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a b s t r a c t

In many real-world applications of data mining, such as energy load balance of wireless sensor
networks, given data points with balanced distribution, i.e., each class contains approximately the same
number of instances, we often need to obtain a clustering result to reflect such balance. In many data,
especially the high-dimensional data, such balanced structure is not obvious in the original feature
space, due to the noisy and redundant features. Therefore we need to apply feature selection methods
to pick several informative features to reveal such balanced structure of data. Feature selection
is a fundamental problem in machine learning tasks and has attracted considerable attentions in
recent years. However, conventional feature selection methods often focus on how to select the most
discriminative features, whereas ignoring the balance property of the data. To tackle this problem,
we propose a novel unsupervised feature selection method for balanced clustering which can reveal
the intrinsic balanced structure of data. In our method, a balanced regularization term is introduced
to select the features which can help to produce balanced clusters. Then, we provide an Alternating
Direction Method of Multipliers (ADMM) to optimize the introduced objective function. At last, the
experiments are conducted on six benchmark data sets, including Yale and 20NG data sets and so
on, by comparing with other state-of-the-art unsupervised feature selection methods published in the
literature. The experimental results show that our method not only has better clustering performance
but also leads to more balanced clustering structure.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In many real-world data mining applications, given instances
with balanced distribution, i.e., each class contains approximately
the same number of instances, it is quite often to require to
generate the balanced clusters. A good clustering method should
prevent a too small or too great number of data points from
being partitioned into a cluster. For example, in photo query
systems, we often need to organize the photos in a balanced
way because such balanced layout can help the users to orient
and find specific photos more efficiently [1]. Another scenario for
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balanced clustering is energy load balance of wireless sensor net-
works, where the unbalance of cluster structure may lead to the
unbalance of energy consumption and may shorten the network
lifetime [2]. Moreover, according to the results in [3], balanced
clustering tends to avoid generating outlier clusters, and thus may
obtain a better clustering performance. Therefore, to characterize
the balanced structure and generate balanced clustering is quite
important and essential in many applications.

However, this balanced structure of the data, especially the
high-dimensional data, may not be so obvious in the original
feature space due to the noisy and redundant features. To better
reveal the balanced structure of data, we need to select such
informative features. Feature selection is a fundamental prob-
lem in machine learning and data mining tasks, and has been
widely studied [4–11]. These methods focus on how to select
the discriminative features and discard the redundant ones to
obtain a better performance on classification or clustering. For
example, Yang et al. applied local total scatter and between-class
scatter matrix to evaluate features [12]; Zhu et al. proposed a
co-regularized feature selection method using the heat kernel
to construct the similarity matrix [13]; Luo et al. constructed
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the adaptive graph with structure regularization to select fea-
tures [10]. However, they do not pay any attention on revealing
the balanced structure of data. This problem is even worse in
unsupervised learning because we are lack of the guides of labels.

To tackle this problem, we propose a novel Feature Selection
method for Balanced Clustering (FSBC). In our method, we select
not only the discriminative features but also the ones which can
preserve the balanced structure. To reveal the balanced structure,
we need to obtain the clusters of data. Since k-means is one of the
most popular clustering algorithm, our method is in a k-means
framework. By applying k-means, we can obtain the clustering
result, and we propose a balanced regularization term on such
clustering result to guide us to select the appropriate features. We
integrate the balanced k-means clustering and feature selection
in a unified framework. On one hand, balanced k-means can
reveal the balanced clustering structure and guide us to select the
features to preserve such structure; and on the other hand, the
selected features can help us obtain a more accurate clustering
result. Therefore, we jointly do clustering and select features
so that the two tasks can be boosted by each other. Moreover,
when selecting the features, different from the traditional feature
selection methods which using ℓ2,1-norm or ℓ2,p-norm to sort the
features, we apply the ℓ2,0-norm directly to pick the exact top-k
features. Since the introduced objective function is non-convex
and discontinuous, it is hard to be optimized. To address this
issue, we provide an effective Alternating Direction Method of
Multipliers (ADMM) [14] to optimize it. At last, we conduct ex-
periments on benchmark data sets and the experimental results
demonstrate the effectiveness of our method.

It is worthy to highlight the main contributions of our paper
here:

• To the best of our knowledge, we are the first to pro-
pose an unsupervised feature selection method for balanced
clustering. Different from the existing unsupervised feature
selection methods which only focus on the informative fea-
tures, our method not only picks the informative features
but also select those which can reveal the balanced structure
of data.

• We integrate the balanced k-means and feature selection
into a unified framework and propose an effective ADMM
algorithm to jointly do clustering and select features.

