
Pattern Recognition 105 (2020) 107375 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Unsupervised feature selection with adaptive multiple graph learning 

Peng Zhou 

a , b , ∗, Liang Du 

c , Xuejun Li a , Yi-Dong Shen 

b , Yuhua Qian 

c 

a School of Computer Science and Technology, Anhui University, Hefei 230601, China 
b The State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China 
c School of Computer and Information Technology, Shanxi University, Taiyuan 030 0 06, China 

a r t i c l e i n f o 

Article history: 

Received 21 May 2019 

Revised 31 March 2020 

Accepted 12 April 2020 

Available online 28 April 2020 

Keywords: 

Feature selection 

Multiple graph learning 

Consensus learning 

a b s t r a c t 

Unsupervised feature selection methods try to select features which can well preserve the intrinsic struc- 

ture of data. To represent such structure, conventional methods construct various graphs from data. In 

most cases, those different graphs often contain some consensus and complementary information. To 

make full use of such information, we construct multiple base graphs and learn an adaptive consen- 

sus graph from these base graphs for feature selection. In our method, we integrate the multiple graph 

learning and the feature selection into a unified framework, which can jointly characterize the structure 

of the data and select the features to preserve such structure. The underlying optimization problem is 

hard to solve, and we solve it via a block coordinate descent schema, whose convergence is guaranteed. 

The extensive experiments well demonstrate the effectiveness of our proposed framework. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Feature selection is a fundamental problem in machine learn-

ng and has attracted considerable attention in the past decades

1–5] . In many real-world applications, the data contain a large

umber of features, which may cause the curse of dimensionality.

oreover, some features are often contaminated by noises, which

ay deteriorate the performance of machine learning methods. To

ddress these problems, feature selection is applied to select a

mall number of informative and non-redundant features for the

achine learning methods. Since feature selection usually leads

o better learning performance, it has been successfully applied

n many real applications such as text categorization [6,7] , image

rocessing [8] , and bioinformatics [9] . According to the availabil-

ty of the labels, these methods can be categorized into supervised

10,11] , semi-supervised [12] and unsupervised algorithms [5,13] .

ue to the absence of the label information, the unsupervised fea-

ure selection is a more challenging problem. 

Since the label information is absent in unsupervised learning,

eature selection method can only make use of the information

f data itself, or equivalently speaking, the intrinsic structure of

ata [14–18] . Conventional methods often construct a graph from

he data to represent such structure. According to the way of con-

tructing the graph, the existing methods can be roughly catego-
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ized into two classes: (1) using a pre-defined graph , which of-

en pre-defines a graph and selects features to preserve such graph

tructure [19–21] ; (2) leaning an adaptive graph , which learns an

daptive graph simultaneously in the process of feature selection

5,17,22] . 

Note that both the two classes only use one single graph (ei-

her a pre-defined graph or an adaptive graph) to represent the

tructure of data. However, in real applications, the structure may

e too complex to be captured by one single graph. Given a data

et, various graphs can be constructed based on different distance

etrics, such as Euclidean distance and cosine similarity. In most

ases, these different graphs contain some consensus and com-

lementary information. Those conventional methods which only

se one single graph may ignore such useful information. More-

ver, some data are naturally performed in multiple graph struc-

ures. For example, relationships of research papers contain several

raphs such as co-author graph and citation graph. When handling

hese data, the aforementioned methods may fail to fully utilize

he given graphs. 

To address these problems, in this paper, we characterize the

ntrinsic structure with adaptive multiple graph learning. Multi-

le graph learning tries to learn a consensus graph from multiple

ase graphs. For example, Nie et al. [23] proposed a parameter-

ree multiple graph learning method which learned the weight of

ach graph automatically; Zhan et al. [24] learned a consensus

raph with minimizing disagreement between different views and

onstraining the rank of the Laplacian matrix. In our framework,

rstly, if the data contains multiple graphs, we directly use them

https://doi.org/10.1016/j.patcog.2020.107375
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as base graphs; if otherwise, we construct some pre-defined graphs

from data. Then we learn the consensus graph from these base

graphs simultaneously in the process of feature selection. On the

one hand, we use the result of feature selection to guide the mul-

tiple graph learning, and on the other hand, we apply the learned

graph to select the informative features. When learning the con-

sensus graph, since the scale of the graphs may vary dramatically,

we first normalize all base graph adjacency matrices as transi-

tion matrices and learn a consensus transition matrix from them.

Since the transition matrix has a clear probabilistic interpretation,

we use the Kullback-Leibler divergence for consensus measuring.

When selecting the features, we impose a weight on each feature

and try to transform the weighted data into a subspace which can

well preserve the intrinsic structure represented by the consensus

graph. This procedure repeats until convergence. 

To integrate the multiple graph learning and feature selection

into a unified framework as introduced before, we carefully design

a non-convex objective function. To optimize it, we propose a block

coordinate descent algorithm and prove its convergence. We con-

duct extensive experiments on benchmark data sets by comparing

our algorithm with several state-of-the-art unsupervised feature

selection methods, and the experimental results show that ours

outperforms these state-of-the-art methods. 

