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Deep clustering has attracted increasingly more attention in recent years. However, due to the
absence of labels, deep clustering sometimes still provides unreliable clustering results. Although
semi-supervised deep clustering can alleviate this problem to some extent by involving few human
annotations, we observe that the performance of semi-supervised clustering highly depends on the
selection of data for human labeling, but unfortunately, the supervised information selection is still a
tough problem as traditional semi-supervised methods pay no attention to it. To tackle this problem,
in this paper, we propose a novel deep active clustering method, which can actively select the key
data for human labeling and apply the human annotations to improve the deep clustering. Different
from conventional semi-supervised deep clustering methods which use fixed pre-given supervised
information, we design a simple yet effective strategy to select the informative and uncertain data
for querying annotation, which is beneficial to the clustering task. Furthermore, we integrate deep
representation learning, clustering, and data selection into a unified framework, so that each task
can be boosted by each other. Finally, we conduct extensive experiments on benchmark data sets
by comparing it with some state-of-the-art deep clustering methods and semi-supervised clustering
methods. The experimental results show that our active clustering methods can outperform both
the unsupervised and semi-supervised clustering methods, demonstrating the effectiveness of the
proposed method. The codes of this paper are released in https://doctor-nobody.github.io/codes/ADC_
codes.zip.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is a fundamental problem in unsupervised learning,
nd many classical clustering methods have been proposed in
ecent decades, such as kmeans [1], spectral clustering [2], and
ubspace clustering [3]. These methods aim to partition data into
everal clusters, such that the data in the same cluster will be
lose to each other and those in different clusters will be far apart
rom each other. Since the conventional methods often partition
ata in the original feature space, which may not reveal the
ntrinsic structure of data, the performance may be limited.

To address this issue, deep clustering has been proposed [4–
]. Deep clustering applies a deep neural network to learn an
mbedding representation, which can better characterize the in-
rinsic structure of data, and then partition data with the learned
epresentation. For example, Xie et al. proposed the Deep Embed-
ed Clustering (DEC), which applied an auto-encoder to obtain
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the latent representation and then used the Kullback–Leibler (KL)
divergence minimization to obtain the final clustering results [4];
Yang et al. adopted the Convolutional Neural Network (CNN) to
extract the latent embedding of images and performed clustering
method on such embedding [5]. Due to the strong representa-
tion capacity of the deep neural networks, deep clustering often
achieves a better performance. However, deep clustering is an
unsupervised method after all, and it may also be misled by some
noisy or difficult data due to the absence of the labels.

One natural way to address this issue is to obtain some super-
vised information for clustering, leading to the semi-supervised
deep clustering [10–14]. In many real-world applications, the
label of each data is difficult to obtain, but the pairwise relation of
data is much easier to access. For example, in the face recognition
task, we often do not know the name (i.e., the label) of the person
in the image, but we can easily tell whether the two persons
in the two images are the same person. Therefore, many semi-
supervised methods apply the pairwise constraints (i.e., whether
the two data are in the same class) as the supervised information
which will be helpful to the clustering. For example, Ren et al.
extended DEC to semi-supervised clustering by using the must-
link and cannot-link constraints [10]; Vilhagra et al. proposed a
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iamese network [15] using the pairwise constraints for text data
lustering [13]. However, the performance of semi-supervised
lustering often highly depends on the quality of the pairwise
onstraints, but unfortunately, how to appropriately select such
airwise constraints itself is a tough and challenging task.
To tackle this problem, in this paper, we propose an innova-

ive Active Deep Clustering (ADC) method, which automatically
elects the key pairs of data for labeling and applies these labeled
airs to improve the deep clustering. Different from the conven-
ional methods which use fixed pre-given pairwise constraints
nd pay no attention to the constraints selection, we design a
imple yet effective strategy to select the pairwise constraints. To
elect the key data which are helpful for clustering, we evaluate
ach pair by fully considering both the uncertain and informa-
ive properties. On one hand, the uncertain pairs often contain
ome difficult data which may mislead the clustering model.
f we obtain the experts’ annotations on these data, they can
lleviate the misleading caused by the difficult data and thus
mprove the clustering performance. On the other hand, the goal
f clustering is to find out which data are in the same cluster, or
quivalently speaking, which data have the must-link constraints.
ence, must-link constraints are more informative than cannot-
ink constraints in clustering tasks. By finding out these uncertain
nd informative pairs for querying experts’ annotations, we can
btain a more reliable clustering result. Since we try to apply
hese pairwise constraints, naturally, we first use the Siamese
etwork to learn the representation. Moreover, in this paper, we
ocus on image clustering, and thus we use CNN as the backbone
f the Siamese network. To obtain the clustering results and
elect the key pairs, we plug a clustering layer in the Siamese
etwork, which can reveal the clustering structure of the data.
hen, we use the aforementioned strategy to select key pairs for
nnotation according to the results of the clustering layer. We
eamlessly integrate the representation learning, clustering, and
he constraints active selection into a unified framework, so that
he three tasks can be boosted by each other. At last, we obtain
he final clustering results by the clustering layer.