• We conduct the experiments on six benchmark data sets,
such as Yale and 20NG, and compare our method with
the state-of-the-art unsupervised feature selection methods.
The experimental results show that our method outper-
forms the compared state-of-the-art unsupervised feature
selection not only on the accuracy but also the balance of
the clustering results.

The paper is organized as follows. Section 2 describes some re-
lated work. Section 3 presents our unsupervised feature selection
method in details. Section 4 shows the experimental results, and
Section 5 concludes the paper.

2. Related work

In this section, we will review some related work of feature
selection and balanced clustering briefly.

2.1. Feature selection

According to the availability of labels of data, feature selec-
tion methods can be roughly classified into three categorizes:
supervised feature selection, semi-supervised feature selection
and unsupervised feature selection.

By exploiting the label information, supervised feature selec-
tion is usually able to identify discriminative features for classifi-
cation [15]. For example, Gu et al. selected features based on the
generalized Fisher score of each feature [16]; Nie et al. proposed
a robust feature selection method with ℓ2,1 regression [6]; Fan
et al. utilized ℓ2,0-norm to select exact top-k features [17].

With insufficient class labels, semi-supervised methods are
proposed to propagate the label information and select the fea-
tures which consider both the label information and the intrinsic
structure of data. For example, Han et al. utilized the mani-
fold structure of data for semi-supervised feature selection [18];
Chang et al. proposed a semi-supervised feature selection for
multi-label data [19]; furthermore, Chang et al. also provided a
semi-supervised feature selection for multi-task learning [20];
most recently, Luo et al. presented a semi-supervised feature
selection method with adaptive neighbor assignment [21].

In unsupervised learning, due to the absence of class labels,
feature selection is a more challenging problem. It tries to select
features which can well preserve the intrinsic structure of the
data. According to the different intrinsic structure which are
captured, various unsupervised feature selection methods are
proposed. For example, some methods try to reconstruct the
original data well by the selected features, such as [22].

Some approaches aim to preserve the pseudo labels, for ex-
ample, Hou et al. integrated manifold embedding and feature
selection into a general framework by preserving the pseudo
labels [23]; Wang et al. selected features to preserve the pseudo
labels generated by matrix factorization [24]; Shi et al. proposed
a robust unsupervised feature selection method to preserve the
pseudo labels [25]. These methods jointly learn the pseudo labels
and selected the features, so that the two tasks can be boosted by
each other.

Some methods focus on some special type of data, e.g. text
data, and try to preserve some important information of the
original data. For example, to handle text data, Abualigah et al.
proposed several particle swarm optimization algorithms to se-
lect useful features for each document and applied them to doc-
ument clustering [26,27]. In text data, words are the natural fea-
tures. These methods select the informative words to reveal the
topic of each document and have been demonstrated promising
performance.

Subspace clustering is a kind of famous unsupervised learning
methods, so some works extend it to feature selection tasks
and select features to preserve the subspace structure. Fan et al.
proposed a discriminative subspace clustering model for feature
selection which can preserve both the hard and soft structure of
data [28]; Zheng et al. used sparse subspace learning to select
features [29]. These methods learn the subspace structure of data
in the process of feature selection so that the selected features
can preserve such structure well.

As a very important structure of data, graph is also often
preserved in feature selection methods. Du et al. learned an
adaptive graph for feature selection by preserving the global
and local structure [30]; Nie et al. adaptively learned the local
structure from the results of feature selection [31]; Li et al. pro-
posed a generalized uncorrelated regression with adaptive graph
for feature selection [32]. These methods construct an adaptive
graph in the procedure of feature selection, i.e., the graph changes
with selected features. By this way, graph learning and feature
selection can also be boosted by each other.

Note that none of the above methods considered the bal-
anced structure of data, so that they may be inappropriate to
the scenarios which require to generate the balanced clusters
of data. This problem may be worse in unsupervised learning
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because of the absence of the label information. To tackle this
problem, we propose a novel unsupervised feature selection for
balanced clustering in this paper. Note that in our method we
select features for not only revealing the balanced structure, but
also preserving the pseudo labels to obtain a better clustering
performance.

2.2. Balanced clustering

Clustering is a fundamental problem in unsupervised learning.
Although it has been widely studied [33–37], few of them pay
attention on the balanced structure of data. In recent years, some
balanced clustering methods have been proposed to handle the
data with balanced distribution. The balanced clustering algo-
rithms can be roughly categorized into two types: hard-balanced
clustering and soft-balanced clustering.

In the hard-balanced clustering, the cluster size is strictly
set as a fixed number. For example, Bradley et al. proposed a
constrained k-means method which takes the cluster sizes as
parameters [38]. Then, Malinen et al. provided a balanced k-
means method which also imposed a balanced constraint on
k-means [39]. Costa et al. imposed the balanced constraint on
the minimum sum-of-squares clustering leading to a balanced
minimum sum-of-squares clustering method [40].

