
Knowledge-Based Systems 174 (2019) 73–86

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Incrementalmulti-view spectral clustering
Peng Zhou a, Yi-Dong Shen b,∗, Liang Du c, Fan Ye a, Xuejun Li a
a School of Computer Science and Technology, Anhui University, Hefei 230601, China
b The State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
c School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

a r t i c l e i n f o

Article history:
Received 13 November 2018
Received in revised form 8 February 2019
Accepted 28 February 2019
Available online 8 March 2019

Keywords:
Multi-view clustering
Spectral clustering
Incremental learning

a b s t r a c t

Multi-view learning has attracted increasing attention in recent years, and the existing multi-view
learning methods learn a consensus result by collecting all views. These methods have two obvious
limitations. First, it is not scalable; with limited computational resources it would be difficult, if not
impossible, to collect and process a large collection of views together. Second, in many applications
views of data are available over time; it is infeasible to apply the existing multi-view learning methods
to such streaming views. To address the two limitations, in this paper we propose a novel incremental
multi-view spectral clustering (IMSC) method. In IMSC, instead of ensembling the collection of all
views simultaneously, we integrate them one by one in an incremental way. We first learn an initial
model from a small number of views; next when a new view is available, we need only use it to
update the model and apply the updated model to learn a consensus result. This method is scalable
and applicable to streaming views. To further reduce the time and space complexity, we apply low
rank approximation by means of the well-known random Fourier features to construct the base kernels
and do low rank SVD decompositions accordingly. The theoretical analysis and experimental results on
benchmark data sets show that our incremental multi-view spectral clustering method is significantly
faster in efficiency than the existing state-of-the-art non-incremental ones and is comparable or even
better in clustering quality.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Data on Internet often have multi-view representations, which
are generated from different data sources or descriptors. For
example, web data may contain different views such as texts,
images and videos; even a single type of data like visual data
can be represented by different descriptors, such as SIFT [1] and
HOG [2].

Several learning methods have been proposed to handle multi-
view data [3–9]. These methods usually take the collection of all
views as inputs and learn a consensus result by extending single
view learning methods, such as SVM, k-means, spectral clustering
and so on, to the multi-view setting. For example, in supervised
learning, Sun et al. [10] extended SVM to multi-view setting,
and Chen et al. [11] introduced the multi-view Fisher discrimi-
nant analysis which is applicable for both binary and multi-class
classification. In unsupervised learning, Kumar et al. [4] and Xia
et al. [7] extended spectral clustering to multi-view setting; Cai
et al. [5] presented a k-means based clustering method; Liu

∗ Corresponding author.
E-mail addresses: zhoupeng@ahu.edu.cn (P. Zhou), ydshen@ios.ac.cn

(Y.-D. Shen), duliang@sxu.edu.cn (L. Du), yfan@ahu.edu.cn (F. Ye),
xjli@ahu.edu.cn (X. Li).

et al. [12] applied nonnegative matrix factorization method to
learn a consensus clustering; Wang et al. [13] proposed a graph-
based multi-view clustering method; Zhang et al. [14] combined
multi-view clustering and multi-task learning in heterogeneous
situations; Wang et al. [15] used multi-view clustering to detect
coherent groups in crowd scenes.

The existing multi-view learning methods have two obvious
limitations. First, it is not scalable; with limited computational
resources it would be difficult to collect and process a large
collection of views together. Second, in many applications views
of data are available over time; it is infeasible to apply the existing
methods to such streaming views. For example, in automatic
detection of subkilometer craters in high-resolution planetary
images [16,17], the instances are craters which are continually
monitored by the latest available high-resolution images which
are updated over time. For a crater, each image can be regarded
as a view and the number of views increases with time. As an-
other example, in dangerous gas detection system [18], a number
of sensors have been deployed to detect the chemical gas and
sample the field data once in a while. In this application, there
are a number of gaseous substances which need to be classified
and each gas substance is continuously monitored by several
sensors. The sampled data at each time interval constitute a view,
so the number of views increases over time. In this streaming

https://doi.org/10.1016/j.knosys.2019.02.036
0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.02.036
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.02.036&domain=pdf
mailto:zhoupeng@ahu.edu.cn
mailto:ydshen@ios.ac.cn
mailto:duliang@sxu.edu.cn
mailto:yfan@ahu.edu.cn
mailto:xjli@ahu.edu.cn
https://doi.org/10.1016/j.knosys.2019.02.036


74 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

view setting, our task is to learn a new consensus result when a
new view arrives. However, all of the aforementioned multi-view
learning methods, which learn a consensus result by collecting all
views, are infeasible for streaming views, because there would be
an endless number of views available and it is too expensive, if
not impossible, to store all historical views in a repository and
process all of them.

To address the two limitations, in this paper we propose a
novel Incremental Multi-view Spectral Clustering (IMSC) method,
i.e., instead of processing all views simultaneously, we integrate
them one by one in an incremental way. Particularly, we always
keep a model which represents a collection of previous views.
This model consists of a few base kernels together with a spectral
embedding. Initially, we construct the base kernels and learn a
spectral embedding from the first few views; next, when one
more view is available, we learn a consensus kernel from the
base kernels and the new view and update the base kernels
simultaneously; finally, we construct a Laplacian matrix from the
consensus kernel and apply the Laplacian matrix to update the
spectral embedding.

Kernel learning and spectral clustering often involves Singular
Value Decomposition (SVD) operations on kernels whose time
and space complexity is O(n3) and O(n2), respectively, where n is
the number of instances. To improve the performance of IMSC,
we present several speedup strategies. Particularly, instead of
directly constructing a Gaussian kernel from a view, we learn and
store a low rank approximation to the kernel by means of random
Fourier features [19]; we then do low rank SVD decompositions
accordingly. As a result, we reduce the complexity of time and
space to O(nr2 + r3) and O(nr), respectively, where r is the rank
of the kernel matrix and often r ≪ n. Due to the low rank
approximation, our method can easily handle the case that data
contains a small quantity of new instances or missing instances
which often happens in the streaming view setting.

To demonstrate the effectiveness and efficiency of our method,
we conduct extensive experiments on benchmark data sets. The
experimental results demonstrate that, while being comparable
in clustering quality, our IMSC is significantly faster than the
multi-view clustering methods.

The paper is organized as follows. Section 2 describes some re-
lated work. Section 3 gives some preliminaries. Section 4 presents
in detail the main steps of IMSC. Section 5 shows the experi-
mental results, and Section 6 concludes the paper. In order not
to distract from the reading, proofs of the results are moved to
Appendix.

2. Related work

In this section, we briefly review representative multi-view
clustering methods reported in the literature.