The paper is organized as follows. Section 2 describes some

related work. Section 3 presents in detail the main algorithm

of our method. Section 4 shows the experimental results, and

Section 5 concludes the paper. 

2. Related work 

To handle high dimensional data, many feature learning meth-

ods are proposed. One kind of feature learning method is feature

extraction [25,26] . Feature extraction learns a projection to map

the data from high dimensional feature space to a low dimen-

sional space. For example, in [27] , a multilinear principal compo-

nent analysis was proposed to project the original image data to a

low dimensional space; a sparse discriminant projection method

was provided in [28] ; most recently, Lai et al. [29] proposed a

joint learning framework which could simultaneously extract fea-

tures and learn the subspace. Although feature extraction has been

demonstrated promising performance, feature selection, which is

another kind of feature learning method, has better interpretability

because it keeps the semantic meaning of the features [11] . More-

over, the cost of feature collection for learning can be reduced by

feature selection because that we only need to collect the selected

features in feature selection method rather than use all the fea-

tures for projection as feature extraction does [11] . 

In feature selection, unsupervised feature selection is a more

challenging problem due to the absence of labels, and thus has

attracted considerable attention. Unsupervised feature selection

methods try to select features which can well preserve the intrin-

sic structure of data. For example, Zhu et al. [30] selected fea-

tures which can reconstruct the original data well; Wang et al.

[31] proposed unsupervised feature selection method to preserve

the pseudo-labels generated by matrix factorization; Zhou et al.

[32] selected the features to preserve the balance structure of data.

Besides these structures, another kind of popular representation of

such intrinsic structure is graph. Therefore, many methods con-

struct the graph from data and select features to preserve the

graph structure. As introduced before, the graph based feature se-

lection methods can be roughly categorized into two classes: (1)

using a pre-defined graph; (2) learning an adaptive graph. 

In the first class, the feature selection methods often construct

a pre-defined graph such as heat kernel graph and cosine graph,

and then select features which can preserve such graph structure

well. For example, Zhao et al. [33] constructed heat kernel graph
or feature selection; Yang et al. [19] applied local total scatter

nd between-class scatter matrix to select features; Zhao et al.

20] used the pairwise similarity graph for feature selection; Zhu

t al. [21] proposed a co-regularized method using the heat ker-

el to construct the similarity matrix; Du et al. [34] constructed a

 -nn graph for each feature and ranked the features by the linear

econstruction weights. 

In the second class, the methods construct an adaptive graph

n the procedure of feature selection, i.e., the structure of graph

hanges with selected features. For example, Du et al. [35] learned

n adaptive graph for feature selection by preserving the global

nd local structure; Nie et al. [17] adaptively learned the lo-

al structure from the results of feature selection; Zhang et al.

36] constructed a hypergraph from all features to characterize the

igh-order similarities of data and selected features by the hyper-

raph clustering, and then they further proposed an adaptive hy-

ergraph learning method to jointly learn the hypergraph and se-

ect features [37] . Fan et al. [18] proposed an unsupervised discrim-

nant feature selection method which constructed the graph with

seudo-labels obtained by the results of subspace clustering; Zhu

t al. [38] applied subspace clustering to learn the similarity matrix

o guide the feature selection; Luo et al. [5] constructed the adap-

ive graph with structure regularization; Zheng et al. [22] learned

 low rank structure for feature selection; Li et al. [39] proposed

 generalized uncorrelated regression with adaptive graph for fea-

ure selection. 

Both the classes of methods only use a single graph for fea-

ure selection, which may ignore the abundant information in the

ata. Therefore, we propose a feature selection method with adap-

ive multiple graph learning. Note that, our method is significantly

ifferent from the existing multiple graph feature selection method

40] . Firstly, that is a two-step method, i.e., it first linearly com-

ines multiple graphs to obtain a new Laplacian matrix and then

pplies it to select features. Therefore, the two tasks (graph com-

ining and feature selection) cannot be boosted by each other like

ur method. Secondly, in that method, the weight of each graph is

et manually as hyper-parameters, which makes it difficult to han-

le data which contains more than two graphs. In our method, the

eights and the consensus graph are both learned automatically in

he process of feature selection. 

It is worthy to mention another related fields called multi-view

eature selection. These methods [41–44] select features from mul-

iple views by integrating the information in each view. For exam-

le, Wang et al. [41] proposed a multi-view feature selection to

ntegrate the features in all views and learn the weight for each

eature via a joint structured sparsity-inducing norm; Liu et al.

42] presented a k-means based robust multi-view feature selec-

ion method. Since in each view we can construct a graph, some

raph based multi-view feature selection methods are similar to

he multiple graph feature selection. For example, Wang et al.

43] linearly combined all Laplacian matrices of multiple views and

elected features with the consensus Laplacian matrix. Different

rom this method which linearly combines all graphs, our method

earns a non-parametric consensus graph in such a way that we

an effectively enlarge the region from which an optimal graph can

e chosen for feature selection [45,46] , i.e., we have a great chance

o learn a better consensus graph. 