In many applications, the absolute balance is often not re-
quired, thus some soft-balanced clustering methods are proposed.
In this kind of methods, the balance is an aim but not a mandatory
requirement. For example, Banerjee et al. applied the balance as
a penalty term to make the clustering result balanced [41,42].
Zhong et al. proposed a model-based clustering with soft bal-
ancing [3]. Liu et al. used the exclusive lasso as the balanced
regularized term and imposed it on the least square regression for
clustering [43]. Li et al. applied the exclusive lasso to the k-means
and min-cut leading to balanced k-means and balanced min-
cut methods [44]. In this paper, we focus on this soft-balanced
clustering which does not require the strict balance.

3. Unsupervised feature selection for balanced clustering

In this section, we will introduce our feature selection method
in details. Throughout this paper, we use boldface uppercase and
lowercase letters to denote matrices and vectors, respectively.
The (i, j)th element of a matrix M is denoted as Mij and the ith
element of a vector v is denoted as vi. We use Mi. and M.i to
denote the ith row and the ith column of matrix M, respectively.
diag(v) (v ∈ Rd) is a diagonal matrix whose diagonal elements are
the entries of vector v and diag(M) (M ∈ Rd×d) is a d-dimensional
vector consists of the diagonal elements of the matrix M. We
denote the ℓ2,0-norm of M as ∥M∥2,0, which means the number of
non-zero columns in the M and denote the ℓ0-norm of the vector
v as ∥v∥0, which means the number of non-zero elements in v.
Since ℓ2,0-norm is non-convex and discontinuous, ℓ2,1-norm is
often used as an approximation of ℓ2,0-norm. ℓ2,1-norm of M ∈

Rn×d is defined as
∑d

j=1

√∑n
i=1 M

2
ij .

The basic idea of our method is that we jointly do balanced
clustering and select features. Since we aim to select the features
which can reveal the balanced structure, we need to apply the
balanced clustering to obtain such structure and use it to guide
the feature selection. When we select some features, we can also
find a clearer balanced structure by doing balanced clustering
with the selected features. Therefore, the balanced clustering and
feature selection can be boosted by each other with this joint
learning framework.

3.1. Formulation

As introduced before, our method applies k-means to gener-
ate the clustering result. In k-means, given a data matrix X =

[x1, . . . , xn] ∈ Rd×n, where xi ∈ Rd is an instance in the data set,
we need to optimize the following objective function to obtain
the clustering result:

min
G,F

∥X − GFT∥2
F (1)

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1.

where c is the number of clusters, G ∈ Rd×c is the cluster centroid
matrix, F is the clustering indicator matrix, i.e., Fim = 1 if xi
belongs to the mth cluster and Fim = 0 otherwise.

Note that, each column F.m in F denotes the instances in the
mth cluster. Therefore, we can obtain the number of instances in
the mth cluster, denoted as nm, by summing up F.m, i.e., nm =∑n

i=1 Fim. Furthermore, we can obtain the distribution p ∈ Rc of
the number of instances in each cluster by:

pm =
nm∑c
m=1 nm

=
nm

n
. (2)

Since we wish the clustering result should be balanced,
i.e., each cluster has approximately the same number of instances,
we can minimize the negative Shannon Entropy of the distri-
bution p. Therefore, we use the negative Shannon Entropy of
the distribution p, i.e.,

∑c
m=1 pmlog(pm), as the balanced regu-

larization term, and take it into Eq. (1), leading to the balanced
k-means:

min
G,F

∥X − GFT∥2
F + λ

c∑
m=1

pmlog(pm) (3)

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1,

pm =

∑n
i=1 Fim
n

.

where λ is a hyper-parameter.
In order to select the features to preserve such balanced struc-

ture, we introduce a projection matrix W ∈ Rc×d to map the
data from original feature space to a new low-dimensional fea-
ture space by WX. Intuitively, since we need to select the top-k
features, we wish the number of non-zero columns in W is just k,
thus we need an ℓ2,0-norm constraint on W. Therefore, we obtain
the following formulation:

min
G,F,W

∥WX − GFT∥2
F + λ

c∑
m=1

pmlog(pm) + τ∥W∥
2
F (4)

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1,

pm =

∑n
i=1 Fim
n

,

∥W∥2,0 = k.

where ∥W∥
2
F is a Frobenius norm regularized term on W as

the prior and τ is another hyper-parameter. Note that, different
from conventional feature selection methods [6,12,30], which
use ℓ2,1-norm or ℓ2,p-norm to approximate the ℓ2,0-norm, we
apply ℓ2,0-norm directly. The conventional methods need to score
every features under some criterion and select the k top features
according to the scores. However, in our method, we impose
the ℓ2,0-norm on W without any approximation, so that we can
directly select the exact top-k features, which is more desirable
than using ℓ2,1-norm or ℓ2,p-norm.
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3.2. Optimization

Since Eq. (4) is non-convex and discontinuous, the optimiza-
tion is difficult. To handle this problem, we propose an ADMM
method to optimize it.