Multi-view clustering methods learn a consensus clustering
result from a collection of views by extending existing cluster-
ing methods for single view data, such as k-means or spectral
clustering. Cai et al. [5] extended k-means for multi-view data,
leading to a multi-view k-means clustering method. Liu et al. [12]
extended the non-negative matrix factorization (NMF) to multi-
view clustering, where a joint NMF process is formulated with the
constraint that pushes clustering solution of each view towards
a common consensus. Günnemann [20] presented a multi-view
clustering method based on subspace learning, which provides
multiple generalizations of the data by modeling individual mix-
ture models, each representing a distinct view. Cao et al. [21]
also presented a subspace learning based multi-view clustering
method by making full use of the diversities in each view. Zhang
et al. [22] provided a multi-view subspace clustering method
which explores complementary information from multiple views

and simultaneously seeks the underlying latent representation.
Xie et al. [23] applied tensor multi-rank minimization to multi-
view subspace learning. Ren et al. [24] presented a robust auto-
weighted multi-view clustering method to handle noises on the
multiple views.

Since kernel method is widely-used in machine learning tasks,
it is natural to apply kernel methods to transfer multi-view learn-
ing into multiple kernel learning. So it is worth mentioning mul-
tiple kernel learning methods here. Liu et al. extended extreme
learning machine and kernel k-means to multiple kernel learning
in [25,26], respectively. Liu et al. [27] proposed a multiple kernel
learning method to enhance the representability of the optimal
kernel and strengthen the negotiation between kernel learning
and clustering. Since kernel plays important role in some spectral
method, some work focused on kernel spectral clustering. For
example, Peluffo-Ordónez et al. [28] linearly combined multiple
kernels and applied it to kernel spectral clustering for dynamic
data clustering. Alazte et al. [29] proposed a weighted kernel PCA
for spectral clustering which can handle out-of-sample problem.

The most closely related to our work are multi-view spectral
clustering methods of [4,7,30–34]. Kumar et al. [30] presented a
co-training approach for multi-view spectral clustering by boot-
strapping the clusterings of different views. Kumar et al. [4]
also proposed two coregularization based approaches for multi-
view spectral clustering by enforcing the clustering hypotheses
on different views to agree with each other; the approaches
construct an objective function consisting of the graph Laplacians
from all views and make regularizations on the eigenvectors
of the Laplacians such that the resulting cluster structures are
consistent. Xia et al. [7] proposed a robust multi-view spectral
clustering method by building a Markov chain based on a low
rank and sparse decomposition method. In the process of building
the Markov chain, this method decomposes the transition matrix
of each view into a low rank consensus transition matrix and
a sparse noise matrix. Then it applies an Alternating Direction
Method of Multipliers (ADMM) algorithm [35] to learn the con-
sensus transition matrix and obtain the final clustering result
from this consensus transition matrix. Li et al. [33] constructed
a bipartite graph for large-scale multi-view spectral clustering.
Nie et al. [31,32] presented a parameter-free multi-view spec-
tral clustering method, which learns an optimal weight for each
view automatically without introducing an additive parameter.
Recently, Nie et al. [34] learned spectral embedding from each
view and combined them via adaptively weighted procrustes.

As we discussed in Introduction, all of the aforementioned
multi-view learning methods have two limitations: they are not
scalable and cannot be applied for streaming view data. In ad-
dition, the spectral based multi-view learning methods need to
save all kernel or Laplacian matrices. When the number of views
grows, it is very space consuming.

It is worthy to note that, there have existed some researches
about multi-view learning on the streaming data [28,29,36–38].
For example, [36,37] focus on multi-view video processing, which
contains multiple video stream shotted from different view-
points. [28,29,38] are multiple kernel learning methods which
handle streaming data or out-of-sample data. These works are
different from our streaming views setting. The multi-view video
is a collection of multiple videos capturing the same 3D scene at
different viewpoints. So the number of views is the number of
different viewpoints and is fixed. Similarly, those multiple kernel
learning methods handle the data whose instances arrive in a
stream, while the number of kernels is fixed. However, in our
setting, the number of views or kernels is increasing with time.



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 75

3. Preliminaries

In this section, we briefly review spectral clustering and ran-
dom Fourier features method. Throughout the paper, we use
boldface uppercase and lowercase letters to denote matrices and
vectors, respectively. The (i, j)th element of a matrix M is denoted
by Mi,j.

3.1. Spectral clustering

Spectral clustering [39] is a widely used clustering method.
There are many spectral clustering method, such as normalized
cut (NCut) [40], random walk [41], kernel spectral clustering [29]
and so on. In this paper, we use the NCut method. Given a data
set containing n data points/instances {x1, . . . , xn}, we define a
sparse similarity matrix W ∈ Rn×n, where Wi,j ≥ 0 is the
similarity of xi and xj. There are many ways to constructW. In this
paper, we construct it from Gaussian kernels because Gaussian
kernel is one of the most widely-used kernel function in machine
learning methods. In more details, we compute the kernel value

K (xi, xj) of two instances xi and xj as K (xi, xj) = e−
∥xi−xj∥

2
2

2σ2 , where
σ is the bandwidth parameter. Then we construct W by setting
Wi,j = K (xi, xj) if xj is one of the top k nearest instance to
xi and Wi,j = 0 otherwise. After obtaining W, we construct a
Laplacian matrix L ∈ Rn×n with L = I − D−

1
2 WD−

1
2 , where I

is an identity matrix and D ∈ Rn×n is a diagonal matrix with
the (i, i)th element Di,i =

∑n
j=1 Wi,j. Spectral clustering aims to

learn a spectral embedding Y ∈ Rn×c (c is the dimension of the
embedding space and is often set to the number of clusters) by
optimizing the following function

min
Y

tr(YTLY), (1)

s.t. YTY = I.

where tr(·) is the trace function.
Eq. (1) can be solved by eigenvalue decomposition of L, i.e.,

Y = [y1, y2, . . . , yc], where y1, . . . , yc are the eigenvectors corre-
sponding to the smallest c eigenvalues of L.

Once the spectral embedding Y is obtained, we apply spectral
rotation [42] to discretize Y, thus yielding the final clustering
result C ∈ {0, 1}n×c (i.e., if the ith data instance belongs to
the jth cluster, then Ci,j = 1 and Ci,1, . . . , Ci,j−1, Ci,j+1, . . . , Ci,c
are all zeros). Spectral rotation solves the following optimization
problem:

min
C,R∗

∥C − YR∗
∥
2
F , (2)

s.t. C ∈ {0, 1}n×c, C1c = 1n, R∗TR∗
= I.

where R∗
∈ Rc×c is a rotation matrix, 1c (resp. 1n) is a vector

of length c (resp. n) whose elements are all 1, and ∥ · ∥F is the
Frobenius norm. Yu et al. [42] presented an SVD based method
to solve Eq. (2) with the time complexity O(nc2 + c3).

