.1184 0.6615 0.4036 0.2774
±0.0491 ±0.0455 ±0.0483 ±0.0342 ±0.0137 ±0.0528 ±0.0487 ±0.0809

DREC [60]
0.1006 0.1641 0.6514 0.5985 0.1394 0.5774 0.4510 0.4358
±0.0218 ±0.0189 ±0.0169 ±0.0013 ±0.0276 ±0.0410 ±0.0203 ±0.0098

SPCE [63]
0.1237 0.3010 0.6846 0.7125 0.1961 0.6993 0.4549 0.3362
±0.0126 ±0.0152 ±0.0589 ±0.0427 ±0.0139 ±0.0599 0.0130 ±0.0494

TRCE [64]
0.1150 0.2289 0.6849 0.7275 0.1541 0.7496 0.4622 0.4506
±0.0278 ±0.0193 ±0.0333 ±0.0236 ±0.0298 ±0.0218 ±0.0266 ±0.0103

CESHL [68]
0.0936 0.1888 0.6968 0.6091 0.1439 0.7303 0.3772 0.4532
±0.0197 ±0.0118 ±0.0471 ±0.0585 ±0.0285 ±0.0557 ±0.0119 ±0.0176

SCCABG
0.1459 0.3107 0.6920 0.8391 0.2642 0.7559 0.4205 0.4655

±0.0331 ±0.0315 ±0.0445 ±0.0407 ±0.0063 ±0.0327 ±0.0148 ±0.0051

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

— SPCE [63]. Self-Paced Clustering Ensemble (SPCE) learns a consensus matrix from mul-
tiple connective matrices with self-paced multiple graph learning.

— TRCE [64]. Tri-level Robust Clustering Ensemble (TRCE), which learns a consensus
clustering result by a multiple graph learning method. When fusing the multiple graphs, it
considers three levels of robustness, i.e., the base result level, the graph level, and the data
level.

— CESHL [68]. Clustering Ensemble with Structured Hypergraph Learning (CESHL) is
a consensus clustering method with hypergraph learning. Different from the conventional
hypergraph based method, it learns a dynamical structured hypergraph in the process of
consensus learning.
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Table 4. Average ARI and Standard Deviation on All Datasets

Methods ALLAML GLIOMA Tr41 Tdt2 Tox K1b Medical USPS

KM
0.0997 0.0776 0.4309 0.2110 0.1021 0.4758 0.2368 0.2911
±0.0103 ±0.0060 ±0.0256 ±0.0025 ±0.0381 ±0.1210 ±0.0310 ±0.0047

KM-best
0.1990 0.1595 0.5917 0.2388 0.1794 0.7183 0.3061 0.3384
±0.0213 ±0.0306 ±0.0577 ±0.0103 ±0.0307 ±0.0432 ±0.0336 ±0.0128

CSPA [43]
0.0850 0.0768 0.4274 0.1422 0.1112 0.2551 0.1951 0.2843
±0.0371 ±0.0181 ±0.0190 ±0.0010 ±0.0391 ±0.0042 ±0.0110 ±0.0064

HGPA [43]
0.0066 0.0571 0.3412 0.1461 0.0752 0.2896 0.1518 -0.0008
±0.0161 ±0.0275 ±0.0483 ±0.0038 ±0.0167 ±0.0628 ±0.0282 ±0.0000

MCLA [43]
0.1101 0.0795 0.4511 0.1908 0.1048 0.5521 0.2303 0.2934
±0.0523 ±0.0115 ±0.0421 ±0.0086 ±0.0213 ±0.1242 ±0.0231 ±0.0242

NMFC [28]
0.1079 0.0779 0.5271 0.1792 0.1132 0.3693 0.2230 0.2896
±0.0209 ±0.0247 ±0.0262 ±0.0058 ±0.0258 ±0.0301 ±0.0211 ±0.0203