Firstly, for the convenience of the optimization, we can further
transform the ℓ2,0-norm in Eq. (4) into ℓ0-norm by introducing an
indicator vector v ∈ {0, 1}d of features. vi = 1 indicates that the
ith feature should be selected and vi = 0 means it should not be
selected. Then we can reformulate Eq. (4) as follows:

min
G,F,W,v

∥Wdiag(v)X − GFT∥2
F + λ

c∑
m=1

pmlog(pm) + τ∥W∥
2
F (5)

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1,

pm =

∑n
i=1 Fim
n

,

v ∈ {0, 1}d,
d∑

i=1

vi = k.

In Eq. (5), we simultaneously do balanced k-means (learning G
and F) and select features (learning W and v), so that the two
tasks can be boosted by each other.

By introducing the Lagrange multipliers γm (m = 1, . . . , c), we
obtain the augmented Lagrange function of Eq. (5):

min
G,F,W,v,p

L1 = ∥Wdiag(v)X − GFT∥2
F

+ λ

c∑
k=1

pmlog(pm) + τ∥W∥
2
F (6)

+

c∑
m=1

γm

(
pm −

∑n
i=1 Fim
n

)

+
µ1

2

c∑
m=1

(
pm −

∑n
i=1 Fim
n

)2

,

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1,

v ∈ {0, 1}d,
d∑

i=1

vi = k.

where µ1 is an adaptive parameter.
Then we optimize one variable while fixing the others.

3.2.1. Optimizing W
At beginning, we initialize W by doing Principal Component

Analysis (PCA) [45] on X. In the following iterations, when fixing
the other variables, we can rewrite Eq. (6) as:

min
W

∥Wdiag(v)X − GFT∥2
F + τ∥W∥

2
F . (7)

Obviously, Eq. (7) is similar with ridge regression and has a
closed-form solution by setting the partial derivative of Eq. (7)
w.r.t. W to zero:

W = GFTXTdiag(v)
(
diag(v)XXTdiag(v) + τ I

)−1
(8)

where I is the identity matrix.
Note that diag(v)XXTdiag(v)+τ I is a d-by-d matrix and it costs

O(d3) time to compute its inverse. Fortunately, since v only con-
tains k ones, diag(v)XXTdiag(v) only contains k non-zero columns
and rows and we can compute its inverse very efficiently.

In more details, we extract the k× k non-zero principal minor
of diag(v)XXTdiag(v) as B ∈ Rk×k. Then we extend it to C ∈ Rd×d:

C =

(
B 0
0 0

)
(9)

It is obvious that C can be obtained by exchanging several rows
and columns of diag(v)XXTdiag(v) simultaneously. More formally,
by defining the permutation matrix P ∈ {0, 1}d×d, we can obtain
C by C = PTdiag(v)XXTdiag(v)P.

Now, considering (C + τ I)−1, we have

(C + τ I)−1
=

(
B + τ I 0

0 τ I

)−1

=

(
(B + τ I)−1 0

0 1
τ
I

)
(10)

Note that B+τ I is a k-by-kmatrix whose inverse can be computed
in O(k3) time and k ≪ d. Therefore, we takes O(k3) time to
compute (C + τ I)−1, and then obtain

(
diag(v)XXTdiag(v) + τ I

)−1

by(
diag(v)XXTdiag(v) + τ I

)−1
=
(
PCPT

+ τ I
)−1

= P(C + τ I)−1PT

(11)

To sum up, we take O(nk2) time to compute diag(v)XXTdiag(v),
and O(k3) time to compute (C + τ I)−1, thus we takes O(nk2 +

k3) time to compute
(
diag(v)XXTdiag(v) + τ I

)−1
. After that, we

compute W by a series of matrix multiplications, which cost
O(ndk + nck + dck) time. Therefore, the whole time complexity
is O(ndk + nck + dck + nk2 + k3).

3.2.2. Optimizing v
When optimizing v, we obtain the following subproblem:

min
v

∥Wdiag(v)X − GFT∥2
F , (12)

s.t. v ∈ {0, 1}d,
d∑

i=1

vi = k.