3.2. Random Fourier features

Random Fourier features method [19] is proposed by Rahimi
et al., and used to learn a low rank approximation of a kernel
matrix, i.e., given a kernel matrix K ∈ Rn×n, it aims to learn a low
rank matrix H ∈ Rr×n with r ≪ n, such that HTH ≈ K.

The random Fourier features method is based on the following
Bochner’s theorem:

Theorem 1 ([43]). A continuous kernel function k(x, y) = k(x − y)
on Rd is positive definite if and only if its Fourier transform is a
non-negative measure.

If the kernel function k(·) is properly scaled, Bochner’s theorem
guarantees that its Fourier transform p(ω) is a proper probability
distribution, i.e.,

k(x − y) =

∫
Rd

p(ω)ejω
T (x−y) dω

=

∫
Rd

p(ω) cos(ωT (x − y)) dω

+ j
∫
Rd

p(ω) sin(ωT (x − y)) dω

=

∫
Rd

p(ω) cos(ωT (x − y)) dω (3)

where j is the imaginary unit; the second equality is by Euler’s
formula and the third one is due to that the imaginary part
must be zero since k(·) is a real-valued function. Since p(ω) is a
probability distribution, the above integral can be viewed as the
expectation Eω of cos(ωT (x − y)) w.r.t. ω. Since cos(α − β) =

cosα cosβ + sinα sinβ , Eq. (3) can be rewritten as:

k(x − y) = Eω[f (ω, x)T f (ω, y)] (4)

where f (ω, x) = [cos(ωTx), sin(ωTx)]T .
Then, the idea of random Fourier features is to use the em-

pirical mean over r/2 Fourier components ω1, . . . ,ωr/2, sampled
from the distribution p(ω), to approximate the expectation Eq. (4)
and thus obtain a rank-r approximation H ∈ Rr×n to the kernel K
whose kernel function is k(x − y) (i.e., K ≈ HTH). More formally,
let the data set X contains instances {x1, . . . , xn}, then

H = [h(x1)T , . . . ,h(xn)T ] (5)

where

h(x) =

√
2

√
r
[cos(ωT

1x), . . . , cos(ω
T
r/2x), sin(ω

T
1x), . . . , sin(ω

T
r/2x)]

(6)

Intuitively, HTH is closer to K when r gets larger.

4. Incremental multi-view spectral clustering

In this paper, We use X = {X(1),X(2), . . . ,X(t), . . . ,X(v)
} to

denote a multi-view data set, where X(t)
∈ Rn×dt is the tth view

of X with n instances and dt features. We also use C(t)
∈ {0, 1}n×c

to denote the clustering result of the first t views of X , where c
is the number of clusters. If the ith instance belongs to the jth
cluster, C (t)

i,j = 1 and C (t)
i,1 , . . . , C

(t)
i,j−1, C

(t)
i,j+1, . . . , C

(t)
i,c are all zeros.

The task of multi-view spectral clustering is to learn C(t) (t ≥ 1)
from X by means of spectral embedding.

The idea of incremental multi-view learning is to integrate a
collection of views one by one in an incremental way; i.e., we
keep a model representing the previous views and when the next
view is available, we update the model with the new view and
then learn a consensus result by applying the updated model.

In our incremental multi-view spectral clustering (IMSC), the
model consists of a few base kernels as well as a spectral embed-
ding. Initially, we construct m Gaussian kernels as base kernels
K(1)

b , K(2)
b , . . . , K(m)

b from the first m views X(1), X(2), . . . , X(m),
respectively (in our experiments we choose m = 2), and learn
an initial consensus spectral embedding Y(m) from the m initial
base kernels. Next, we combine the base kernels and the new
kernel built from the (m + 1)th view X(m+1) to learn a consensus
kernel K(m+1) while jointly updating the base kernels. Finally, we
construct a consensus Laplacian matrix L(m+1) from K(m+1) and
apply it and Y(m) to learn a spectral embedding Y(m+1). The process
is repeated until no more view is available. Apparently, the most
difficult part of IMSC is how to learn a consensus kernel K(t)

(t > m) and update the base kernels.



76 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

4.1. Learning a consensus kernel K(t) and update base kernels

Given the base kernels K(1)
b , K(2)

b , . . . , K(m)
b and a new view X(t)

(t > m), we want to learn a consensus kernel K(t) and jointly
update these base kernels. To achieve this, we first construct a
Gaussian kernel K(t)

c from the current new view X(t). By abuse
of notation, in the sequel we use K̂(1)

b , K̂(2)
b , . . . , K̂(m)

b to denote
the current base kernels and use K(1)

b , K(2)
b , . . . , K(m)

b to denote the
updated base kernels by applying the new view X(t). Let rank(K)
denote the rank of a kernel matrix K. Then we aim for an objective
function with the following properties:

1. The consensus kernel K(t) is expected to be as close as
possible to each K(i)

b of the updated base kernels; i.e., the
difference

∑m
i=1 ∥K(t)

− K(i)
b ∥

2
F should be minimized.

2. K(t) is expected to be as close as possible to the kernel K(t)
c

of the new view X(t); i.e., the difference ∥K(t)
−K(t)

c ∥
2
F should

be minimized.
3. The base kernels should be stable, which means these

kernels before and after being updated by the new view
are expected to be as close as possible. Therefore, the
difference

∑m
i=1 ∥K(i)

b − K̂(i)
b ∥

2
F should be minimized.

4. Furthermore, in order to have a clear cluster structure [44,
45], the consensus kernel and the updated base kernels are
supposed to be low rank; i.e., rank(K(t)) +

∑m
i=1 rank(K

(i)
b )

should be minimized.

Formally we present the following objective function, which
learns the consensus kernel K(t) and updates the base kernels K(i)

b
(1 ≤ i ≤ m) jointly:

min
K(1)
b ,...,K(m)

b ,K(t)

m∑
i=1

∥K(t)
− K(i)

b ∥
2
F + ∥K(t)

− K(t)
c ∥

2
F

+ λ1

m∑
i=1

∥K(i)
b − K̂(i)

b ∥
2
F

+ λ2

(
rank(K(t)) +

m∑
i=1

rank(K(i)
b )

)
,

s.t. K(t)T
= K(t), K(t)

⪰ 0, (7)

K(i)T
b = K(i)

b , K(i)
b ⪰ 0, ∀1 ≤ i ≤ m.

where λ1 and λ2 are two balancing parameters. Note that the
constraints in Eq. (7) are necessary to guarantee that the consen-
sus kernel K(t) and all updated base kernels K(i)

b (1 ≤ i ≤ m)
are valid kernel matrices, i.e., they are symmetric and positive
semi-definite.

Next we describe how to solve the above objective function.
Since the optimization problem in Eq. (7) involves minimizing the
variables K(t) and K(i)

b (1 ≤ i ≤ m), we solve it using an alternating
minimization algorithm.