RCE [66]
0.1070 0.0918 0.5360 – 0.0992 0.5138 0.2344 –
±0.0215 ±0.0067 ±0.0227 ±0.0221 ±0.0300 ±0.0231

MEC [45]
0.0655 0.0913 0.5024 – 0.0963 0.6562 0.1897 –
±0.1012 ±0.0219 ±0.0760 ±0.0227 ±0.1241 ±0.0330

LWEA [16]
0.1106 0.0955 0.5413 0.4340 0.1042 0.6968 0.2510 0.3085
±0.0302 ±0.0112 ±0.0528 ±0.0020 ±0.0181 ±0.1142 ±0.0060 ±0.0147

LWGP [16]
0.1083 0.0935 0.5462 0.2133 0.1030 0.5234 0.2447 0.3074
±0.0268 ±0.0067 ±0.0338 ±0.0073 ±0.0252 ±0.1120 ±0.0101 ±0.0155

RSEC [46]
-0.0130 0.0648 0.4812 0.1804 0.0791 0.6990 0.1884 0.1421
±0.0602 ±0.0452 ±0.0711 ±0.0791 ±0.0218 ±0.0829 ±0.0338 ±0.0787

DREC [60]
0.1231 0.0923 0.5216 0.1812 0.1091 0.4633 0.2430 0.3052
±0.0361 ±0.0073 ±0.0293 ±0.0038 ±0.0312 ±0.0661 ±0.0190 ±0.0167

SPCE [63]
0.1053 0.1180 0.6361 0.4201 0.1265 0.7432 0.2520 0.0063
±0.0623 ±0.0160 ±0.0931 ±0.0791 ±0.0251 ±0.0601 ±0.0088 ±0.0200

TRCE [64]
0.1065 0.0952 0.5576 0.2039 0.0988 0.6281 0.2514 0.2913
±0.0570 ±0.0150 ±0.0698 ±0.0113 ±0.0230 ±0.1785 ±0.0182 ±0.0186

CESHL [68]
0.0960 0.0861 0.4564 0.2394 0.0901 0.4534 0.2155 0.2807
±0.0503 ±0.0346 ±0.2368 ±0.0895 ±0.0276 ±0.3724 ±0.0767 ±0.0498

SCCBAG
0.1917 0.1280 0.6150 0.5281 0.1161 0.7914 0.2562 0.3177

±0.0406 ±0.0195 ±0.0659 ±0.1262 ±0.0245 0.0457 ±0.0056 ±0.0147

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

For a fair comparison, we set the number of clusters to the true number of classes for all algo-
rithms on all datasets. λ in our method is automatically adjusted as introduced in Algorithm 1. The
parameter ρ is also automatically determined. In more detail, it is initialized by ρ = 1. Then, if the
rank of L is larger than n + k − c , i.e., the rank constraint is not strong enough, we double it. If
its rank is smaller than n + k − c , i.e., the rank constraint is too strong, we reduce it by half. We
tune the hyper-parameter γ1 in the range [10−5, 100], because as discussed before, γ1 should not
be too large to guarantee the convexity of the subproblems. The hyper-parameter γ2 is tuned in
[10−3, 103] by grid search. We use Accuracy (ACC), Normalized Mutual Information (NMI),
Adjust Rand Index (ARI), and F1 Score (F1) to evaluate the clustering performance. To validate
the statistical significance of the results, we also do t-test on the results.

The experiments are conducted using MATLAB on a PC with Windows 10, 4.2-GHz CPU, and
32-GB memory.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 62. Publication date: February 2023.



62:22 P. Zhou et al.