. Feature selection with multiple graphs 

In this section, we introduce our feature selection method with

daptive multiple graph learning. Firstly, we introduce some nota-

ions in this paper. We use a bold uppercase character to denote a

atrix and a bold lowercase character to denote a vector. For an

rbitrary matrix M ∈ R 

r×s , M i . denotes its i th row, M . i denotes its

 th column, and M ij denotes its ( i, j )th element. 
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Fig. 1. The framework of our method. We use the data matrix X and the multiple base graphs A (1) , ���, A ( m ) as input. Our framework is an iteration schema. We first use 

weight vector v to select features with the consensus graph A and then apply the selected features to learn the consensus graph A with the base graphs A (1) , ���, A ( m ) . This 

process repeats until convergence. 
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.1. Framework 

In our method, we seamlessly integrate the multiple graph

earning and feature selection into a unified framework, for the

eason that, we hope the two tasks can be boosted by each other.

n the one hand, a clearer intrinsic graph structure can guide us to

elect more informative features; and on the other hand, the more

nformative features can be helpful to construct a better graph

tructure. In more details, we construct multiple graphs from data

nd learn a consensus graph from these multiple graphs; mean-

hile, we use a feature weight vector to impose the weight on

ach feature and project the weighted data matrix into a low di-

ensional space to preserve the structure of the consensus graph.

e jointly learn the consensus graph and select features until it

onverges. Fig. 1 shows the framework of our method. 

.2. Multiple graph learning 

Let X = [ x 1 , · · · , x n ] ∈ R 

d×n denotes a data set matrix contain-

ng n instances with d features, whose columns correspond to in-

tances and rows to features. The task of feature selection is to

elect the most informative features from the original d features.

n unsupervised feature selection, since the labels are absent, we

hould find the features which can preserve the intrinsic structure

ell. To this end, we make use of multiple graph adjacency ma-

rices of data A 

(1) , · · · , A 

(m ) ∈ R 

n ×n , where A 

(k ) 
i j 

≥ 0 denotes the ( i,

 )th element in A 

( k ) . A 

(k ) 
i j 

> 0 means the i th instance and the j th

nstance are connected by an edge in the k th graph and A 

(k ) 
i j 

= 0

therwise. Note that, in our method we use the graphs which do

ot contain the self-connections, i.e., A 

(k ) 
ii 

= 0 . These graphs can be

enerated in standard ways. For example, we can use Euclidean

istance or cosine similarity to generate distance/similarity matrix

nd obtain k -nn graph directly from the distance/similarity matrix,

r we can directly use the input multiple graphs when we han-

le multiple graph data. In our framework, we learn the intrinsic

tructure from these m graph matrices and adopt it to find the in-

ormative features. 
Since the scale of the graphs may vary dramatically, we need

o normalize all graphs. In our method, we normalize all input

raph adjacency matrices by A 

(k ) ← 

(
D 

(k ) 
)−1 

A 

(k ) as transition ma-

rices, where D 

( k ) is a diagonal matrix whose i th diagonal element

 

(k ) 
ii 

= 

∑ 

j A 

(k ) 
i j 

. After the normalization, we have 
∑ 

j A 

(k ) 
i j 

= 1 . It is

asy to verify that A 

( k ) is a transition matrix, i.e., A 

(k ) 
i j 

indicates the

robability of jumping in one step from the i th instance to the j th

nstance in a Markov random walk in the k th graph. Obviously, the

arger A 

(k ) 
i j 

is, the more probably the i th instance jumps to the j th

nstance, the more probably the i th instance and the j th instance

as a connection. 

Since we aim to learn a consensus transition matrix A from A 

(1) ,

��, A 

( m ) , we should minimize the disagreement among these ma-

rices. Considering that the elements in each row (i.e. A 

(k ) 
i. 

) have

 clear probabilistic interpretation, we use the Kullback-Leibler di-

ergence for consensus measuring. More formally, we minimize
 

k α
2 
k 

∑ 

i KL (A 

(k ) 
i. 

, A i. ) , where αk is the weight of the k th graph.

aking the definition of Kullback-Leibler divergence into it, we

inimize the following objective function: 

in 

α, A 

m ∑ 

k =1 

α2 
k 

n ∑ 

i =1 

n ∑ 

j=1 

A 

(k ) 
i j 

log 
A 

(k ) 
i j 

A i j 

s.t. 

n ∑ 

j=1 

A i j = 1 , 0 ≤ A i j ≤ 1 , A ii = 0 (1) 

m ∑ 

k =1 

αk = 1 , αk ≥ 0 . 

here the first constraint makes sure that A i . is a probability dis-

ribution and A ii = 0 makes the vertices not self-connection; and

he constraint 
∑ m 

k =1 αk = 1 is to make sure that all weights sum

p to 1. Note that the Kullback-Leibler divergence is asymmetry

nd we minimize KL (A 

(k ) 
i. 

, A i. ) instead of KL (A i. , A 

(k ) 
i. 

) . If we mini-

ize KL (A i. , A 

(k ) 
i. 