Eq. (12) is a 0–1 integer programming and is generally difficult
to solve. Here we utilize the ℓ2-box method [17,46] to solve
this problem. According to [17,46], the binary constraint can be
replaced with an equivalent set of continuous constraint, i.e., the
intersection of a box and a shifted ℓ2-sphere. It is presented in
the following Theorem:

Theorem 1 ([17,46]). Let 1 be the vector whose entries are all 1s,
we have

v ∈ {0, 1}d ⇔
{
v : v ∈ [0, 1]d

}⋂{
v :

v −
1
2

2
2

=
d
4

}
.

According to this Theorem, we can involve two auxiliary vari-
ables v1, v2 ∈ Rd, where v1 is in a box, i.e., v1 ∈ Sb and Sb =

{x : x ∈ [0, 1]d}, and v2 is in a shifted ℓ2-sphere, i.e., v2 ∈ Sp
and Sp =

{
x :
x −

1
2

2
2 =

d
4

}
. Then we can obtain the following

equivalent formulation:

min
v

∥Wdiag(v)X − GFT∥2
F , (13)

s.t.
d∑

i=1

vi = k, v = v1, v1 ∈ Sb, v = v2, v2 ∈ Sp.

Eq. (13) can also be solved by ADMM. By introducing the
Lagrange multipliers y1 ∈ Rd, y2 ∈ Rd and y3, we obtain its
augmented Lagrange function:

L2 = ∥Wdiag(v)X − GFT∥2
F + yT1(v − v1) + yT2(v − v2)
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+ y3(1Tv − k) (14)

+
µ2

2

(
∥v − v1∥2

2 + ∥v − v2∥2
2 + (1Tv − k)2

)
When optimizing v by fixing v1 and v2, it is an unconstraint

quadratic optimization problem and can be solved by setting its
partial derivative w.r.t. v to zero. Its closed-form solution is:

v =
(
2(WTW) ⊙ (XXT ) + µ2(2I + 11T )

)−1 (
2diag(XFGTW) − y1

− y2 + µ2(v1 + v2) + (y3 − ρk)1
)

(15)

where ⊙ is Hadamard product, which means the element-wise
production of two matrices.

Then, by fixing v, we update v1 and v2 by projecting v +
y1
ρ

and v +
y2
ρ

into Sb and Sp, respectively:⎧⎨⎩ v1 = PSb
(
v +

y1
ρ

)
v2 = PSp

(
v +

y2
ρ

) (16)

For any x, PSb is an element-wise function, which is defined as:

PSb (x) =

{ 0, if x < 0
x, if 0 ≤ x ≤ 1
1, otherwise.

(17)

Given a vector x ∈ Rd, PSp can be computed as follows:

PSp (x) =
1
2

+

( √
d

2∥x −
1
2∥2

)(
x −

1
2

)
(18)

At last, we update the Lagrange multipliers as follows:⎧⎪⎨⎪⎩
y1 = y1 + ρ(v − v1)
y2 = y2 + ρ(v − v2)
y3 = y3 + ρ(1Tv − k)
µ2 = αµ2.

(19)

where α > 1 is a given parameter.
It is obvious that the most expensive step of this ADMM is

to compute v by Eq. (15). 2(WTW) ⊙ (XXT ) and 2diag(XFGTW)
only need to be computed once outside the iteration and costs
O(cd2+nd2) and O(ndc+c2d) time, respectively. However, in each
iteration, we need to compute the inverse of 2(WTW) ⊙ (XXT ) +

µ2(2I + 11T ) which costs O(d3) time.
To speedup this operation, we apply an incremental method

to compute its inverse. Outside the iteration, we can compute
2(WTW) ⊙ (XXT ) first, and then calculate its singular value de-
composition (SVD) as:

2(WTW) ⊙ (XXT ) = USUT (20)

where U ∈ Rd×d is the singular vector matrix and S is a diag-
onal matrix whose diagonal elements are the singular values of
2(WTW)⊙ (XXT ). The time complexity is O(d3), but we just need
to compute it once.

Then, in each iteration, we incrementally compute the in-
verse of 2(WTW) ⊙ (XXT ) + µ2(2I + 11T ). Firstly, we compute(
2(WTW) ⊙ (XXT ) + 2µ2I

)−1
. Since we already have the SVD of

2(WTW) ⊙ (XXT ), we can compute its inverse easily:(
2(WTW) ⊙ (XXT ) + 2µ2I

)−1
= U(S +

1
2µ2

I)−1UT (21)

Next, according to Sherman–Morrison Equality, we have(
2(WTW) ⊙ (XXT ) + 2µ2I + µ211T )−1

(22)

=U(S +
1

2µ2
I)−1UT

−

µ2U(S +
1

2µ2
I)−1UT11TU(S +

1
2µ2

I)−1UT

1 + µ21TU(S +
1

2µ2
I)−1UT1

Let u =
(
2diag(XFGTW) − y1 − y2 + µ2(v1 + v2) + (y3 − ρk)1

)
,

we can compute v by

v =
(
2(WTW) ⊙ (XXT ) + 2µ2I + µ211T )−1 u (23)

= U(S +
1

2µ2
I)−1UTu

−

µ2U(S +
1

2µ2
I)−1UT11TU(S +

1
2µ2

I)−1UTu

1 + µ21TU(S +
1

2µ2
I)−1UT1

It costs O(d2) to compute v by Eq. (23). The ADMM algorithm to
compute v is summarized in Algorithm 1.