It is worthy to highlight the contributions of this paper here:

• We propose a novel active deep clustering framework that
simultaneously learns the representation, does clustering,
and selects data for labeling.

• We design a simple yet effective strategy to select the infor-
mative and uncertain pairs for labeling, which is beneficial
to our deep clustering method.

• The experiments on benchmark data sets show that the
proposed method outperforms not only the unsupervised
deep clustering methods but also the state-of-the-art semi-
supervised deep clustering methods.

. Related work

In this section, we briefly introduce some related works in-
luding deep clustering, semi-supervised deep clustering, and
ctive learning.

.1. Deep clustering

Clustering aims to partition data into multiple clusters, so that
he similar data are in the same cluster and the dissimilar data are
n different clusters. Since clustering does not need any labels, it
ttracts much attention in past decades [16–24]. In recent years,
ith deep learning [25] being applied to various domains and
chieving promising performance, some works consider applying
eep learning to clustering, leading to deep clustering.
The basic idea of deep clustering is to use a deep neural net-
ork to learn an embedding of the original data and do clustering

2

on such learned embedding. Among various deep architectures,
one simple yet effective neural network is the auto-encoder.
Therefore, many methods applied auto-encoder to extract the
latent embedding for clustering. For example, Yang et al. learned
the embedding with auto-encoder followed by fuzzy c-means
to obtain the final clustering result [26]; Yang et al. applied
auto-encoder to learn a kmeans-friendly embedding for cluster-
ing [27]; Ji et al. combined the auto-encoder and the subspace
clustering, leading to a deep subspace clustering method [28];
Fard et al. jointly learned the latent representations with auto-
encoder and did kmeans clustering [29]; Lv et al. proposed deep
subspace clustering method with the pseudo-labels [30].

Since the convolutional neural network has demonstrated
promising performance in many tasks, especially in image pro-
cessing tasks, CNN has also been used in deep clustering. For
example, Yang et al. extended CNN to a recurrent framework
to obtain the embedding and applied agglomerative cluster-
ing to partition the data [5]; Li et al. designed a convolutional
auto-encoder to extract the latent representation for image clus-
tering [31]; Guérin et al. proposed multiple pretrained CNN for
image clustering [32]; Lin et al. used density clustering to parti-
tion the data on the latent representation learned by CNN [33];
Caron et al. proposed an end-to-end deep clustering method
with CNN [34]; Li et al. proposed contrastive clustering which
applied CNN to extract the latent representation of both the data
and clusters [35]; most recently, Liu et al. constructed multiple
graphs from the multiple views of data and proposed a new graph
convolutional networks (GCN) based clustering method, which
captured the stationary diffusion state of the multiple graphs [36].

Another famous unsupervised deep architecture is the gener-
ative model like Generative Adversarial Networks (GAN) or Vari-
ational Auto-Encoder (VAE). Some work applied the generative
model to clustering. For example, Dilokthanakul et al. and Jiang
et al. used VAE for clustering [37,38]; Chen et al. developed an
interpretable representation learning for clustering by GAN [39];
Yu et al. mixed multiple GANs for clustering [40]; Zhou et al.
proposed a deep adversarial subspace clustering method [41];
Mukherjee et al. proposed ClusterGAN which applied GAN to
clustering [42]. Different from GAN and VAE, some methods tried
to generate pseudo-labels for semantic clustering [43,44]. For
example, Gansbeke et al. generated the pseudo-labels by mining
nearest neighbors in the latent embedding space [43]; Park et al.
obtained the pseudo-labels by an off-the-shelf unsupervised clus-
tering method, and obtain the final clustering results with robust
learning [44]. Since these methods generate pseudo-labels with
high quality, they achieve state-of-the-art performance. Different
from these methods which focus on how to generate the high-
quality pseudo-labels, this paper concentrates on how to select
the key data for querying the annotations from human experts.
Since the labels used in our method are obtained from human
experts, they may be more reliable than those pseudo-labels.

2.2. Semi-supervised deep clustering

Although deep clustering achieves better performance than
conventional clustering methods, since they do not have any
guidance of human annotation, they may still be misled by
some difficult or unreliable data. To address this problem, some
semi-supervised deep clustering methods are proposed [10,12,13,
45–47]. For example, Shukla et al. proposed a semi-supervised
deep kmeans method, which needs the class labels of some
instances [12].

However, in clustering tasks, it may be difficult to obtain
the class labels of data. Sometimes human experts even do not
know the label space of data. Therefore, one more appropriate
way is to obtain the pairwise constraints. In more detail, the
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upervised information contains some must-link and cannot-link
onstraints, i.e., if two data belong to the same class, they have a
ust-link; and if two data belong to different classes, they have
cannot-link. For example, Fogel et al. used an auto-encoder

o learn the embedding and applied the pairwise constraints to
onstruct a pairwise loss on the embedding [45]; Zhang et al.
roposed a unified framework which can handle various kinds
f constraints [46]; Ohi et al. designed a convolutional auto-
ncoder with pairwise loss to learn the latent representation for
lustering [47].
Although semi-supervised deep clustering used the super-

ised information to alleviate the unreliability of the data to
ome extent, the performance highly depends on the selection of
he supervised constraints. Unfortunately, in the semi-supervised
lustering, they assume that the supervised constraints are pre-
iven and do not consider how to select the supervised con-
traints. In this paper, we apply active learning to tackle this
roblem.