) , A ij must be zero as long as one of A 

(1) 
i j 

, · · · , A 

(m ) 
i j 

s zero because A 

(k ) 
i j 

appears in denominator. Obviously, it is not

hat we really want. 
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3.3. Feature selection 

To select the features, we define a d -dimension vector v =
[ v 1 , v 2 , · · · , v d ] to indicate the weights of features, i.e., the larger

v i is, the more important the i th feature is. Then we define a diag-

onal weight matrix V whose i th diagonal element V ii = 

√ v i . Here,

the square root is for convenience of computation. To impose the

weight on the instances, we can get the weighted data matrix as

VX . 

Since A is learned from m graphs and indicates the intrinsic

structure of the data, we wish the selected features can preserve

such structure. Here we use a transformation matrix W ∈ R 

d×c to

project all weighted instances VX from original space into a new

space by solving the following problem: 

min 

W , V 

n ∑ 

i =1 

n ∑ 

j=1 

∥∥W 

T Vx i − W 

T Vx j 

∥∥2 

2 
A i j + λ1 ‖ W ‖ 

2 
F , 

s.t. W 

T VXX 

T VW = I , (2)

d ∑ 

i =1 

v i = 1 , v i ≥ 0 . 

where λ1 is a balancing parameter for the � 2 regularized term. The

first term is to preserve the intrinsic structure in the projected

space. In more detail, for each weighted instance Vx i , one of the

other weighted instance Vx j is considered as the neighborhood of

Vx i with probability A ij . It can be found that by minimizing Eq. (2) ,

a large A ij will lead to a small ‖ W 

T Vx i − W 

T Vx j ‖ 2 2 
which means

the embedded values of Vx i and Vx j (i.e. W 

T Vx i and W 

T Vx j ) should

be close. The first constraint can remove the redundant features

and avoid the trivial solution, and the second constraint makes the

weights in the range [0,1]. 

3.4. Final objective function 

To integrate the multiple graph learning and feature selection

into a unified framework, we combine Eqs. (1) and (2) to obtain

the following objective function: 

min 

W , A , V , α

n ∑ 

i =1 

n ∑ 

j=1 

∥∥W 

T Vx i − W 

T Vx j 

∥∥2 

2 
A i j + λ1 ‖ W ‖ 

2 
F 

+ λ2 

m ∑ 

k =1 

α2 
k 

n ∑ 

i =1 

n ∑ 

j=1 

A 

(k ) 
i j 

log 
A 

(k ) 
i j 

A i j 

, (3)

s.t. W 

T V XX 

T VW = I , 

d ∑ 

i =1 

v i = 1 , v i ≥ 0 , 

m ∑ 

k =1 

αk = 1 , αk ≥ 0 , 

n ∑ 

j=1 

A i j = 1 , 0 ≤ A i j ≤ 1 , A ii = 0 . 

where λ2 is another balancing parameter. 

In this framework, the learned graph matrix A is a non-

parametric consensus graph instead of explicitly combining graphs

and optimizing structured (e.g. linear) compositions of the graph

matrices. Therefore, the learned graph can be as flexible as possi-

ble to fit the complex data. Moreover, multiple graph learning and

feature selection can be iteratively boosted by each other. 
.5. Optimization 

Firstly, since the variable W and V are entangled, we use a vari-

ble transformation which replaces VW by � to simplify the op-

imization. By using this transformation, we rewrite the objective

unction as: 

min 

, A , v , α

n ∑ 

i =1 

n ∑ 

j=1 

∥∥�T x i − �T x j 

∥∥2 

2 
A i j + λ1 tr (�

T diag(v ) −1 �) 

+ λ2 

m ∑ 

k =1 

α2 
k 

n ∑ 

i =1 

n ∑ 

j=1 

A 

(k ) 
i j 

log 
A 

(k ) 
i j 

A i j 

, (4)

s.t. �T XX 

T � = I , 

d ∑ 

i =1 

v i = 1 , v i ≥ 0 , 

m ∑ 

k =1 

αk = 1 , αk ≥ 0 , 

n ∑ 

j=1 

A i j = 1 , 0 ≤ A i j ≤ 1 , A ii = 0 . 

here diag ( v ) means a diagonal matrix whose diagonal vector is v .

Since Eq. (4) involves four groups of variables, we optimize it

n a block coordinate descent schema. In more detail, we optimize

ne group of variables while fixing the other variables. This proce-

ure repeats until convergence. 

.5.1. Optimizing � by fixing v, A and α
When other variables are fixed, Eq. (4) is rewritten as follows: 

in 

�
tr (�T XL X 

T �T ) + λ1 tr (�
T diag(v ) −1 �) , 

s.t. �T XX 

T � = I . (5)

here L = D − (A + A 

T ) / 2 and D is a diagonal matrix whose diag-

nal element D ii = 

∑ 

j (A i j + A ji ) / 2 . 

When optimizing �, Eq. (5) can be solved by generalized eigen-

alue decomposition. However, the time complexity of generalized

igenvalue decomposition is O (d 3 + nd 2 ) and is very time consum-

ng because in feature selection tasks the number of features d is

ften large. 