4.1.1. Optimize K(t) by fixing K(i)
b

When all K(i)
b (1 ≤ i ≤ m) are fixed, by expanding the

Frobenius norms, Eq. (7) can easily be rewritten as:

min
K(t)

∥K(t)
− A∥

2
F + τ rank(K(t)),

s.t. K(t)T
= K(t), K(t)

⪰ 0. (8)

where A =
1

m+1

(∑m
i=1 K

(i)
b + K(t)

c

)
and τ =

λ2
m+1 . Due to the

low rank term τ rank(K(t)), Eq. (8) is a non-convex discontinu-
ous function. Fortunately, we can get the global optima of this
sub-problem by applying an SVD based method as follows.

Since K(t) and A are symmetric and positive semi-definite, we
can write K(t)

= U(t)S(t)U(t)T and A = UASAUT
A as the SVD of

K(t) and A, respectively, where U(t)
= [u1, . . . ,un] and UA =

[v1, . . . , vn] are n eigenvectors of K(t) and A respectively, and S(t),
SA are diagonal matrices whose diagonal elements are σ1, . . . , σn
and θ1, . . . , θn respectively. Here σ1, . . . , σn are n eigenvalues
of K(t) and θ1, . . . , θn are n eigenvalues of A, and all of these
eigenvalues should be greater than or equal to 0.

We present the following principal theorem used to solve
Eq. (8).

Theorem 2. Let K(t)
= U(t)S(t)U(t)T and A = UASAUT

A be the SVD of
K(t) and A, respectively as defined above. Then, under the following
conditions:

U(t)
= UA, σi =

{
θi, θi ≥

√
τ

0, θi <
√

τ
(9)

K(t) is the global optima of Eq. (8).

Proof. See Appendix.

Therefore, we can obtain the solution of Eq. (8) by first com-
puting the SVD A = UASAUT

A , then computing σ1, . . . , σn using
Eq. (9) which yields the diagonal matrix S(t) whose diagonal
elements are σ1, . . . , σn, and finally computing the consensus
kernel K(t)

= UAS(t)UT
A . By Theorem 2, K(t) is the global optima

of Eq. (8).

4.1.2. Optimize K(i)
b by fixing K(t)

When K(t) is fixed, Eq. (7) can be decoupled into m indepen-
dent sub-problems each of which only involves one variable K(i)

b
and can be rewritten as:

min
K(i)
b

∥K(i)
b − B∥

2
F + ρ rank(K(i)

b ),

s.t. K(i)T
b = K(i)

b , K(i)
b ⪰ 0. (10)

where B =
λ1K̂

(i)
b +K(t)

λ1+1 and ρ =
λ2

λ1+1 . Obviously, Eq. (10) can be
solved in the same way as Eq. (8) by applying Theorem 2.

4.1.3. Algorithm for optimizing Eq. (7)
Algorithm 1 summarizes the above processes for optimizing

Eq. (7), which jointly computes the consensus kernel K(t) and the
updated base kernels K(i)

b (1 ≤ i ≤ m).

Algorithm 1 Learning a consensus kernel K(t) (t > m) and
updating the base kernels

Input: Current base kernels K̂(i)
b (1 ≤ i ≤ m), kernel K(t)

c of a new
view X(t), parameters λ1 and λ2.

Output: Consensus kernel K(t), and updated base kernels K(i)
b (1 ≤

i ≤ m).
1: Initialize K(i)

b = K̂(i)
b (1 ≤ i ≤ m).

2: while not converge do
3: Let A =

1
m+1

(∑m
i=1 K

(i)
b + K(t)

c

)
.

4: Compute UA and SA such that A = UASAUT
A .

5: Compute S(t) using Eq. (9) and let K(t)
= UAS(t)UT

A .
6: for j = 1, 2, ...,m do

7: Let B =
λ1K̂

(j)
b +K(t)

λ1+1 .
8: Compute UB and SB such that B = UBSBUT

B .
9: Compute S(j)b using Eq. (9) (similar to S(t)) and let K(j)

b =

UBS
(j)
b UT

B .
10: end for
11: end while



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 77

By Theorem 2, the consensus kernel K(t) and the updated
base kernels K(i)

b (1 ≤ i ≤ m) obtained in Algorithm 1 are the
global optima of Eqs. (8) and (10), respectively. This means that
in the minimization process via the while cycle (lines 3–10), the
objective functions Eqs. (8) and (10) monotonically decrease and
thus the objective function Eq. (7) monotonically decreases. As
these objective functions are greater than 0, Algorithm 1 will
always converge.

4.1.4. Learning an initial consensus kernel K(m)

It was mentioned earlier that we will learn an initial consensus
spectral embedding Y(m) by combining the m initial base kernels
K(1)

b , K(2)
b , . . . ,K(m)

b which are Gaussian kernels constructed from
the first m views X(1), X(2), . . . ,X(m), respectively. This requires
us to learn an initial consensus kernel K(m) from the m initial
base kernels. We do this kernel combination by simplifying the
objective function Eq. (7) to the following one:

min
K(m)

m∑
i=1

∥K(m)
− K̂(i)

b ∥
2
F + λ2

(
rank(K(m))

)
,

s.t. K(m)T
= K(m), K(m)

⪰ 0 (11)

That is, we only require that the initial consensus kernel K(m) be
as close as possible to each initial base kernel K(i)

b , and be low
rank. Eq. (11) can also easily be solved by Theorem 2.

4.2. Speedup strategies

It turns out that Algorithm 1 can be significantly improved
both in space and time. Since it needs to store m n-by-n base
kernels, the space complexity is O(mn2); it needs to do SVD
operations on these kernels, so the time complexity is O(l1mn3),
where l1 is the number of iterations.

Recall that any n-by-n kernel matrix K can be represented as
an economy SVD USUT , where U ∈ Rn×r and r is the rank of
K. In our method, we also impose the low rank property on the
consensus kernel K(t) and all base kernels K(i)

b (i.e., r ≪ n; see the
objective function Eq. (7)). Therefore, in this section we present
a way to improve the time and space complexity of Algorithm 1
by means of low rank kernel SVD decomposition.

Note that our initial m base kernels K̂(1)
b , K̂(2)

b , . . . , K̂(m)
b and

the current kernel K(t)
c are Gaussian kernels constructed from

the first m views X(1), X(2), . . . , X(m) and the current view X(t)

respectively. These Gaussian kernels are not necessarily low rank
matrices. Therefore, we first use a low rank approximation of
a Gaussian kernel by applying the random Fourier features [19]
method introduced in Section 3.2.