.3. Active learning

Active learning selects informative data for human annotation
hen handling unlabeled data [48]. It aims to train a classifier
hat has a good generalization performance with only few se-
ected labeled data. One famous setting of active learning is batch
ode active learning, which is also the one we focus on in this
aper.
Batch mode active learning selects a batch of data for labeling

n each iteration [49–55]. Given a data set with n instances
= {x1, . . . , xn}, batch mode active learning divides it into two

isjoint sets: labeled set L and unlabeled set U , where L∪U = X
nd L ∩ U = ∅. In L, each instance has been labeled by human,
nd in U all instances are unlabeled. Given a batch size k, batch
ode active learning iteratively selects a batch of data S ⊂ U
here |S| = k (| · | is the number of instances in a set) for labeling
ntil there is no budget.
Different batch mode active learning methods often select

atches based on different strategies. For example, Hoi et al.
elected batches with Fisher information matrix [49]; Chattopad-
yay et al. proposed an active learning method based on marginal
robability distribution matching [50]; Wang et al. applied α-
elative Pearson divergence to select batches [51]. Most batch
ode active learning methods are designed for classification

asks, and thus they select instances for querying their labels.
owever, in this paper, we plug the active learning into the deep
lustering method, where we select a pair of data (xi, xj) for
uerying whether they belong to the same cluster. In clustering
asks, since the label space is often unknown, our scheme for
abeling with must-link and cannot-link is simpler and more
ractical.

. Active deep clustering

In this section, we introduce our active deep clustering in more
etail. The key to active clustering is to answer the following
wo questions: (1) How to select key data for annotation? (2)
ow to use the human annotation to do clustering? To answer
hese two questions, we propose the ADC framework which is
hown in Fig. 1. We first consider the second question. With the
uman annotation, we first use a Siamese network [15] to learn
he representation of the data and apply a clustering layer to
btain the clustering result. To answer the first question, accord-
ng to the clustering result, we design a strategy to select key
airs of data for annotation and use the annotation to guide the
iamese network training in turn. Therefore, in our method, we
ntegrate the representation learning, clustering, and constraints
ctive selection into a unified framework, so that each part can be
oosted by each other. In the following, we will introduce each
art in more detail, respectively.
3

.1. Representation learning

Inspired by metric learning [56], we need to map the original
ata into a new semantic latent space, so that in this latent space,
he data in the same cluster are close and the data in different
lusters are far apart from each other. To achieve this, given a
ata instance x, we need to learn the latent representation f (x; θ),
here f (·; θ) is the map function to map x into such latent space,
nd θ is the set of learned parameters in the map function f . In the
atent space, we wish that, given two instances xi and xj, if xi and
j belong to the same cluster, i.e., there is a must-link between
hem, f (xi; θ) and f (xj; θ) should be as close to each other as
ossible; and if xi and xj belong to different clusters, i.e., there is a
annot-link constraint between them, f (xi; θ) and f (xj; θ) should
e far apart from each other.
In this subsection, we assume that we already have a must-

ink set M and a cannot-link set C. In the first iteration, for the
fficiency consideration, we randomly select k pairs for human
nnotation to obtain the initial M and C. In the following it-
rations, M and C are constructed with the constraints active
election method, which will be introduced in more detail in
ection 3.3. In this paper, we use the similarity metric ∥f (xi; θ)−
(xj; θ)∥2, which is the Euclidean distance in the latent space.
o this end, we should optimize the following two objective
unctions, in the cases that the pair is a must-link constraint and
cannot-link constraint, respectively:

minθ

∑
(xi,xj)∈M ∥f (xi; θ) − f (xj; θ)∥2

2,

maxθ

∑
(xi,xj)∈C ∥f (xi; θ) − f (xj; θ)∥2

2.
(1)

In the cannot-link case, instead of maximizing
∑

(xi,xj)∈C ∥f (xi;
)− f (xj; θ)∥2

2 directly by the second objective function, we wish
o maximize the margin of different clusters to improve the
eneralizability of the model. To fulfill this, inspired by [13], we
ntroduce a pre-defined margin δ > 0, and wish the distance of
wo data in cannot-link should be larger than δ, or we impose
penalty on it. More formally, we wish to minimize max(δ −

f (xi; θ) − f (xj; θ)∥2, 0)2, which means if the distance is larger
han δ, there is no penalty and otherwise, the penalty is the
quare of the difference between the distance and the margin
something like the square of hinge loss). Then, by denoting an
ndicator yij such that yij = 1 if (xi, xj) ∈ M and yij = 0 if
xi, xj) ∈ C, we can combine these two objectives into a unified
bjective function:

min
θ

L1 =

∑
(xi,xj)∈M∪C

(
yij∥f (xi; θ) − f (xj; θ)∥2

2

+ (1 − yij)max(δ − ∥f (xi; θ) − f (xj; θ)∥2, 0)2
)

(2)

Then, we define the form of the map function f (.; θ). Be-
ause the same map function f (.; θ) with the same θ is used to
rocess both must-link and cannot-link constraints, one natural
ption for realizing such a similarity metric is to use the Siamese
etwork [15]. Since we focus on image clustering, we use the
win CNN modules whose weights are shared as the backbone
o extract the representation. Here, we use a simple yet effective
ackbone, whose structure is shown in Fig. 2, which consists
f several convolutional layers and pooling layers and at last is
ollowed by a full connection layer.