Algorithm 1 ADMM for computing v
Input: X, W, G, F.
Output: v.
1: Initialize µ2 = 1, α = 1.1, v1 = v2 = 0. Compute 2(WTW) ⊙

(XXT ) and 2diag(XFGTW).
2: Compute the SVD decomposition of 2(WTW) ⊙ (XXT ) by

Eq. (20).
3: while not converge do
4: Compute v by Eq. (23).
5: Compute v1 and v2 by Eq. (16).
6: Update the Lagrange multipliers by Eq. (19).
7: end while

3.2.3. Optimizing G
When optimizing G, we obtain the following subproblem:

min
G

∥Wdiag(v)X − GFT∥2
F . (24)

Since it is an unconstraint problem, we can set the partial deriva-
tive w.r.t. G to zero, and obtain

G = Wdiag(v)XF(FTF)−1 (25)

Note that since F is an indicator matrix, FTF is a c-by-c diagonal
matrix whose inverse can be computed in O(c) time.

3.2.4. Optimizing F
When fixing the other variables, we obtain the following for-

mula:

min
F

∥Wdiag(v)X − GFT∥2
F +

c∑
m=1

γm

(
pm −

∑n
i=1 Fim
n

)

+
µ1

2

c∑
m=1

(
pm −

∑n
i=1 Fim
n

)2

s.t. F ∈ {0, 1}n×c,

c∑
m=1

Fim = 1. (26)

We solve F row by row, i.e., we optimize one row of F while fixing
the other rows, and repeat it until convergence.

When optimizing the ith row, let d.i denote the ith column
vector of Wdiag(v)X, and then we have

min
Fi.

∥d.i − GFTi.∥
2
2 −

c∑
m=1

γmFim + µ1pmFim
n

+

c∑
m=1

µ1F 2
im + µ1Fim

∑
j̸=i Fjm

2n2 ,

s.t. Fi. ∈ {0, 1}c,
c∑

m=1

Fim = 1. (27)
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The constraint indicates that, in the ith row, only one element
of Fi. is 1 and the others are 0s. Therefore, we can generate c
candidates f1, . . . , fc where fm ∈ {0, 1}c is a vector whose mth
element is 1 and other elements are 0s. Then we take f1, . . . , fc
into the objective function in Eq. (27), select the minimum one,
and set Fi. as it.

3.2.5. Optimizing p
When optimizing p, we find that p can be decoupled into c

independent subproblems and the mth one is:

min
pm

J = λpmlog(pm) + γmpm +
µ1

2
p2m − µ1pmam. (28)

where am =

∑n
i=1 Fim
n < 1. Set its derivative w.r.t. pm to zero, we

obtain:
∂J
∂pm

= λlog(pm) + µ1pm + γm + λ − µ1am = 0. (29)

Denote f (pm) = λlog(pm) + µ1pm + γm + λ − µ1am. We have
limpm→0+ f (pm) → −∞ and f (1) = λ + γm + µ1(1 − am) > 0.
Moreover f (pm) is monotonically increasing in the range (0, 1].
Therefore, f (pm) = 0 has and only has one solution in (0, 1]. We
can solve it by a standard root finding algorithm easily.

3.2.6. Updating Lagrange multipliers
We update the Lagrange multipliers by the following formula:{
γm = γm + µ1(pm −

∑n
i=1 Fim
n ), 1 ≤ m ≤ c

µ1 = βµ1.
(30)

where β > 1 is a given parameter.

Algorithm 2 Unsupervised feature selection for balanced cluster-
ing
Input: Data matrix X, parameters λ and τ .
Output: Feature selection vector v.
1: Initialize µ1 = 1, β = 1.1. Compute W by conducting PCA on

X. Initialize v = 1, and compute G and F by doing k-means on
Wdiag(v)X. Initialize pm =

∑n
i=1 Fim
n .

2: while not converge do
3: Compute W by Eq. (8).
4: Compute v by ADMM algorithm as introduced in Algo-

rithm 1.
5: Compute G by Eq. (25).
6: Compute F by solving Eq. (27).
7: Compute p by solving Eq. (29).
8: Update the Lagrange multipliers by Eq. (30).
9: end while

Algorithm 2 summarizes the whole ADMM algorithm.