In more details, according to Section 3.2, since all the kernels
we use are Gaussian kernels which are properly scaled, we need
to know the Fourier transformation of Gaussian kernel. It is easy
to verify that the Fourier transformation of any Gaussian kernel

function k(x − y) = e−
∥x−y∥22
2σ2 is also a Gaussian distribution

with zero means and 1/σ variances. Therefore, instead of directly
constructing K (K̂(i)

b and K(t)
c ) from X (X(i) and X(t)), we can apply

the above method of random Fourier features to learn an approx-
imation HTH to K, where H ∈ Rr×n is a low rank matrix obtained
with Eqs.(5) and (6) by sampling r/2 vectors ω1, . . . ,ωr/2 from
the Gaussian distribution N (0, (1/σ )I) with zero means and 1/σ
variances. The time and space complexity of constructing H is
O(rdn) and O(dn + rn) where d is the dimension of the data.

Let the SVD of H be UHSHVT
H = H, which can be computed in

O(nr2) time. Then the SVD of HTH is HTH = VHS2HV
T
H , which can

be taken as an approximation of the SVD of K.

When all input kernels K(t)
c and K̂(i)

b (1 ≤ i ≤ m) are low
rank, we can compute their SVD more efficiently. The most time-
consuming parts of Algorithm 1 are to compute the SVD A =

UASAUT
A and B = UBSBUT

B , where A =
1

m+1

(∑m
i=1 K

(i)
b + K(t)

c

)
and B =

λ1K̂
(j)
b +K(t)

λ1+1 . Observe that the main components of A and
B are the sum of kernels, so their SVD can be computed in an
incremental way [46], i.e., we initially compute the SVD E of the
sum of the first two kernels, then compute the SVD of the sum of
E and the third kernel, and so on.

Consider two low rank symmetric and positive semi-definite
matrices K1 ∈ Rn×n and K2 ∈ Rn×n whose SVD are K1 = U1S1UT

1
and K2 = U2S2UT

2 , where U1 ∈ Rn×r1 , S1 ∈ Rr1×r1 , U2 ∈ Rn×r2 ,
S2 ∈ Rr2×r2 , and r1 and r2 are the rank of K1 and K2 respectively.
We have

K1 + K2 = U1S1UT
1 + U2S2UT

2 = [U1,U2]

[
S1 0
0 S2

]
[U1,U2]

T

(12)

Let F be an orthogonal basis of the column space of (I −

U1UT
1)U2, which is the component of U2 that is orthogonal to U1.

Define FU2 = FT (I−U1UT
1)U2. So the number r̂ of columns of F is

equal to the number of rows of FU2 and is also equal to the rank of
(I−U1UT

1)U2 which is no greater than r2. So the time complexity
of computing F and FU2 is no greater than O(nr1r2 + nr22 ). Then
we have

[U1,U2] = [U1, F]
[

I UT
1U2

0 FU2

]
(13)

Taking Eq. (13) back into Eq. (12), we obtain

K1 + K2 = [U1, F]Ω[U1, F]T (14)

where

Ω =

[
I UT

1U2
0 FU2

][
S1 0
0 S2

][
I UT

1U2
0 FU2

]T
(15)

Note that
[

I UT
1U2

0 FU2

]
is a (r1 + r̂)-by-(r1 + r2) matrix,[

S1 0
0 S2

]
is a (r1 + r2)-by-(r1 + r2) matrix and r̂ ≤ r2, so the

size of Ω is no greater than (r1 + r2) × (r1 + r2).
Then we compute the SVD of Ω = ÛΩ̂ ÛT in O((r1+r2)3) time,

and obtain the SVD of K1 + K2:

K1 + K2 = ([U1, F]Û)Ω̂ (ÛT
[U1, F]T ) (16)

in O(n(r1 + r2)2) time.
So the SVD of K1 + K2 can be calculated in O(n(r1 + r2)2 +

(r1 + r2)3) time and O(n(r1 + r2)) space. Thus it takes O(m(nr2max +

r3max)) time and O(mnrmax) space to compute the low rank SVD of

A =
1

m+1

(∑m
i=1 K

(i)
b + K(t)

c

)
and B =

λ1K̂
(j)
b +K(t)

λ1+1 , where rmax stands
for the largest rank of the involved kernel matrices. In contrast,
in Algorithm 1 this needs O(mn3) time and O(mn2) space. Since
rmax ≪ n, applying the low rank SVD would significantly reduce
the time and space complexity.

4.3. Learning a consensus spectral embedding Y(t)

After a consensus kernel K(t) (t ≥ m) has been learned
from the base kernels K(1)

b , . . . ,K(m)
b , we can construct a Laplacian

matrix L(t) from K(t) as introduced in Section 3.1.
For t = m, given a Laplacian matrix L(m) that is constructed

from the initial consensus kernel K(m), we learn an initial spectral
embedding Y(m) using the following loss function [40]:

Y(m)
= argmin

Ŷ
tr(ŶTL(m)Ŷ), (17)



78 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

s.t. ŶT Ŷ = I.

For t > m, let L(t) be a Laplacian matrix constructed above
and Y(t−1) be a consensus spectral embedding of the last t − 1
views X(1), . . . ,X(t−1). We next describe how to learn a consensus
spectral embedding Y(t) of the t views X(1), . . . ,X(t−1),X(t) from
L(t) and Y(t−1).

In our incremental multi-view learning, we expect the model
to be stable in the sense that the spectral embedding Y(t) of the
first t views should be as close as possible to the embedding Y(t−1)

of the first t − 1 views. This can be achieved by adding a smooth
term ∥Ŷ − Y(t−1)

∥
2
F to Eq. (17), i.e.,

Y(t)
= argmin

Ŷ
tr(ŶTL(t)Ŷ) + γ ∥Ŷ − Y(t−1)

∥
2
F , (18)

s.t. ŶT Ŷ = I.

where γ is a balancing parameter.
Since Eq. (18) contains an orthogonal constraint, it is hard to

find a closed form solution. Inspired by [47,48], we propose a
constraint preserving descent method to solve this optimization
problem. This method guarantees that in each iteration, the or-
thogonal constraint is preserved and the loss function Eq. (18)
decreases.

We first rewrite Eq. (18) in a simpler form:

min
Ŷ

tr(ŶTPŶ) + 2tr(ŶTQ)

s.t. ŶT Ŷ = I (19)

where P = L(t) + γ I and Q = −γY(t−1). By introducing the
Lagrangian multiplier Λ, we get the Lagrangian function

L = tr(ŶTPŶ) + 2tr(ŶTQ) − tr(Λ(ŶT Ŷ − I)). (20)

Set the partial derivative w.r.t. Ŷ to zero:
∂L

∂Ŷ
= 2

(
PŶ + Q − ŶΛ

)
= 0 (21)

By multiplying both sides of Eq. (21) by ŶT and applying the
constraint ŶT Ŷ = I, we can solve Λ as Λ = ŶT (PŶ+Q). Note that
ŶT Ŷ is symmetric, and its corresponding Lagrangian multiplier Λ
is also symmetric. So we rewrite Λ as Λ = (PŶ + Q)T Ŷ. Putting
it back into Eq. (21), we obtain
∂L

∂Ŷ
= 2

(
PŶŶT

+ QŶT
− Ŷ(PŶ + Q)T

)
Ŷ (22)

Let R = 2
(
PŶŶT

+ QŶT
− Ŷ(PŶ + Q)T

)
. It is easy to verify that R

is a skew-symmetric matrix, i.e., RT
= −R.