To address this problem, we use a two-step optimization in-

pired from Du and Co-authors [35,47] . Define a matrix Y ∈ R 

n ×c 

hose columns are eigenvectors of L , i.e., LY .i = γi Y .i where γ i is

ne of the eigenvalues of L . If we can find �′ ∈ R 

d×c such that

 

T �′ = Y , then each column of �′ is an eigenvector of the gen-

ralized eigenvalue decomposition problem according to Du and

o-authors [35,47] . 

Therefore, we can solve � in Eq. (5) by the two-step opti-

ization: firstly, we solve the eigenvalue decomposition problem

Y = �Y to get Y ; and secondly, we find � by optimizing the fol-

owing problem: 

in 

�

∥∥Y − X 

T �
∥∥2 

F 
+ λ1 tr (�

T diag(v ) −1 �) . (6)

Set the derivative of Eq. (6) w.r.t. � to zero, we can get its

losed form solution: 

= (XX 

T + λ1 diag(v ) −1 ) −1 XY (7)

ote that (XX 

T + λ1 diag(v ) −1 ) is a d -by- d matrix and computing

ts inverse costs O ( d 3 ) time. For the data whose d 
 n , we can

ransform it by the Woodbury matrix identity as follows: 

= (XX 

T + λ1 diag(v ) −1 ) −1 XY (8)

= λ−1 
1 

(
diag(v ) − λ−1 

1 diag(v ) X 

(
I + λ−1 

1 X 

T diag(v ) X 

)−1 
X 

T diag(v ) 
)

XY . 
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Fig. 2. ACC results compared with SingleGraph. 
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m
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bviously, the time complexity is reduced to O (n 2 d + ndc + n 3 ) . 

According to [35] , optimizing � by the two-step method can

onotonically decrease the objective function. 

.5.2. Optimizing v by fixing �, A and α
When optimizing v , we need to minimize the following for-

ula: 

in 

v 
tr (�T diag(v ) −1 �) , (9) 

s.t. 

d ∑ 

i =1 

v i = 1 , v i ≥ 0 . 
According to Cauchy-Schwarz Inequality, we have 

r (�T diag(v ) −1 �) = 

∑ 

i 

∑ 

j �
2 
i j 

v i 
(10) 

= 

∑ 

i 

∑ 

j �
2 
i j 

v i 
·
∑ 

i 

v i 

≥
( ∑ 

i 

√ ∑ 

j 

�2 
i j 

) 2 

. 
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Fig. 3. NMI results compared with SingleGraph. 

 

 

3
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The equality in Eq. (10) holds when v i ∝ 

√ ∑ 

j �
2 
i j 

. So the closed-

form solution of Eq. (9) is 

v i = 

√ ∑ 

j �
2 
i j ∑ 

√ ∑ 

�2 

. (11)
i j i j 
.5.3. Optimizing A by fixing �, v and α
When �, v and α are fixed, Eq. (3) can be rewritten as: 

in 

A 

n ∑ 

i =1 

n ∑ 

j=1 

B i j A i j − λ2 

n ∑ 

i =1 

n ∑ 

j=1 

C i j log (A i j ) 

s.t. 

n ∑ 

j=1 

A i j = 1 , 0 ≤ A i j ≤ 1 , A ii = 0 (12)



P. Zhou, L. Du and X. Li et al. / Pattern Recognition 105 (2020) 107375 7 

Fig. 4. ACC results compared with state-of-the-art feature selection methods. 
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here B i j = 

∥∥�T x i − �T x j 
∥∥2 

2 
and C i j = 

∑ m 

k =1 α
2 
k 

A 

(k ) 
i j 

. Obviously C ii =
 and B ii = 0 . 

Since each row of Eq. (12) is decoupled, we focus on the i th

ow. Note that if A i . satisfies 
∑ n 

j=1 A i j = 1 and A ij ≥ 0, then A i . must

lso satisfy A ij ≤ 1. So we can drop the constraint A ij ≤ 1 safely.

oreover, since B ii = 0 , C ii = 0 and the constraint makes A ii = 0 ,

e only need to consider A ij for i � = j . Introducing the Lagrange
ultipliers, we obtain the Lagrange function: 

 = 

∑ 

j � = i 
B i j A i j − λ2 

∑ 

j � = i 
C i j log (A i j ) + θ

( ∑ 

j � = i 
A i j − 1 

) 

−
∑ 

j � = i 
μ j A i j 

(13) 

here θ and μ are Lagrange multipliers. 

Setting the partial derivative of L w.r.t. A ij to zero, we get: 

∂L 

∂A i j 

= B i j − λ2 

C i j 

A i j 

+ θ − μ j = 0 . (14) 



8 P. Zhou, L. Du and X. Li et al. / Pattern Recognition 105 (2020) 107375 

Fig. 5. NMI results compared with state-of-the-art feature selection methods. 
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Since Eq. (12) is convex and has a lower bound, a solution which

satisfies the Karush-Kuhn-Tucker (KKT) conditions is the global op-

tima of this subproblem. Considering its KKT conditions, we ob-

tain: 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

B i j − λ2 
C i j 

A i j 
+ θ − μ j = 0 , ∑ 

j � = i A i j = 1 , 

A i j ≥ 0 , 

μ j A i j = 0 , 

μ j ≥ 0 . 