Table 5. Average F1 Score and Standard Deviation on All Datasets

Methods ALLAML GLIOMA Tr41 Tdt2 Tox K1b Medical USPS

KM
0.5779 0.3812 0.5217 0.2361 0.3516 0.6373 0.3298 0.3657
±0.0046 ±0.0043 ±0.0195 ±0.0024 ±0.0079 ±0.0223 ±0.0063 ±0.0040

KM-best
0.6269 0.4356 0.6568 0.2637 0.4116 0.8200 0.3912 0.4074
±0.0117 ±0.0254 ±0.0488 ±0.0105 ±0.0296 ±0.0300 ±0.0261 ±0.0114

CSPA [43]
0.5686 0.3513 0.4926 0.1577 0.3351 0.4309 0.2692 0.3564
±0.0175 ±0.0162 ±0.0246 ±0.0010 ±0.0280 ±0.0062 ±0.0089 ±0.0058

HGPA [43]
0.5315 0.3483 0.4031 0.1502 0.2905 0.4825 0.2291 0.1045
±0.0076 ±0.0119 ±0.0371 ±0.0025 ±0.0228 ±0.0321 ±0.0152 ±0.0000

MCLA [43]
0.5815 0.3739 0.5125 0.1993 0.3358 0.6280 0.3041 0.3674
±0.0247 ±0.0145 ±0.0426 ±0.0114 ±0.0203 ±0.1019 ±0.0136 ±0.0205

NMFC [28]
0.5798 0.3778 0.5936 0.1973 0.3487 0.5874 0.2967 0.3651
±0.0104 ±0.0157 ±0.0445 ±0.0612 ±0.0174 ±0.0678 ±0.0199 ±0.0178

RCE [66]
0.5794 0.3836 0.6060 – 0.3464 0.6566 0.3148 –
±0.0107 ±0.0062 ±0.0187 ±0.0204 ±0.0267 ±0.0209

MEC [45]
0.6143 0.3885 0.6236 – 0.3573 0.7627 0.2892 –
±0.0528 ±0.0123 ±0.0411 ±0.0206 ±0.1009 ±0.0284

LWEA [16]
0.5811 0.3868 0.6203 0.4644 0.3642 0.8028 0.3460 0.3845
±0.0149 ±0.0095 ±0.0426 ±0.0200 ±0.0142 ±0.0840 ±0.0065 ±0.01154

LWGP [16]
0.5801 0.3859 0.6149 0.2340 0.3473 0.6778 0.3340 0.3800
±0.0135 ±0.0065 ±0.0292 ±0.0077 ±0.0185 ±0.0788 ±0.0128 ±0.0136

RSEC [46]
0.6210 0.3733 0.5594 0.2399 0.3213 0.6924 0.2569 0.2673
±0.0405 ±0.0322 ±0.0847 ±0.0763 ±0.0233 ±0.0795 ±0.0367 ±0.0525

DREC [60]
0.5875 0.3843 0.5916 0.2022 0.3501 0.6113 0.3161 0.3779
±0.0180 ±0.0072 ±0.0254 ±0.0052 ±0.0238 ±0.0546 ±0.0166 ±0.0146

SPCE [63]
0.5809 0.3899 0.6726 0.3462 0.3712 0.8010 0.3491 0.1859
±0.0270 ±0.0147 ±0.0885 ±0.0442 ±0.0216 ±0.0433 0.0635 ±0.0131

TRCE [64]
0.5801 0.3898 0.6282 0.2435 0.3484 0.7739 0.3431 0.3662
±0.0268 ±0.0095 ±0.0603 ±0.0131 ±0.0205 ±0.0965 ±0.0150 ±0.0163

CESHL [68]
0.5749 0.3926 0.5771 0.3357 0.3475 0.7442 0.3393 0.3605
±0.0233 ±0.0100 ±0.1503 ±0.0637 ±0.0182 ±0.1400 ±0.0537 ±0.0334

SCCABG
0.6547 0.4372 0.6850 0.5831 0.3967 0.8737 0.3665 0.3911

±0.0349 ±0.0122 ±0.0522 ±0.1033 ±0.0121 ±0.0257 ±0.0053 ±0.0138

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

4.4 Experimental Results

Tables 2–5 show the average ACC, NMI, ARI, and F1 results and standard deviation of all con-
sensus clustering methods, respectively. The bold font indicates that the difference is statistically
significant (i.e., the p-value of t-test is smaller than 0.05). Note that, because of their high space
complexity, RCE and MEC run out of memory on the large dataset Tdt2 and USPS.