3.3. Time and space complexity

Since we need to handle d-by-n matrix X and compute d-by-d
matrix XXT , the space complexity is O(nd + d2).

When computing W, the time complexity is O(ndk + nck +

dck + nk2 + k3). When applying ADMM to compute v, supposing
that the number of iterations is l1, the time complexity is O(d3 +

nd2+cd2+ncd+c2d+ l1d2). Computing G costs O(dc2+nc2+ndc)
time. Updating F costs O(nc) time. When updating p, supposing
the time complexity of the root finding algorithm is O(t), which
is independent with n and d, then it takes O(ct) time to com-
pute p. At last, suppose the number of iterations of Algorithm
1 (Lines 2–9 in Algorithm 1) is l2, the whole time complexity is
O(l2(d3 + nd2 + l1d2)), since c, k ≪ n, d. Although we speed up
the method to some extent, we will study how to further reduce
the computation complexity in the future.

Table 1
Description of the data sets.

#instances #features #classes

Yale 165 1024 15
20NG 3970 1000 4
Jaffe 213 676 10
Mnist4000 4000 784 10
ORL 400 1024 40
UCI Digit 2000 216 10

4. Experiments

In this section, we compare our method with several state-
of-the-art unsupervised feature selection methods on benchmark
data sets.

4.1. Data sets

We conduct experiments on 9 benchmark data sets, including
Yale [47], 20NG [48], Jaffe [49], Mnist4000 [50], ORL [51] and UCI
Digit [52] data sets. The basic information of these data sets are
summarized in Table 1.

4.2. Compared methods

To evaluate the effectiveness of our FSBC method, we com-
pare it with the following state-of-the-art unsupervised feature
selection methods:

• AllFea. We use all features for clustering.
• FSASL [30]. It learns the adaptive global and local structure

in the process of feature selection.
• SOGFS [31]. It learns a graph with optimal structure for

unsupervised feature selection.
• LRPFS [53]. It is a feature selection method which tries to

preserve the low rank structure in the process of feature
selection.

• URAFS [32]. This unsupervised feature selection method
applies the generalized uncorrelated regression to learn an
adaptive graph for feature selection.

• NSSLFS [29]. It is an unsupervised feature selection with
sparse subspace learning.

• FSBC_nobal. To demonstrate the effectiveness of the bal-
anced term

∑c
m=1 pmlog(pm), we compare our method with

FSBC_nobalwhich drops this balanced term (or equivalently
speaking, set λ = 0).

4.3. Experimental setup

With the selected features, we evaluate the performance in
terms of k-means clustering by Accuracy (ACC) and Normalized
Mutual Information (NMI). Moreover, we also use Normalized
Entropy [43,44] to evaluate the balance of the clustering results.
Normalized Entropy is computed as follows:

NE = −
1

log(c)

c∑
m=1

nm

n
log
(nm

n

)
(31)

where c is the number of clusters, n is the number of instances,
nm is the number of instances in the m cluster. The larger NE
is, the more balanced the clustering result is. We report the
results over different number of selected features (in the range
{20, 40, . . . , 200}). Since the value of the term

∑c
m=1 pmlog(pm)

is often much smaller than other terms, we tune its parameter
λ in the range n2

∗ [10−3, 103
] by the grid search. We tune τ

in the range [10−3, 103
]. For other compared methods, we tune

the parameters as suggested in their papers. For all methods on
all data sets, the number of clusters is set to the true number of
classes.
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Table 2
ACC results on different data sets.
Data sets AllFea FSASL SOGFS LRPFS URAFS NSSLFS FSBC_nobal FSBC

Yale 0.5333 0.4218 0.3710 0.3921 0.3842 0.4473 0.4442 0.5236
20NG 0.8579 0.4812 0.3674 0.3317 0.5456 0.5425 0.5733 0.6125
Jaffe 0.7653 0.6016 0.4972 0.6352 0.7225 0.6432 0.7188 0.8653
Mnist4000 0.4915 0.4787 0.3075 0.2260 0.4530 0.1748 0.4762 0.4853
ORL 0.5600 0.5089 0.4355 0.4390 0.4595 0.5188 0.5105 0.5423
UCI Digit 0.5980 0.6852 0.6202 0.7121 0.7338 0.7154 0.6875 0.7713

Table 3
NMI results on different data sets.
Data sets AllFea FSASL SOGFS LRPFS URAFS NSSLFS FSBC_nobal FSBC

Yale 0.5851 0.4622 0.4133 0.4400 0.4179 0.4902 0.4756 0.5644
20NG 0.6605 0.2592 0.1232 0.0888 0.3080 0.3193 0.3518 0.3813
Jaffe 0.8473 0.6408 0.4898 0.6486 0.7261 0.6776 0.7648 0.8632
Mnist4000 0.4767 0.4405 0.2481 0.1257 0.3958 0.1020 0.4216 0.4312
ORL 0.7415 0.7072 0.6509 0.6412 0.6594 0.7138 0.7205 0.7425
UCI Digit 0.6070 0.6239 0.5852 0.6250 0.6497 0.6414 0.6181 0.6690