(15)
or all j such that C ij � = 0, according to the KKT conditions, we get

 i j = 

λ2 C i j 

B i j + θ−μ j 
and A ij � = 0, so μ j = 0 . Thus A i j = 

λ2 C i j 

B i j + θ . For all j such

hat C i j = 0 , we get B i j + θ − μ j = 0 and thus μ j = B i j + θ ≥ 0 . 

Now we first find the smallest element in B ij as B ip , and then

iscuss in two cases: 

1) In the case that C ip � = 0, we calculate θ by solving
 

j: C i j � =0 

λ2 C i j 

B i j + θ = 1 in the range (−B ip , + ∞ ) . We define a func-

ion f (θ ) = 

∑ 

j: C i j � =0 

λ2 C i j 

B i j + θ and have lim θ→−B + 
ip 

f (θ ) → + ∞ and

im θ→ + ∞ 

f (θ ) = 0 . Moreover, f ( θ ) is a monotone decreasing func-
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ion in the range (−B ip , + ∞ ) . So the equation f (θ ) = 1 has and

nly has one solution in the range (−B ip , + ∞ ) . After obtaining the

olution θ , we set A i j = 

λ2 C i j 

B i j + θ and μ j = 0 for the j such that C ij � = 0.

or all other j , we set A i j = 0 and μ j = B i j + θ . It is easy to verify

hat B i j − λ2 
C i j 

A i j 
+ θ − μ j = 0 , 

∑ 

j � = i A i j = 1 and μ j A i j = 0 in the KKT

ondition are satisfied. Since θ ≥ −B ip and B ip is the smallest ele-

ent in B ij , for any μj � = 0, we have μ j = B i j + θ ≥ B i j − B ip ≥ 0 .

imilarly, for any A ij � = 0, we have A i j = 

λ2 C i j 

B i j + θ ≥ 0 . Therefore, all

KT conditions are satisfied. 

2) In the case that C ip = 0 , we first calculate f (−B ip ) . If

f (−B ip ) ≥ 1 , we have the same result that f (θ ) = 1 has and only

as one solution in the range (−B ip , + ∞ ) . So we compute θ ,

 ij and μj in the same way as in the first case and all KKT

onditions are satisfied. If f (−B ip ) < 1 , we set θ = −B ip and for

ll j such that C i j = 0 , we set μ j = B i j + θ = B i j − B ip . For other

 , we set A i j = 

λ2 C i j 

B i j −B ip 
and μ j = 0 . At last, A ip = 1 − ∑ 

j: C i j � =0 A i j =
 − ∑ 

j: C i j � =0 

λ2 C i j 

B i j −B ip 
and all other A i j = 0 . Since f (−B ip ) < 1 , A ip =

 − f (−B ip ) > 0 and μip = B ip −B ip = 0 . So all KKT conditions are

lso satisfied. 

To sum up, A ij calculated by the aforementioned method sat-

sfies all the KKT conditions in Eq. (15) and thus such A ij is the

lobal optima of this subproblem. 

.5.4. Optimizing α by fixing �, v and A 

When �, v and A are fixed, we rewrite Eq. (3) as follows: 

in 

α

m ∑ 

k =1 

α2 
k c k , 

s.t. 

m ∑ 

k =1 

αk = 1 , αk ≥ 0 . (16) 

here c k = 

∑ n 
i =1 

∑ n 
j=1 A 

(k ) 
i j 

log 
A 
(k ) 
i j 

A i j 
. 

According to Cauchy-Schwarz Inequality, the global optima of

q. (16) is 

k = 

c −1 
k ∑ 

i c 
−1 
i 

. (17) 

ccording to Eq. (17) , αk is inversely proportional to c k , i.e., the

maller c k is, the larger αk is. Note that, c k = 

∑ n 
i =1 

∑ n 
j=1 A 

(k ) 
i j 

log 
A 
(k ) 
i j 

A i j 

ndicates the difference between the k th graph and the consensus

raph, thus the small c k , which lead to a large αk , means the k th

raph A 

( k ) is close to the consensus graph, i.e., the k th graph has a

igh quality. Therefore, in our method, the learned αk can indeed

epresent the weight of the k th graph. 

To sum up, we alternatively optimize �, V, A and α until it con-

erges. Algorithm 1 summarizes the whole process. After obtaining

 , we select the l features corresponding to the largest l v i ’s. 

.6. Convergence analysis 

According to Du and Shen [35] , updating � makes the objective

unction decreasing monotonously. Computing v, A and α always

nd the global solution of each subproblem. So the objective func-

ion decreases in each iteration. Moreover, the objective function

as a lower bound. Thus our method always converges. In fact, this

lgorithm converges very fast (within no more than five iterations

n practice). 
.7. Time and space complexity 

Since we need to save m n × n graph matrices A 

(1) , ���, A 

( k ) 

nd the original data matrix X , the space complexity is O (mn 2 +
d) . Furthermore, if the graph matrix is sparse, i.e., the average

umber of edges connected to a vertex is κ and κ � n , the space

omplexity can be reduced to O (mκn + nd) . 