We first select a pair (xi, xj) ∈ M ∪ C to construct a triplet
xi, xj, yij). Then we feed xi and xj into the two shared-weight CNN
odules shown in Fig. 2. f (xi; θ) and f (xj; θ) are the output of the
NN module with inputs xi and xj, respectively, where θ is the set
f weight parameters in the CNN. The Siamese network learns the
arameter θ by minimizing L1 in Eq. (2).
By minimizing L1 w.r.t. the network parameters θ, we can

btain an initial Siamese network that makes the latent repre-
entations of data in the same cluster be similar and makes the
epresentations of data in different clusters be dissimilar.
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Fig. 1. The framework of ADC. The framework contains three parts. The first part is the representation learning module with contrastive loss. It is a Siamese network
that contains two CNN modules with shared weights. The second part is a clustering layer with KL divergence loss. After the Siamese network we obtain the latent
representation of all data and then we feed these latent representations into the clustering layer to obtain the clustering results. The third part is the constraints
active selection module, which selects pairs for annotation according to the information generated in the clustering layer.
Fig. 2. The backbone of the CNN module used in the Siamese network.
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.2. Clustering layer

Given a pre-defined number of clusters c , inspired by DEC [4],
e also simultaneously fine-tune the parameters θ in the Siamese
etwork and the c cluster centers {µ1, . . . ,µc}. Firstly, we initial-

ize the c cluster centers by running kmeans on the outputs f (xi; θ)
of the initial Siamese network.

Then following DEC [4], we use the Student’s t-distribution to
measure the similarity between the latent representation f (xi; θ)
nd the centroid µj:

ij =
(1 + ∥f (xi; θ) − µj∥

2
2/α)

−
α+1
2∑c

j′=1(1 + ∥f (xi; θ) − µ′

j∥
2
2/α)

−
α+1
2

. (3)

qij can be regarded as a soft assignment of each instance.
To obtain a harder cluster assignment, we introduce a sharper
auxiliary distribution pij of the assignment:

pij =
q2ij/

∑n
i=1 qij∑c

j′=1(q
2
ij′/

∑n
i=1 qij′ )

. (4)

Then, we wish the two distribution pij and qij be as closed
to each other as possible. To this end, we minimize the KL
divergence between them as follows:

L2 =

n∑ c∑
pijlog

pij
qij

(5)

i=1 j=1

4

Then we minimize θ and µi by stochastic gradient descent
(SGD) with computing the gradients ∂L2

∂θ
and ∂L2

∂µi
. After the con-

ergence, we obtain the clustering result of xi as argmaxj qij.

3.3. Constraints active selection

After obtaining the distribution qij, for the ith instance, many
conventional clustering methods only use the largest one qim for
lustering, where m = argmaxj qij, whereas they discard all other
ij′ where j′ ̸= m. However, when we take a closer look at those
ij, we observe that although we do not use other qij′ for clustering
irectly, they are still very useful for us to select the pairs for
uerying human labeling.
Intuitively, to achieve a better clustering performance, we

bserve that the ideal pairs (xi, xj) for querying annotation should
atisfy the following properties:

• Uncertain. If the model can easily determine whether xi
and xj belong to the same cluster, there is no need for
querying human annotation. Therefore we want to select
the uncertain pairs for labeling, and the obtained human
annotations can be most helpful for our clustering.

• Informative. It is easy to verify that there are much more
cannot-link constraints than the must-link ones. However,
the goal of clustering is to determine which instances are
in the same cluster. Therefore, must-link constraints are
much more informative than cannot-link constraints and
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Fig. 3. An illustration of constraints active selection. (a) shows the original clustering results, where the three clusters are denoted by blue, green and red circles,
respectively. (b) shows the xp1 of each cluster, which is the instance in the center of each cluster. These instances are in the circle marked with blue-dotted,
green-dotted and red-dotted lines, respectively. (c) finds the most uncertain instances in each cluster, which are the instances farthest away from the center. Then,
together with xp1 , they form pairs for querying human annotations. The solid line denotes the must-link and the dashed line denotes the cannot-link constructed
by human annotations.
s
t
X

π

o
π
t

1

thus they are much more helpful for clustering than cannot-
link constraints.