Let Ŷl be the result of Ŷ at the lth iteration in the descent
process. At the (l + 1)th iteration , we want to learn Ŷl+1 from
Ŷl with an iteration step size η ≥ 0.

The following theorem provides a descent update formula and
shows that the orthogonal constraint is preserved and the loss
function decreases.

Theorem 3. (1) Given any skew-symmetric matrix R ∈ Rn×n and
Ŷl

∈ Rn×c such that ŶlT Ŷl
= I, let

Ŷl+1
=

(
I +

η

2
R
)−1 (

I −
η

2
R
)
Ŷl (23)

Then (Ŷl+1)T Ŷl+1
= I.

(2) Let R = 2
(
PŶlŶlT

+ QŶlT
− Ŷl(PŶl

+ Q)T
)
. Then updating

Ŷl+1 is in a descent direction. Since the objective function in Eq. (19)
is lower bounded by 0, the iteration method converges. Moreover, it
can converge to a stable point.

Proof. See Appendix.

Note that we choose the iteration step size η by a curvilinear
search method as was done in [48], which can guarantee the con-
vergence. Therefore we compute Y(t) iteratively using the update
formula Eq. (23) until the decent process converges. Clearly, the
most expensive part here is to compute the inverse (I +

η

2R)
−1

which takes O(n3) time. Fortunately, we can speedup this process
using low rank decomposition technique. In more details, we
can rewrite η

2R = MN, where M = [
η

2 (PŶ
l
+ Q), − η

2 Ŷ
l
] and

N = [Ŷl, PŶl
+ Q]

T . By borrowing the result in [49], we have
(I + MN)−1

= I − M(I + NM)−1N. Note that I + NM is a 2c-by-
2c matrix, where c is the number of clusters and often c ≪ n.
So the time complexity of the matrix inverse is reduced from
O(n3) to O(c3). According to this, we analyze the time and space
complexity of this step. Taking η

2R = MN into Eq. (23), we obtain:

Ŷl+1
=

(
I +

η

2
R
)−1 (

I −
η

2
R
)
Ŷl (24)

= (I + MN)−1 (I − MN) Ŷl

=
(
I − M(I + NM)−1N

)
(I − MN) Ŷl

= Ŷl
− MNŶl

− M(I + NM)−1NŶl
+ M(I + NM)−1NMNŶl

Note that M, N and Yl are n-by-2c , 2c-by-n and n-by-c matri-
ces, respectively. So the time complexity of computing MNŶl,
M(I+NM)−1NŶl and M(I+NM)−1NMNŶl are O(nc2), O(nc2 + c3)
and O(nc2 + c3), respectively, by using the associative law of
multiplication. In addition, the time complexity of computing PŶl

is O(nkc) because P is a sparse matrix and there are only O(k)
non-zero elements in each row. Thus in this step, the whole time
complexity is O(l(nkc + nc2 + c3)), where l is the number of
iterations, and the space complexity is O(nc+nk) because we only
use n-by-2c , n-by-c and sparse n-by-n matrices. Summarizing the
above subsections, we obtain the whole process of IMSC as shown
in Algorithm 2.

Algorithm 2 Incremental Multi-view Spectral Clustering

Input: A multi-view data set X = {X(1), · · · ,X(v)
}, balancing parameters

λ1, λ2, γ , number m ≤ v of base kernels, number c of clusters, the
bandwidth parameter σ , number r of samples in random Fourier
feature step.

Output: Clustering result C(v) of X .
1: for t = 1, 2, · · · ,m do
2: Construct from X(t) a low rank approximation U(t)

b S(t)b U(t)T
b to the

SVD of the initial base kernel K(t)
b by random Fourier features

method.
3: end for
4: Learn an initial consensus kernel K(m) (see Section 4.1.4).
5: Construct a Laplacian matrix L(m) from K(m) and learn an initial

consensus spectral embedding Y(m) from L(m) (see Section 4.3).
6: for t = m + 1,m + 2, · · · , v do
7: Learn a consensus kernel K(t) and update the m base kernels (see

Algorithm 1 and Section 4.2).
8: Construct a Laplacian matrix L(t) from K(t) and learn a consensus

spectral embedding Y(t) from L(t) (see Section 4.3).
9: end for

10: Compute the clustering result C(v) by means of spectral rotation of
Y(v) [42].

4.4. Time and space complexity

In this subsection, we discuss the time and space complexity
of Algorithm 2. In Lines 1–3, we construct the low rank approxi-
mation of the first m views by random Fourier feature methods.
This step costs O(mrdmaxn) time and O(dmaxn+mrn) space, where
dmax is the highest number of dimension of all the views. Then



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 79

learning the initial kernel K(m), the consensus K(t) and updating
the base kernels needs O(m(nr2max + r3max)) time and O(mnrmax)
space as discussed in Section 4.2).

When constructing Laplacian matrix L(t), we need to construct
the k-nn graph W(t). Since each row of W(t) is de-coupled, we can
calculate W(t) row by row which needs O(nk) space and O(n2k)
time. If n is too large, we can apply a probabilistic speedup strat-
egy to find an approximate k-nn set of each row as introduced
in [50]. In more details, when finding the largest element in a row,
we can sample a random subset of fixed size, say κ , and pick the
largest one in this subset rather than performing an exhaustive
search over all n elements. According to [50], κ = 59 can already
guarantee nearly as good performance as if we consider all n
elements. Thus, the time complexity can be reduced to O(nkκ)
from O(n2k).

At last, the time and space complexity of updating Y is O(l(nkc
+ nc2 + c3)) and O(nc + nk) as introduced in 4.3.

4.5. Handling new data and missing data

In the streaming view setting, it often happens that there are
a small quantity of new data or missing data in the new view. In
traditional multi-view spectral clustering methods, it is hard to
handle this incomplete data setting. Fortunately, in our method,
since we compute the low rank representation of kernels USUT ,
we can compute H = S0.5UT as the embedding of the instances in
the kernel space. When we obtain this embedding, we can solve
this problem naturally.