From these tables, we find that:

— Many consensus clustering methods, including ours, outperform the KM, which indicates the
effectiveness of the consensus clustering, i.e., by integrating multiple weak base clustering
results, we can learn a better consensus result.

— Compared with other consensus clustering methods, SCCABG outperforms them on most
datasets, which demonstrates its superiority. Especially on the large dataset Tdt2, SCCABG
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Fig. 7. Convergence curves on ALLAML, GLIOMA, Lung, and Tox datasets.

achieves 25.5% and 15.3% improvements compared with the second best baseline methods
on ACC and NMI, respectively. Even compared with the robust methods (RCE, MEC, RSEC,
and TRCE), SCCABG also performs better, because it can handle data more sophisticatedly,
i.e., the self-paced framework cannot only recognize noises or outliers but also handle those
uncontaminated but difficult instances, as discussed in Section 3.6.

— On most datasets, the proposed SCCABG is at least closed to KM-best. It means that
SCCABG can provide a stable good clustering result compared with base single clustering.
Notice that, SCCABG only takes base clustering results as inputs without accessing original
data or labels. On some datasets, SCCABG can even perform better than KM-best, which
means SCCABG can alleviate the side effects caused by unreliable results and apply the use-
ful information in the unreliable ones to further improve the performance of the reliable
ones. It well demonstrates the effectiveness of our SCCABG.

In Figure 7, we show the convergence curves of SCCABG on ALLAML, GLIOMA, Medical, and
Tox datasets. The results on other datasets are similar. From Figure 7, we can find that SCCABG
often converges within 10 iterations, which demonstrates the claim in Section 3.6. Notice that the
curves do not look as smooth as many other machine learning methods. It is because of the special
update of λ in our algorithm. The detailed reason is as follows. At the first several iterations, λ in
the term −λ‖W‖1 is updated as λ ← λ ∗ 2, and thus the objective function decreases faster and
faster with iterations. After several iterations (e.g., five iterations on Medical dataset), all values in
W reach 1, and according to our algorithm (i.e., Line 7 in Algorithm 1), λ will not change after the
5th iteration. By the first several iterations, the variables F, S, and C have almost converged, and
thus the objective function hardly changes in the following iterations with a fixed λ.
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Fig. 8. The visualization of graph matrices learned by RCE, MEC, SPCE, TRCE, and SCCABG. (a) shows the

initial graph matrix which is constructed by YY
T . (b)–(e) show the learned graph matrices from RCE, MEC,

SPCE, and TRCE, respectively. (f) shows the graph constructed from the learned bipartite graph of SCCABG

by SS
T .

Fig. 9. An example of the data with its weight w on USPS dataset.

Since our method and many other methods are graph based methods, we also show the visual-
ization of the learned final graph matrices of our SCCABG and other graph based methods (i.e.,
RCE, MEC, SPCE, TRCE) in Figure 8. The ideal graph matrix should have a clean block diagonal
structure. Figure 8(a) shows the initial graph constructed from input base clustering results di-
rectly by YY

T . The graph is not clean enough, which can be seen from the zone denoted by the red
circle. Figure 8(b)–(e) show the learned graph matrix of RCE, MEC, SPCE, and TRCE, respectively.
Figure 8(f) shows the graph constructed from the learned bipartite graph of SCCABG by SS

T . The
learned graph of our method is cleaner than other methods. For example, from the zones denoted
by the red circles of RCE, SPCE, and TRCE, we can see that in SCCABG, the second, third and
fourth clusters can be divided more clearly. From the zone denoted by the green circle of MEC, we
can find that the second cluster in MEC is fuzzier than SCCABG.