According to the above observations, we design a strategy to
select the uncertain and informative pairs for labeling by using all
assignments qij. In more detail, given the budget of each batch k,
t each time of selection, we distribute the budget to each cluster
ccording to the number of instances in each cluster obtained by
he previous clustering step. Assume that there are c clusters and
the c clusters contains n1, . . . , nc instances, respectively, where∑c

p=1 np = n. Then, we distribute bp = [k ∗
np∑c
p=1 np

] queries to
he pth cluster, i.e., we select bp pairs from the pth cluster for
nnotation, where [x] is the largest integer which is no larger than
. Since the data in a pair are selected in the same cluster, we
refer to select the potential must-link constraints which satisfy
he informative property.

Now, we focus on one of the cluster and we take the pth
luster πp as an example. In this cluster, we wish to select some
ncertain pairs for annotation. Suppose there are np instances in
he pth cluster. We first sort the np instances in the descend order
f qip as πp = {xp1 , . . . , xpnp } where qp1p ≥ · · · ≥ qpnp p. According
o the previous subsection, we know that qip can be viewed as a
imilarity of instances xi and the cluster center µp, i.e., the larger
he qip is, the closer xi is to the center. Therefore, we can select
he uncertain pairs with qip.

Specifically, xp1 has the largest q value, which means xp1 may
tay in the center of the cluster. Similarly, xpnp has the smallest
value, which means it may be in the boundary of the cluster.
aturally, we can select (xp1 , xpnp ) as an uncertain yet informative
air for annotation. Since we need to select bp pairs for annota-
ion, we can select {(xp1 , xpnp−bp+1 ), . . . , (xp1 , xpnp )} for querying
he human labels. In the next time of selection, we also sort the
nstances in the cluster according to the new qip and select the
irst one and the last bp ones to form the bp pairs. Notice that
f a pair has been selected for annotation in previous iterations,
e should skip it to avoid the waste of budget. Fig. 3 shows an

llustration of this strategy.
The above strategy can select the informative yet uncertain

airs for annotation. However, in each iteration, for all candi-
ate pairs, we should check whether they have been selected in
revious iterations. With the process of iterations, this operation
s time-consuming, because it needs to traverse the previously
elected sets many times.
To tackle this problem, we propose a simpler yet effective

ethod to avoid checking whether a pair has been selected
efore. Supposing the times of selection pairs (or equivalently
5

peaking, the number of iterations) is T , we first equally divide
he original data set X into T disjoint subsets X1, . . . ,XT , where
1 ∪ X2 ∪ · · · ∪ XT = X and Xi ∩ Xj = ∅ for each 1 ≤ i ̸= j ≤ T .

Then, in the tth iteration (1 ≤ t ≤ T ), for the pth cluster πp,
we construct the new cluster set of the pth cluster as π

(t)
p =

p ∩ Xt , and perform the selection operation introduced before
n the new constructed cluster set π

(t)
p . Since Xi ∩ Xj = ∅ and

p ∩ πq = ∅, we have π
(i)
p ∩ π

(j)
q = ∅ for all i ̸= j or p ̸= q, and

hus in each iteration, the selected pairs will not be repeated.

Algorithm 1 Constraints Active Selection

Input: Data set X , pij and qij calculated by clustering layer, T
subsets of X : X1, · · · ,XT , the budget of each batch k, the
number of the current iteration t .

Output: The selected pairs set S(t) which contains k pairs for
querying human annotation.

1: Partition X into c clusters π1, · · · , πc according to qij values.

2: for p = 1, · · · , c do
3: Construct π

(t)
p = πp ∩ Xt and compute the number of

instances in it as np = |π
(t)
p |, where | · | is the number of

instances in a set.
4: end for
5: Distribute the budget to each cluster: bp = [k ∗

np∑c
p=1 np

].

6: for p = 1, · · · , c do
7: Sort π

(t)
p in the descend order of qip as π

(t)
p =

{xp1 , · · · , xpnp }.
8: Obtain the selected set of the p-th cluster as Sp =

{(xp1 , xpnp−bp+1 ), · · · , (xp1 , xpnp )}.
9: end for
0: Obtain the selected set of the t-th iteration as S(t)

= S1 ∪S2 ∪

· · · ∪ Sc for human annotation.

Algorithm 1 summarizes the process of the constraints selec-
tion in the tth iteration. After obtaining S(t), we query the pairs in
S(t) for human annotations to construct the must-link constraint
set M and the cannot-link constraint set C. Then, we apply the
M and C to train the Siamese network introduced in Section 3.1
for representation learning.

3.4. Algorithm and implementation details

The whole algorithm of our ADC is summarized in Algorithm 2.
In our backbone CNN module shown in Fig. 2, for all convolution
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Table 1
Information of the data sets.

# of images Size of images # of classes

USPS 9298 16 × 16 10
MNIST 70000 28 × 28 10
Fashion MNIST 70000 28 × 28 10

layers, RELU is used as the active function, the size of the convo-
lution kernel is 3 × 3, and the step size is 1. For the first three
pooling layers, we use the 2 × 2 max pooling with step size 2.
or the last pooling layer, we use the 6 × 6 average pooling with
tep size 2. The dimension of the output embedding is 10.