In each iteration of Algorithm 1 , we analyze the time com-

lgorithm 1 Feature selection with adaptive multiple graph learn-

ng. 

equire: Data matrix X , m graph adjacency matrices

A 

(1) , · · · , A 

(m ) , parameters λ1 , λ2 . 

nsure: Feature weights v . 

1: Normalize A 

(k ) ( k = 1 , · · · , m ) to make each row of it sums up

to 1. 

2: Initialize A = 

∑ m 

i =1 A 

(k ) /m , and αk = 1 /m . 

3: while not converge do 

4: Compute � by Eq. (8). 

5: Compute v by Eq. (11). 

6: Compute A by solving Eq. (15). 

7: Compute α by Eq. (17). 

8: end while 

lexity now. When optimizing �, as introduced before, the

ime complexity is O (n 2 d + ndc + n 3 ) . Optimizing V or computing

q. (11) costs O ( cd ) time. When optimizing A , we first compute B

n O ( cn 2 d ) time and C in O ( n κ) time. Since we need to solve n sub-

roblems, here we focus on the i th one. We need to solve a uni-

ariate equation 

∑ 

j: C i j � =0 

λ2 C i j 

B i j + θ = 1 . This equation has only one so-

ution and we can solve it by standard root finding algorithm. We

uppose that solving this equation costs O ( t ) time. Then we need

o compute A i . . Since we suppose that the average number of edges

onnected to a vertex is κ , i.e., there are κ non-zero values in the

 th row of A , we compute A i . in O (t + κ) time. Therefore, we can

ompute A in O (cn 2 d + (t + κ) n ) time. Optimizing α costs O ( nm κ)

ime since we need to compute m c k ’s. To sum up, the time com-

lexity is O (cn 2 d + cnd + n 3 + mκn + tn ) , thus the time complexity

s linear with the number of features d . When handling the data

et which n 
 d , we can compute � directly by Eq. (7) instead

f Eq. (8) , thus time complexity is square with the number of in-

tances n and cubic with d . 

. Experiments 

In this section, we compare our method with several state-of-

he-art unsupervised feature selection methods on benchmark data

ets. 

.1. Data sets 

We collect 8 data sets, including Coil20 [48] , Jaffe [49] , Lung [50] ,

RL [51] , Orlraws10P [51] , PIE [52] , TOX-171 [48] , and YaleB [53] . The

mportant statistics of these data sets are summarized in Table 1 . 

.2. Experimental setup 

In our method, we construct 5 k -nn graphs with k = 10 : one

inary graph using Euclidean distance, i.e., the weight of an edge

s fixed to 1; 3 heat kernel graphs with the edge weight A i j =

 

− ‖ x i −x j ‖ 2 2 
2 ∗t∗d 0 where d 0 is the average Euclidean distance of all in-

tances and t = { 0 . 1 , 1 , 10 } ; and one cosine graph with the edge

eight A i j = cos (x i , x j ) . We use these graphs because all of them
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Fig. 6. An illustration of the adjacency matrices of learned graphs in different graph based methods on Orlraws10P data set. (a) shows the learned consensus graph A in our 

method. (b)-(f) show the structure of the base graphs. (g)-(k) show the used or learned graph structure in the compared feature selection methods. 
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Table 1 

Description of the data sets. 

#instances #features #classes 

Coil20 1440 1024 20 

Jaffe 213 676 10 

Lung 203 3312 5 

ORL 400 1024 40 

Orlraws10P 100 10,340 10 

PIE 1428 1024 68 

TOX-171 171 5748 4 

YaleB 2414 1024 38 

Fig. 7. Convergence curves of our method. 
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re very widely-used graphs in machine learning tasks. We com-

are our method with the following feature selection methods: 

• AllFea . We use all features for clustering. 
• SingleGraph . We use each of the five graphs introduced before

as input in our method. Since it uses one single graph, the third

term of Eq. (3) vanishes and Eq. (3) degenerates to the follow-

ing form: 

min 

W , V 

n ∑ 

i =1 

n ∑ 

j=1 

∥∥W 

T Vx i − W 

T Vx j 

∥∥2 

2 
A 

(k ) 
i j 

+ λ1 ‖ W ‖ 

2 
F 

s.t. W 

T V XX 

T VW = I , 

d ∑ 

i =1 

v i = 1 , v i ≥ 0 . (18) 

We solve this problem by the similar block coordinate descent

method. 
• FSASL [35] . It learns the adaptive global and local structure in

the process of feature selection. 
• SOGFS [17] . It learns a graph with optimal structure for unsu-

pervised feature selection. 
• MGFS [40] . It is a two-step multiple graph feature selection

method, i.e., it first combines multiple graphs to obtain a con-

sensus graph and then uses it to select features. 
• AMFS [43] . It is a multi-view feature selection method and can

be easily adapted to handle multiple graph setting by generat-

ing a graph for each view. 
• RIPCA [54] . It is a rotational invariant projection method which

uses � 2,1 -norm to perform robust feature extraction. 
• LRPFS [22] . It is a feature selection method which tries to pre-

serve the low rank structure in the process of feature selection.
• URAFS [39] . This unsupervised feature selection method ap-

plies the generalized uncorrelated regression to learn an adap-

tive graph for feature selection. 