Since we apply self-paced learning, we involve the weight matrix W to represent the difficulty
or the reliability of data. Here we show an example on USPS dataset, which is a handwritten
digit image dataset. Notice that W is an n-by-k matrix, where each element in W represents the
reliability of an edge in the bipartite graph. To obtain the difficulty or reliability of each data, we
need to calculate the weight vector w ∈ [0, 1]n by computing the mean of each row of W. The
largerwi is, the easier or more reliable xi is and the earlier xi is involved in the consensus learning.
Figure 9 shows some example images with differentwi from 1 to 0. From Figure 9, we can find that
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Table 6. Clustering Results Compared with Degenerated Versions

Methods Measures ALLAML GLIOMA Tr41 Tdt2 Tox K1b Medical USPS

SCCBG-W

ACC
0.6681 0.4080 0.6136 0.5011 0.4053 0.8405 0.3980 0.4496

±0.0122 ±0.0301 ±0.1113 ±0.0352 ±0.0447 ±0.0643 ±0.0826 ±0.0281

NMI
0.0894 0.1567 0.6039 0.6433 0.1239 0.6888 0.3220 0.4509

±0.0104 ±0.0401 ±0.1461 ±0.0116 ±0.0433 ±0.0667 ±0.1076 ±0.0231

ARI
0.1030 0.0665 0.4799 0.2353 0.0973 0.6963 0.2066 0.3074

±0.0174 ±0.0504 ±0.1493 ±0.0342 ±0.0306 ±0.1030 ±0.0673 ±0.0161

F1
0.5755 0.3887 0.5791 0.2918 0.3568 0.8098 0.3275 0.3806

±0.0084 0.0074 ±0.1049 ±0.0278 ±0.0239 ±0.0766 ±0.0469 ±0.0141

SCCBG [62]

ACC
0.6861 0.4500 0.6973 0.7164 0.4339 0.8663 0.4592 0.4423

±0.0279 ±0.0343 ±0.0644 ±0.0689 ±0.0182 ±0.0369 ±0.0151 ±0.0091

NMI
0.1252 0.2163 0.6847 0.7548 0.2131 0.7212 0.3918 0.4603

±0.0330 ±0.0674 ±0.0547 ±0.0459 ±0.0513 ±0.0512 ±0.0244 ±0.0117

ARI
0.1284 0.1064 0.5622 0.4931 0.1030 0.7617 0.2484 0.3081

±0.0464 ±0.0085 ±0.0765 ±0.1572 ±0.0282 ±0.0596 ±0.0074 ±0.0155

F1
0.6441 0.4143 0.6410 0.5460 0.3837 0.8550 0.3609 0.3813

±0.0488 ±0.0131 ±0.0613 ±0.1304 ±0.0160 ±0.0387 ±0.0062 ±0.0128

SCCABG

ACC
0.7139 0.4620 0.7244 0.8350 0.4427 0.8881 0.4720 0.4620

±0.0450 ±0.0247 ±0.0505 ±0.0672 ±0.0168 ±0.0207 ±0.0140 ±0.0193

NMI
0.1459 0.3107 0.6920 0.8391 0.2642 0.7559 0.4205 0.4655

±0.0331 ±0.0315 ±0.0445 ±0.0407 ±0.0063 ±0.0327 ±0.0148 ±0.0051

ARI
0.1917 0.1280 0.6150 0.5281 0.1161 0.7914 0.2562 0.3177

±0.0406 ±0.0195 ±0.0659 ±0.1262 ±0.0245 0.0457 ±0.0056 ±0.0147

F1
0.6547 0.4372 0.6850 0.5831 0.3967 0.8737 0.3665 0.3911

±0.0349 ±0.0122 ±0.0522 ±0.1033 ±0.0121 ±0.0257 ±0.0053 ±0.0138

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

easier images have large weights, which are involved in the consensus learning earlier and harder
images have small weights. For example, the last one with w = 0 whose true label is “6”, but it is
often assigned to the cluster with label “4” and thus its weight is much lower.