Algorithm 2 Active Deep Clustering

Input: Data set X , the budget of each batch k, the numbers of
iterations T .

utput: Clustering results.
1: for t = 1, · · · , T do
2: if t = 1 then
3: Randomly select k pairs from X for annotation and

construct the initial M and C.
4: else
5: Select the pairs for human annotation with Algorithm 1.
6: Construct M and C with human annotations.
7: end if
8: Apply M and C to train the Siamese network with the

contrastive loss function Eq. (2).
9: Obtain the embedding of all instances with the trained

Siamese network.
0: Fine-tune the Siamese network with the clustering loss

function Eq. (5).
1: Obtain the qij for all instances.

12: end for
13: Obtain the final clustering results with argminj qij.

When we train the Siamese network with pairwise constraints,
he margin δ in Eq. (2) is fixed to 1, the batch size is 64 and the
poch is 100. We use RMSProp as the optimizer with a learning
ate of 0.001. In the clustering layer, we fix the α in Eq. (3) as 1.
hen we use the clustering layer to fine-tune the network, we
se the SGD with a learning rate of 0.001 as the optimizer.

. Experiments

In this section, we compare our ADC with some state-of-the-
rt unsupervised and semi-supervised methods on benchmark
ata sets.

.1. Data sets

We conduct experiments on three popular image data sets:

• USPS.1 This is a data set, which contains 9298 handwritten
digital images from the United States Postal Service. The size
of each image is 16 × 16, and the images are categorized
into 10 classes.

• MNIST [57]. This is also a benchmark data set of handwritten
images, which contains 70000 images in 10 categories. The
size of each image is 28 × 28.

• Fashion MNIST [58]. Fashion MNIST data set contains 70000
fashion product images with the size 28 × 28, and the
images are also categorized in 10 classes.

he statistical information of each data set is summarized in
able 1.

1 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
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4.2. Experimental setup

To demonstrate the effectiveness of the proposed method, we
compare it with some classical clustering methods, deep cluster-
ing methods, and semi-supervised clustering methods. The classi-
cal clustering methods include kmeans [1] and spectral clustering
(SC) [16]. The deep clustering methods include the following
algorithms:

• DEC [4], which applies the auto-encoder to learn the em-
bedding representations for clustering.

• JULE [5], which uses CNN in a recurrent framework for
feature learning and clustering.

• IDEC [6], which improves DEC by combining the reconstruc-
tion loss and the clustering loss.

• DSC [59], which is a deep spectral clustering via dual auto-
encoder.

• ASPC-DA [60], which is a self-paced deep clustering method
with data augmentation.

• GCML [61], which performs multi-manifold learning and
clustering by preserving geometric structure.

• SCAN [43], which is a deep semantic clustering method via
generating pseudo-labels.

• RUC [44], which improves SCAN by applying robust learning
to obtain the final clustering result.

Besides these unsupervised methods, we also compare with the
following semi-supervised deep clustering methods:

• SDEC [10], which extends the DEC architecture to the semi-
supervised clustering by introducing the pairwise constraints

• AutoEmbedder [47], which introduces pairwise constraints
to downsample high-dimensional data for deep clustering.

• DCC [14], which is a method using pairwise constraints in
the proposed deep constrained clustering framework.

• ADC-random, which is a degenerated version of our ADC
as an ablation study. To show the effectiveness of the con-
straints active selection strategy, in ADC-random, we replace
the constraints active selection strategy in our ADC with
the random selection, which randomly selects k pairs for
annotation.

In our method, we set the number of batches for annotation
T = 5 and the budget of each batch is k = n/25, where
n is the number of instances in each data set. Therefore, the
whole number of constraints we use is T ∗ k = n/5. All hyper-
parameters in our method are fixed for all data sets as introduced
in Section 3.4. For all methods on all data sets, the number of
clusters is set to be the true number of classes of each data
set. For the compared semi-supervised methods SDEC, AutoEm-
bedder, and DCC, we run their codes with totally n/5 randomly
selected constraints, which are the same number as ours for a
fair comparison. For ADC-random, the setting is the same as ADC.
To evaluate the performance of each method, we use three stan-
dard evaluation metrics including Accuracy (ACC), Normalized
Mutual Information (NMI), and Adjusted Rand Index (ARI). For
ACC, NMI and ARI, the higher the value is, the better the clustering
performance is.

All the experiments are conducted on a PC with an Intel Core
i7-8750H CPU@2.20 GHz and an NVIDIA GTX 1050Ti GPU.

4.3. Experimental results

Table 2 shows the ACC and NMI results of our ADC and other
compared methods on all data sets. From Table 2, we find that
our method outperforms not only the state-of-the-art unsuper-
vised deep clustering methods but also the state-of-the-art semi-
supervised deep clustering methods. It well demonstrates the

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 2
Clustering results of all methods.