Table 4
NE results on different data sets.
Data sets AllFea FSASL SOGFS LRPFS URAFS NSSLFS FSBC_nobal FSBC

Yale 0.9734 0.9446 0.9465 0.9594 0.9369 0.9639 0.9487 0.9771
20NG 0.9824 0.6676 0.4600 0.3561 0.7531 0.7856 0.7665 0.7967
Jaffe 0.9700 0.9449 0.9345 0.9660 0.9809 0.9054 0.9325 0.9916
Mnist4000 0.9810 0.9746 0.8307 0.6534 0.9745 0.4068 0.9849 0.9916
ORL 0.9494 0.9500 0.9520 0.9460 0.9487 0.9547 0.9533 0.9623
UCI Digit 0.9531 0.9802 0.9749 0.9904 0.9896 0.9841 0.9864 0.9932

Fig. 1. ACC results on all data sets.

4.4. Experimental results

Since the optimal number of selected features is unknown
in advance, to better evaluate the performance of unsupervised
feature selection algorithms, we finally report the averaged re-
sults over different number of selected features (in the range

{20, 40, . . . , 200}). To validate the statistic significance of results,
we also calculate the p-value of t-test.

Tables 2, 3, and 4 show the results of ACC, NMI and NE
on all data sets, respectively. The bold fond indicates that the
difference is statistically significant, i.e., the p-value of t-test is
smaller than 0.05. Note that since we aim to compare with other
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Fig. 2. NMI results on all data sets.

Fig. 3. NE results on all data sets.

feature selection methods, we do not calculate the p-value of
AllFea. From the tables, we can see that, on most data sets,

our method can outperform the state-of-the-art unsupervised
feature selection methods, not only on the clustering accuracy but
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Fig. 4. ACC, NMI and NE w.r.t λ and τ on ORL and Jaffe data sets.

also the balance. This well demonstrates the effectiveness of our

FSBC. The reason why our method outperforms others may be

in two folds. Firstly, our method considers the balance property

of data. Note that, on most data sets, our method significantly
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outperforms the FSBC_nobal, which drops the balanced term. It
demonstrates that the balanced regularized term can indeed im-
prove the performance (both on clustering accuracy and balance)
of our method. Secondly, different from other feature selection
methods which use ℓ2,1-norm to approximate the ℓ2,0-norm, we
directly apply ℓ2,0-norm to select the exact top-k features without
any approximation, which is more desirable in feature selection
task. Therefore, our method performs better in both the clustering
quality and revealing balance structure.

The details of ACC, NMI and NE results on each data set with
different number of features are show in Figs. 1, 2, and 3. In
these figures, the black line represents our method, and the black
horizontal dotted line represents the result of AllFea. We can see
that, on most data sets, our method can outperform the AllFea
at most time. It demonstrates that our method can not only
largely reduce the number of features used for clustering, but
also often improve the clustering performance. It can also be
found that our method outperforms the state-of-the-art feature
selection methods on most data sets at most time. The red dotted
line represents the result of FSBC_nobal, which is often below
our method. It also demonstrates the necessity of the balanced
regularized term.

4.5. Parameter study

We explore the affect of the parameters on clustering per-
formance by tuning parameters λ in n2

∗ [10−3, 103
] and τ in

[10−3, 103
]. Fig. 4 shows the results on ORL and Jaffe data sets,

and the results on other data sets are similar. The results show
that the performance of our method is stable across a wide range
of the parameters, thus we can choose the parameters easily.

5. Conclusion

In this paper, we proposed a novel unsupervised feature se-
lection method for balanced clustering. Different from the con-
ventional feature selection methods which selected the discrimi-
native features, we focused on the features which can reveal the
balanced structure of the data. We proposed a balance regular-
ization term and applied it to k-means, leading to a balanced
k-means clustering. In this balanced k-means clustering frame-
work, we selected the informative features which can make the
clustering results as balanced as possible. We integrated the
balanced k-means and feature selection into a unified framework
and provided an effective ADMM algorithm to jointly do cluster-
ing and select features. At last, we conduct extensive experiments
on benchmark data sets, and the experimental results show the
superiority of our method.

The proposed FSBC method can be very useful for the scenarios
which need to capture the balanced structure of data. Although
we have already speeded up the method to some extent, this
method still suffers from the high time and space complexity. In
the future, we will consider this scalable issue and try to further
reduce the time and space complexity of our method.
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