4.5 Experiments on Space and Time Consuming

In Figure 10, we show the memory used by all methods on all datasets. From Figure 10, we can find
that the memory consumption of the proposed SCCABG is better than most compared methods.
Notice that RCE and MEC run out-of-memory on Tdt2 and USPS datasets, and thus have no results.
As introduced before, the space complexity of SCCABG is O (nk + k2), which is linear with the
number of instances. However, some other ensemble methods are based on the co-association
matrix, whose space complexity is O (n2). That is why some methods consume much more space
than ours.

Figure 11 shows the running time of all methods on all datasets. On the small datasets (i.e.,
ALLAML and GLIOMA), which only contain no more than 100 instances, SCCABG is slower than
other methods. Despite this, SCCABG can obtain the results within 2 seconds. Notice that the time
complexity of SCCABG isO (nk3), where n is the number of instances and k is the total number of
clusters. On the small datasets, n is comparable to or even smaller than k . That is why SCCABG
is slower than other methods on these two small datasets. However, in practice, n is often much
larger than k , like other datasets we used. On these datasets, SCCABG is faster than many other
ensemble methods, especially the co-association matrix based methods, whose time complexity is
often square or cubic in the number of instances. For example, on the USPS dataset, which contains
11,000 instances, SCCABG only consumes several hundreds of seconds, whereas some compared
methods cost several tens of thousands of seconds.
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Fig. 10. Memory consumption (Kb) of all methods.
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Fig. 11. Running time (Sec.) of all methods.
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Fig. 12. Clustering results on different values of γ1 and γ2.

4.6 Ablation Study

To demonstrate the effectiveness of the self-paced learning and the adaptive cluster similarity
measuring strategy, we compare our SCCABG with the following two degenerated versions:

— SCCBG-W, which is our method without self-paced learning. In more detail, we fix all the
elements in the weight matrix W as one and do not update them. Since we do not evaluate
the reliability of edges, we also remove the self-paced regularized term and adaptive cluster
similarity measuring term.
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Fig. 13. Clustering results with different numbers of base clusteringsm.

— SCCBG [62], which is our self-paced version with fixed cluster similarity matrix C. It is also
the method proposed in our previous conference version [62].

Table 6 shows the results compared with SCCBG-W and SCCBG. Compared with SCCBG-W,
SCCBG often achieves better performance, which indicates the effectiveness of the self-paced learn-
ing framework. With the carefully designed self-paced regularized term, SCCBG can well evaluate
the reliability of each edge (i.e., W), and alleviate the side effects caused by the unreliability edges
in the early model. Compared with SCCBG, SCCABG further improves the performance. It demon-
strates the effectiveness of the adaptive cluster similarity measure method, i.e., adaptively updating
the cluster similarity will characterize the reliability of edges better than the fixed method.

4.7 Hyper-Parameter Study

In this subsection, we study the effect of the hyper-parameters γ1 and γ2. As discussed before,
γ1 should be small to guarantee the convexity of the subproblems. So we tune it in [10−5, 100].
We tune γ2 in the range [10−3, 103]. Figure 12 shows the ACC and NMI results on Tr41, K1b, and
Medical datasets with different hyper-parameters. Results on other datasets are similar. It can be
seen that, SCCABG is not sensitive with parameter γ2 ∈ [10−3, 103] (and it often achieves the
best results when γ2 ∈ [100, 101]), and works well when γ1 is in the range [10−5, 10−3]. When γ1

grows, the performance will deteriorate, which is in line with our previous discussion. Notice that,
the conference version SCCBG, which fixes C = YY

T and never updates C, is equivalent with
SCCABG with γ2 → +∞. Therefore, its performance is somewhat worse than SCCABG, as shown
in the ablation study.
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Fig. 14. Clustering results with different numbers of clusters ki in each base clustering.