In more details, the key problem is that when optimizing
Eq. (7), K̂(i)

b and K(t)
c are not aligned, i.e., some instances in K̂(i)

b
are absence in K(t)

c and vice versa. A natural way to handle this
problem is filling K̂(i)

b and K(t)
c before optimizing Eq. (7). Let Ĥ(i)

b =

Ŝ(i)0.5b Û(i)T
b , H(t)

c = S(t)0.5c U(t)T
c and H(t−1)

= S(t−1)0.5U(t−1)T denote
the embedding of K̂(i)

b , K(t)
c and K(t−1) respectively, where K(t−1) is

the consensus kernel of the first t − 1 views. Note that Ĥ(i)
b and

H(t−1) are aligned. For an instance x which is in the Ĥ(i)
b (or H(t−1))

whereas is absence in H(t)
c , we denote h(t−1)

x as the corresponding
column of x in H(t−1). We first find its k-nn instances in the
common instances (appearing in H(t−1) and H(t)

c both), and learn
the linear coefficient such that h(t−1)

x ≈ Σk
j=1wjh

(t−1)
j where h(t−1)

j
is a k-nn instance of x represented in H(t−1) and wj is the linear
coefficient. We can learn the weight wj by a similar way in Locally
Linear Embedding (LLE) [51]:

min
w

h(t−1)
x −

k∑
j=1

wjh
(t−1)
j


2

2

+
α

2
∥w∥

2
2 , s.t.

k∑
j=1

wj = 1. (25)

Then in H(t)
c , we reconstruct the corresponding instance by

h(t)
x_c = Σk

j=1wjh
(t)
j_c where h(t)

x_c is the estimated x in H(t)
c and h(t)

j_c is
the k-nn instance of x represented in H(t)

c . For the instances that
appear in H(t)

c whereas are absence in Ĥ(i)
b , we can handle them

similarly. Moreover, we can also use the similar technique to fill
Y(t−1) in Eq. (18) to handle new data.

5. Experiments

In this section, we empirically evaluate the effectiveness and
efficiency of our incremental multi-view method IMSC on bench-
mark data sets.

Table 1
Five benchmark multi-view data sets.

#instances #features #classes

Corel 3400 64, 9, 128, 10, 8, 104, 15 34

UCI Digit 2000 216, 76, 64, 6, 240, 47 10

AwA 30475 2688, 40960, 2000, 252, 502000, 2000, 2000, 4096

Sun397 39700
6300, 784, 256, 512, 512

397512, 6300, 1239, 798, 230
2000,6300,10752,3072

Gas Sensor 17922 72 features × 100 views 11

CM 2205 8 features × 60 views 3

5.1. Data set descriptions

Our experiments were conducted on five benchmark multi-
view data sets as summarized in Table 1. These data sets include
widely used multi-view data, such as Corel data set1 [52], UCI
Digit data set2 [53], AwA (Animal with Attributes) data set3 [54]
and Sun397 data set4 [55]. To simulate the streaming view set-
ting, we also use two time-series data sets Gas Sensor5 [18] and
Condition Monitoring of hydraulic systems (CM)6 [56]. Gas Sensor
data set contains time-series measurement recordings collected
from 72 metal-oxide gas sensors utilized in the identification
of potentially-dangerous chemical gaseous. Since the data set is
a time-series recording, we sample 100 views from 100 time
points, and in each view the recordings of the 72 sensors are the
features. By this way, we obtain a 100-view data set. Similarly,
CM is experimentally obtained with a hydraulic test rig which
contains 2205 instances. It is also a time-series recording, and
we sample 60 views from 60 time points, and in each view the
features are the records sampled from 8 sensors.

5.2. Baseline methods

We compare our IMSC with the following baseline methods:

• Single view spectral clustering (SC): at time t we do stan-
dard single view spectral clustering [40] only on the tth
view without using any other views.

• CoregSC [4]: it is a coregularization based multi-view spec-
tral clustering method.

• RMSC [7]: it is a robust multi-view spectral clustering
method by building a Markov chain.

• AMGL [31]: it is a parameter-free multi-view spectral clus-
tering method which learns the weights of the views auto-
matically.

• AWP [34]: it learns the spectral embedding from each view
and combined them via adaptively weighted procrustes.

• MCGC [57]: it learns the spectral embedding from a consen-
sus graph with minimizing disagreement between different
views.

For the multi-view methods, at time t , we apply them on all of
the available t views. For clustering results, single view SC is a

1 http://www.cs.virginia.edu/%7exj3a/research/CBIR/Download.htm.
2 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
3 http://attributes.kyb.tuebingen.mpg.de/.
4 http://vision.cs.princeton.edu/projects/2010/SUN/.
5 http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+

sampling+settings.
6 https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+

systems.

http://www.cs.virginia.edu/%7exj3a/research/CBIR/Download.htm
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://attributes.kyb.tuebingen.mpg.de/
http://vision.cs.princeton.edu/projects/2010/SUN/
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings
https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems


80 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

weak baseline as it uses only one view; and multi-view methods
are five strong baselines as they make use of all views. In the
experiments, we expect that our IMSC outperforms single view
SC and is close to the multi-view methods in clustering results,
and that IMSC runs significantly faster than them.

5.3. Experimental setup

In our experiments on all data sets, we choose m = 2, i.e., we
use only the first 2 views to construct two base kernels and start
incremental multi-view clustering with the third view. When the
tth view (t > 2) is available, we run our method and the baseline
methods and report the clustering results and the running time.

Due to applying random Fourier features to construct low rank
approximation to Gaussian kernels, in our method we do random
sampling from the Gaussian distribution N (0, (1/σ )I). Therefore,
we run our method 20 times (with 20 different samplings) and
report the average results. We set the bandwidth parameter σ to
the median of the pair-wise Euclidean distances of all instances
in the same way as in [4], and set the number c of clusters to the
true number of classes for all data sets and all methods. We fix
the sample number r = 100 for random Fourier features and set
the k-nn parameter k to 10 on all data sets. We tune the balancing
parameters λ1, λ2 and γ by grid search in the range [10−4, 104

].
We also tune the parameters in baseline methods as suggested
in their papers. Two clustering evaluation metrics are adopted
to measure the clustering performance, including clustering Ac-
curacy (ACC) and Normalized Mutual Information (NMI). Higher
quality results will have higher ACC and NMI values.

All experiments were conducted using Matlab on a PC com-
puter with Windows 7, 3.4 GHz CPU and 32 GB memory.

5.4. Experimental results on clustering quality

Fig. 1 shows the ACC and NMI results of IMSC and the baseline
methods on the benchmark multi-view data sets. Note that due
to their high space complexity, CoregSC, RMSC, AMGL, AWP and
MCGC yield no clustering results on the two larger data sets
AwA and Sun397, because they run out of memory. On the Gas
Sensor data set, RMSC and MCGC suffers the out-of-memory
error; CoregSC, AMGL and AWP can only handle 3, 8 and 7 views
respectively and when one more view arrives, they also suffer
the out-of-memory error. It demonstrates that those multi-view
methods which collect all views to learn a consensus result is
infeasible to handle the data which contains a large number
of views. Since our method is in an incremental scheme, the
memory it uses is independent of the number of views, and it
can always work no matter how many views there are.