Methods USPS MNIST Fashion MNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI

kmeans [1] 0.668 0.627 0.546 0.532 0.500 0.366 0.474 0.512 0.349
SC [16] 0.649 0.794 0.638 0.656 0.731 0.511 0.508 0.575 0.368
DEC [4] 0.682 0.643 0.605 0.842 0.834 0.782 0.558 0.562 0.503
JULE [5] 0.950a 0.913a – 0.964a 0.913a – 0.563a 0.608a –
IDEC [6] 0.725 0.677 0.575 0.847 0.823 0.768 0.611 0.623 0.467
DSC [59] 0.869a 0.857a – 0.978a 0.941a – 0.662a 0.645a –
ASPC-DA [60] 0.982a 0.951a – 0.988a 0.966a – 0.591a 0.654a –
GCML [61] 0.980a 0.946a – 0.958a 0.902a – 0.710a 0.685a –
SCAN [43] 0.808 0.846 0.765 0.964 0.933 0.925 0.754 0.747 0.660
RUC [44] 0.907 0.924 0.893 0.973 0.948 0.942 0.748 0.720 0.638
SDEC [10] 0.738 0.727 0.639 0.808 0.767 0.697 0.579 0.623 0.455
AutoEmbedder [47] 0.628 0.587 0.574 0.972 0.947 0.950 0.853 0.761 0.701
DCC [14] 0.782 0.725 0.616 0.975 0.933 0.913 0.780 0.742 0.641
ADC-random 0.955 0.896 0.928 0.984 0.955 0.965 0.701 0.720 0.712
ADC 0.988 0.965 0.984 0.996 0.987 0.993 0.880 0.820 0.785

adenotes the results are those reported in their papers and other results are the reproduced results by us with the
released source codes.
Table 3
Running time of all methods (Sec.).
Methods USPS MNIST Fashion MNIST

DEC 932 2362 5216
IDEC 762 2056 4975
SCAN 28440 39600 46800
RUC 21600 97200 111600
SDEC 836 5188 4580
AutoEmbedder 873 7380 7400
DCC 2159 6167 7205
ADC 543 6220 7083

Table 4
Ablation study: running time compared with ADC-
check (Sec.).
Methods USPS MNIST Fashion MNIST

ADC-check 565 6429 7552
ADC 543 6220 7083

effectiveness and superiority of the proposed method. Especially
on the Fashion MNIST data set, which may be the most difficult
one because the accuracy of most methods is lower than 0.7, our
method achieves a 3.2% and 7.8% improvements compared with
the second-best semi-supervised method on ACC and NMI, re-
spectively. The reason may be that, in this difficult data set, there
are many difficult or unreliable data. Unsupervised methods, such
as DEC and JULE, do not have any supervised information and
thus these methods may be easily misled by those difficult or
unreliable data. Although the semi-supervised methods, such as
SDEC and DCC, use some supervised information, they do not
pay any attention to selecting the supervised information and
use randomly selected information, the improvement caused by
the supervised information is limited. The proposed ADC is an
active method, which can find key data, i.e., the ones which
satisfy the uncertain and informative properties, for annotation.
The carefully selected supervised information is more helpful for
clustering. Noticed that, compared with our degenerated version
ADC-random, whose constraints are selected randomly and may
be useless for clustering, ADC achieves a better performance. This
well demonstrates the motivation of our active schema.

To further show the effectiveness of the constraints active
election, we show the ACC and NMI performance of ADC and
he semi-supervised deep methods with different numbers of
onstraints in Fig. 4. From Fig. 4, we find that the performance
f ADC improves with the increase of the number of selection
airs. Moreover, when compared with other semi-supervised
7

deep methods and ADC-random, ADC outperforms them most
of the time, and ADC can achieve the best results of other
methods with fewer constraints than they use. It shows that
our constraints active selection strategy is more effective than
the random selection, which demonstrates the superiority and
necessity of the strategy.

Table 3 shows the running time of ADC and compared meth-
ods. From Table 3, we find that ADC is comparable with some
mainstream semi-supervised methods.

4.4. Ablation study

In Section 3.3, we propose a strategy to avoid checking whether
a pair has been selected before. In this section, we compare
the running time of ADC with the version that checks each pair
(denoted as ADC-check) to see whether the strategy can reduce
the time. Table 4 shows the comparison results. It can be seen
that the strategy can indeed save time compared with ADC-check.
Notice that, the only difference between ADC-check and ADC is
whether to check the pairs or not, and the representation learning
and clustering of the two methods remain the same. Therefore,
space may still exist to further speed up the proposed method.
In the future, we will study how to further reduce the time and
space complexity.

Moreover, in our strategy, we select pairs based on the similar-
ity to the cluster centers. One more natural strategy is to select
the data pairs with the largest distance in the same cluster, as
they should be the most uncertain pairs. We denote this strategy
as ADC-Uncertain and compare ADC with it on the benchmark
data sets. The comparison results are shown in Table 5. It can be
seen that our strategy is better than selecting the most uncertain
pairs. In our active clustering framework, we wish to select the
data pairs which are uncertain and informative. ADC-Uncertain
selects pairs with the largest distance in the same cluster, which
are the most uncertain pairs. However, it has a large probability
that the selected pairs by ADC-Uncertain are cannot-link pairs.
As introduced before, must-link constraints are much more in-
formative than cannot-link constraints and thus the excessive
cannot-link constraints do not have too much value for clustering.
Therefore, our strategy based on the distance to the cluster center
is more appropriate for semi-supervised clustering. It is a better
trade-off between uncertain property and informative property.