With the selected features, we evaluate the performance in

erms of k-means clustering by Accuracy (ACC) and Normalized

utual Information (NMI). We run experiments 10 times and re-

ort the averaged results over different number of selected fea-

ures (in the range {10, 20, ���, 200}). We tune the parameters of

ur method λ1 and λ2 in the range [10 −3 , 10 3 ] by the grid search.

or other compared methods, we tune the parameters as suggested

n their papers. For all methods on all data sets, the number of

lusters is set to the true number of classes. 

.3. Experimental results 

Firstly, we compare our method with SingleGraph method to

valuate whether it helps to use multiple graphs. Each SingleGraph

ethod uses one of the 5 k -nn graphs as input and optimizes

q. (18) . The ACC and NMI results are shown in Figs. 2 and 3 , re-

pectively. In Figs. 2 and 3 , Graph 1 represents the binary graph;

raphs 2–4 represent the heat kernel graph with t = 0 . 1 , 1 , 10 re-

pectively; and Graph 5 represents the cosine graph. We can find

hat, on the most data sets, our method outperforms SingleGraph

n all 5 graphs. It demonstrates that considering multiple graphs

an indeed improve the performance of the method using only sin-

le graph. 

Then, we compare our method with the state-of-the-art unsu-

ervised feature selection methods. Figs. 4 and 5 show the ACC

nd NMI results, respectively. The yellow horizontal line represents

he result of AllFea which is the k-means result on all features.

e can see that, on most data sets, our method can outperform

he AllFea at most time. It demonstrates that our method can not

nly largely reduce the number of features used for clustering, but

lso often improve the clustering performance. It can also be found

hat our method outperforms the state-of-the-art feature selection

ethods on most data sets, which demonstrates the effectiveness

f using adaptive multiple graph learning in feature selection. Even

f compared with MGFS and AMFS which can also handle multi-

le graphs, our method still has a better performance. This reveals

he advancement of our mechanism, i.e., learns an adaptive non-

arametric consensus graph jointly with feature selection can im-

rove the performance of feature selection. 

To illustrate the effectiveness of our method, we show the ad-

acency matrices of the learned graphs of our method and other

ompared graph based methods on Orlraws10P data set in Fig. 6 .

ig. 6 (a) shows the values in the learned A ; Fig. 6 (b)-(f) show the

djacency matrices of base graphs A 

(1) , ���, A 

(5) ; Fig. 6 (g)-(k) show

he learned or used graphs in compared graph based feature se-

ection methods. From Fig. 6 , we can see that the structure of the

earned graph in our method is clearer than not only all based

raphs but also the graphs learned by the state-of-the-art meth-

ds. Thus, the learned graph can better uncover the cluster struc-

ure of data. This may be the main reason why our method can

utperform both the single graph methods and the state-of-the-art

eature selection methods. 

We show the algorithm convergence on Coil20, Lung, ORL and

aleB data sets in Fig. 7 , and the results on other data sets are sim-

lar. The example results in Fig. 7 show that our method converges

ithin a small number of iterations, which empirically demon-

trates our claims in the previous section. 

.4. Parameter study 

We explore the affect of the parameters on clustering perfor-

ance by tuning parameters λ and λ in [10 −3 , 10 3 ] . Fig. 8 shows
1 2 
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Fig. 8. ACC and NMI w.r.t λ1 , λ2 on Coil20 and Jaffe data sets. 
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the results on Coil20 and Jaffe data sets and the results are similar

on other data sets. The results show that the performance of our

method is stable across a wide range of the parameters, thus we

can choose the parameters easily. 

5. Conclusion and future work 

In this paper, we proposed a feature selection method with

adaptive multiple graph learning. We made use of multiple graphs

to learn an adaptive consensus graph to characterize the intrinsic

structure of the data. To boost the structure learning and feature

selection, we integrated them into a unified framework. We then

presented a block coordinate descent method whose convergence
s guaranteed to optimize the introduced objective function. Exper-

mental results demonstrated that our method outperformed not

nly the ones using a single graph but also the state-of-the-art fea-

ure selection methods. 

By integrating multiple graphs for feature selection, the pro-

osed method can make full use of the complex structure of data.

oreover, it can also easily handle those data which are naturally

erformed in multiple graphs. However, there are some shortcom-

ngs of the proposed method, which we will try to address in the

uture. Firstly, although the time complexity is linear with d , it is

till cubic with the number of instances. Therefore, it may be inap-

ropriate to handle large scale data sets. In the future, we will con-

ider this scalability issue and further reduce the time and space
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omplexity. Secondly, the proposed method uses all graphs for fea-

ure selection. Some graphs may not characterize the structure of

ata well. If we use these graphs, on the one hand, they may de-

eriorate the performance of feature selection; and on the other

and, they also bring more burdens for computation. To address

his problem, we will consider the graph selection before feature

election, which can discard the bad graphs in advance. 

Besides, it would be interesting to extend the proposed method

o other feature learning tasks, such as feature extraction and

imension reduction. By considering multiple graphs of data, in

hese tasks, we can learn a more informative projection, which

ay better preserve the complex structure of data. 
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