Moreover, we also show the effect of the number of base clusteringsm and the number of clusters
ki in each base result. Figure 13 shows the ACC and NMI on Tr41 and K1b with {10, 20, . . . , 100}
base clusterings. Figure 14 shows the ACC and NMI on Tr41 and K1b with different numbers
of clusters ki in each base result. If the true number of classes is k , we show different ki in the
range [k − 4,k + 4]. For example, the real number of classes of Tr41 is 10, and thus we show ki

in {6, 7, 8, . . . , 14}; the real number of classes of K1b is 6, and we show ki in {2, 3, 4, . . . , 10}. The
results on other datasets are similar. From Figures 13 and 14, we can see that SCCABG is insensitive
withm and ki .

4.8 Experiments on Incomplete Data

As introduced in Section 3.7, the proposed method can handle incomplete datasets. To show its
effectiveness, we also conduct experiments on incomplete datasets. In more detail, for each base
result, we set a missing ration r = {0, 0.1, . . . , 0.5}, and randomly remove instances according to r .
For example, r = 0.3 means in each base result, there are 30% instances are missing; r = 0 means
the base results are complete without any missing data. Notice that the compared methods cannot
directly handle the missing values and need the complete data as inputs. Hence, for the compared
methods, we apply a random filling method to impute the missing values before doing consensus
clustering. Specifically, if xi is missing in the pth base clustering, we randomly assign xi to one
cluster in the pth base clustering, and then we run the compared consensus clustering methods on
the filled data. Figure 15 shows the ACC results of all methods on all datasets with a missing ratio
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Fig. 15. ACC results on all datasets with missing ratio from 0 to 0.5.
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Table 7. Clustering Results on MNIST

Measures KM KM-best HGPA MCLA LWGP SCCABG

ACC 0.5468 ± 0.0084 0.5998 ± 0.0166 0.3042 ± 0.0369 0.5497 ± 0.0125 0.5413 ± 0.0164 0.5583 ± 0.0235

NMI 0.4933 ± 0.0041 0.5204 ± 0.0139 0.2065 ± 0.0539 0.4882 ± 0.0128 0.4899 ± 0.0030 0.4943 ± 0.0055

The bold font indicates that the difference is statistically significant (i.e., the p-value of t -test is smaller than 0.05).

from 0 to 0.5. The results on other metrics are similar. The black solid line represents our SCCABG.
From Figure 15, we find that the performance of many compared methods deteriorates rapidly with
the increase of missing data. However, the performance of our method is relatively more stable on
most datasets, which demonstrates that the proposed method can handle incomplete data better
than the conventional consensus clustering methods.

4.9 Experiments on Large Dataset

To show the effectiveness of the proposed method on the large scale dataset, we also conducted
experiments on MNIST dataset [23]. MNIST is an image dataset, which contains 70,000 handwrit-
ten images in 10 categories. The size of each image is 28×28. Following the previous experimental
setup, we first also run k-means to generate 200 base results, and partition them into 10 subsets,
with 20 in each one. Then, we run consensus clustering methods on each subset. Since the dataset
is too large for most compared methods, only HGPA, MCLA, and LWGP have a result and other
methods run out-of-memory. Table 7 shows the results. From Table 7, we find that SCCABG also
outperforms HGPA, MCLA, and LWGP methods on this large dataset.

5 CONCLUSION

In this paper, we proposed a novel self-paced consensus clustering method with adaptive bipartite
graph learning. We constructed an initial bipartite graph with the base results, and then learned a
structured bipartite graph from it adaptively. In the process of bipartite graph learning, we adopted
the idea of self-paced learning, which automatically determined the reliability of each edge and
involved them in bipartite graph learning in the order of reliability. At last, we directly obtained
the final result by finding the connective components of the learned bipartite graph without any
uncertain postprocessing. We conducted extensive experiments on toy and benchmark datasets.
Compared with other state-of-the-art consensus clustering methods, our SCCABG often achieved
better performance, which well demonstrated its superiority and effectiveness.
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