4.5. Visualization results

To show the effectiveness of the learned representation of our
backbone network, we show the t-SNE [62] visualization results
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Fig. 4. Clustering results of ADC and the semi-supervised deep methods on different numbers of selected pairs.
Fig. 5. t-SNE results on USPS with each iteration.
Table 5
Ablation Study: comparison with ADC-Uncertain.

Methods USPS MNIST Fashion MNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI

ADC-Uncertain 0.962 0.903 0.921 0.978 0.942 0.953 0.789 0.732 0.662
ADC 0.988 0.965 0.984 0.996 0.987 0.993 0.880 0.820 0.785
of the original data and the representation learned from each
iteration. Fig. 5 shows the t-SNE visualization results of USPS data
set. The results on other data sets are similar. From Fig. 5, we
8

find that, after each iteration, the learned representation displays
an increasingly clearer clustering structure with the iteration,
which demonstrates that the backbone network together with the
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Fig. 6. Some example pairs ADC selects for querying human annotation.
Table 6
Clustering results on STL-10.

Metrics kmeans SC DEC JULE IDEC SCAN RUC SDEC AutoEm- DCC ADC ADC-
bedder Res

ACC 0.192 0.159 0.359a 0.277a 0.370a 0.767a 0.866a 0.389a 0.376 0.184 0.603 0.651
NMI 0.125 0.098 0.276a 0.182a 0.325a 0.680a – 0.328a 0.250 0.106 0.522 0.581
ARI 0.061 0.048 0.186a 0.164a 0.189a 0.616a – 0.206a 0.179 0.104 0.426 0.463

adenotes the results are those reported in their papers and other results are the reproduced results by us with the released source
codes.
P
n
v

human annotation can indeed lead to a better representation for
clustering.

Fig. 6 shows the example pairs selected by our ADC on the
three data sets. On each data set, we show 2 must-link pairs
(the first 2 pairs in each row) and 2 cannot-link pairs (the last
2 pairs in each row) in Fig. 6, respectively. We can find that,
in the must-link pairs, the two images often look very different,
and in the cannot-link pairs, the two images often look similar.
Therefore, these pairs are the difficult ones which may mislead
the clustering algorithm and if we obtain the human annotations
of these pairs, the annotations can help the clustering algorithm
to handle them correctly. This is in line with our motivation
for active clustering, i.e., we apply the human annotations of
some difficult or unreliable data to alleviate their side-effect and
improve the performance of clustering.

4.6. Experiments on STL-10 data set

We also conduct experiments on a more difficult data set STL-
10 [63]. STL-10 data set contains 13000 high-resolution color
images which are in 10 categories. The size of each image is
96 × 96. Table 6 shows the clustering results of compared un-
supervised and semi-supervised methods and our ADC on STL-10
data set. Since some methods (e.g. RUC and SCAN) use ResNet [64]
as their backbones, we also replace the CNN in ADC with ResNet,
which is denoted as ADC-Res.

From Table 6, we can find that ADC outperforms some con-
ventional unsupervised and semi-supervised methods. Compared
with the original ADC, ADC-Res improves the performance. How-
ever, it is not better than the state-of-the-art deep clustering
methods SCAN and RUC. Their methods apply pseudo-labels to
guide the clustering. Since pseudo-labels do not cost manpower,
they can generate much more pseudo-labels for clustering. There-
fore, in the future, we can further consider how to combine the
few human annotations and a lot of pseudo-labels in active deep
clustering. On one hand, a few human annotations can provide
more precise supervised information; and on the other hand,
a large number of pseudo-labels can propagate the supervised

information to as many unlabeled data as possible.

9

5. Conclusion

This paper proposed a novel active deep clustering method
for image clustering. To improve the reliability of the clustering
result, in our method, we actively selected the uncertain and
informative data for querying human annotations. After obtaining
the annotations, which were in the form of must-link and cannot-
link constraints, we applied them to train a Siamese network to
learn the representations which can preserve such constraints.
Moreover, we also adopted a clustering loss to make sure that
representations had a clear clustering structure. We integrated
the representation learning, clustering, and the constraints active
selection into a unified framework to keep them being boosted
by each other. The extensive experiments shew that the proposed
active method outperformed the state-of-the-art deep clustering
methods and semi-supervised methods which demonstrated the
effectiveness and superiority of the proposed method.

Although the proposed method is simple yet effective, there
still exist many other criteria in active learning besides the in-
formative and uncertainty. In the future, to tackle some specific
tasks, we can try some other criteria in our active selection
strategy. For example, we can select the pairs which are more
easily to propagate the label information to other unlabeled data,
such that we can use as few annotations as possible to achieve a
relatively good clustering performance.
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