We see that the ACC and NMI values of our incremental
method IMSC keep growing with the increase of the number of
views on most data sets. This indicates that using a new view
X(t) to update the current model (2 base kernels K(1)

b and K(2)
b ,

and a spectral embedding Y(t−1)) in our method can indeed im-
prove the performance of the model. The clustering results in the
experiments clearly demonstrate that our method significantly
outperforms the single view SC and is comparable with or even
better than the 5 state-of-the-art multi-view baselines CoregSC,
RMSC, AMGL, AWP and MCGC.

5.5. Experimental results on efficiency

In the experiments, for each data set {X(1), . . . ,X(v)
}, IMSC

works in an incremental way and its running time consists of two
parts: (1) initially it constructs from the first 2 views a model,
i.e., 2 base kernels and a spectral embedding Y(2); (2) then for
each new view X(t) (t ≥ 3), it learns a consensus clustering result

Table 2
Running time (seconds) on UCI Digit.
Algorithms Views

3 4 5 6 ALL

IMSC 2.15 2.85 3.12 3.70 12.57
CoregSC 15.79 18.40 21.14 23.54 23.54
RMSC 410.75 465.23 526.91 431.21 431.21
AMGL 10.86 11.18 13.55 14.94 14.94
AWP 4.23 11.82 13.36 14.59 14.59
MCGC 54.40 74.29 90.93 98.76 98.76
Single view SC 0.23 0.84 0.28 0.24 –

Table 3
Running time (seconds) on Corel.
Algorithms Views

3 4 5 6 7 ALL

IMSC 8.09 11.93 13.60 18.15 23.13 78.12
CoregSC 81.28 93.28 105.03 119.07 134.56 134.56
RMSC 1976.6 2145.9 2141.1 2156.6 2186.1 2186.1
AMGL 70.31 74.31 80.01 88.15 90.47 90.47
AWP 23.73 38.03 52.45 67.08 81.77 81.77
MCGC 358.23 453.80 515.78 600.07 692.89 692.89
Single view SC 0.62 0.54 0.55 0.58 0.57 –

Table 4
Running time (seconds) on AwA.
Algorithms Views

3 4 5 6 7 8

IMSC 123.52 145.30 142.50 145.37 185.71 191.5
Single view SC 99.22 45.23 96.28 95.14 97.22 161.75

Table 5
Running time (seconds) on Sun397.
Algorithms Views

3 4 5 6 7 8

IMSC 1372.3 1223.4 1412.1 1452.9 2438.3 1321.1
Single view SC 285.30 649.63 714.42 671.90 1007.0 633.00

Algorithms Views

9 10 11 12 13 14

IMSC 1542.1 1498.3 1622.1 1575.3 1531.2 1634.1
Single view SC 675.36 675.25 825.48 916.02 1142.5 636.79

C(t). Obviously, in the streaming view setting, what we are more
interested in is the second part; in particular we expect that IMSC
responds fast whenever a new view is available. Therefore, for
each new view X(t) (t > 2) we report the second part of the
running time of IMSC and ALL time of IMSC used to process all
of the v views. Tables 2–5 show the experimental results, where
(1) for each t > 2 we report the time of IMSC used for learning
the clustering result C(t) from the current model and the view X(t),
the time of multi-view methods for learning C(t) from the first t
views, and the time of the single view SC for learning C(t) from
the tth view; and (2) we also report ALL time of IMSC used to
process all of the v views. Note that in Tables 4 and 5 on the data
sets AwA and Sun397, CoregSC, RMSC, AMGL, AWP and MCGC run
out of memory without outputs. Fig. 2 shows the running time of
our method and baseline methods on streaming view data sets,
i.e., Gas Sensor and CM data sets.

As expected, the experimental results show that our incre-
mental method is significantly faster than the multi-view meth-
ods on all data sets which demonstrates that our method is more
feasible to the streaming view setting than those multi-view
methods. We further stress the following two major reasons: (1)
Once the initial model is built, for any new view X(t) (t > 2),
our incremental method works constantly by combining only



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 81

Fig. 1. ACC and NMI on multi-view data sets.



82 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

Fig. 2. Running time on streaming view data sets.

Table 6
Clustering results of IMSC under 5 different order of views.
Data sets Metric Different view orders

1 2 3 4 5

Corel ACC 0.3213 0.3267 0.3541 0.3201 0.3312
NMI 0.4076 0.4070 0.4200 0.4122 0.4079

UCI Digit ACC 0.9612 0.9597 0.9761 0.9751 0.9573
NMI 0.9132 0.9117 0.9477 0.9429 0.9077

AwA ACC 0.4913 0.4871 0.4940 0.4969 0.4372
NMI 0.5222 0.5381 0.5253 0.5397 0.4513

Sun397 ACC 0.0663 0.0601 0.0713 0.0602 0.0648
NMI 0.3270 0.3100 0.3292 0.3150 0.3186

Gas Sensor ACC 0.4910 0.4214 0.4542 0.4762 0.5057
NMI 0.5390 0.4866 0.5001 0.5056 0.5255

CM ACC 0.9447 0.8916 0.8957 0.8789 0.9420
NMI 0.8274 0.7460 0.7569 0.7186 0.8171

3 kernels (2 base kernels and the current kernel), whereas the
compared methods need to combine all t views/kernels, which
would be quite costly when t gets larger. As a result, they run
out of memory on the data sets Gas Sensor, AwA and Sun397.
(2) the compared methods do SVD on n-by-n kernel or Lapla-
cian matrices. In contrast, our method makes n-by-r low rank
approximation to n-by-n Gaussian kernels by means of random
Fourier features and does low rank SVD. This significantly saves
both space and time since r ≪ n.

5.6. Evaluation on sensitivity to the order of views

An important property of our incremental multi-view cluster-
ing method is that it is not sensitive to the order of views. We
have empirically evaluated this property by randomly shuffling
the views of each data set 5 times. Table 6 shows the experimen-
tal clustering results of each data set under 5 different order of
views. It is easy to check that the 5 results in each row are similar,
meaning that our incremental method produces similar clustering
results under whatever order of views.

5.7. Evaluation on different number of base kernels

Another important property of our incremental method is
that it needs to keep only a very few number of base kernels
in the model. We have empirically tested this property on the
benchmark multi-view data sets by choosing 1 to 4 base kernels,
respectively. Table 7 shows the experimental clustering results.
We see that it makes no big difference to choose 2, 3 or 4
base kernels. Therefore, we chose only 2 base kernels in our
experiments.

Table 7
Clustering results of IMSC with 4 different number of base kernels.
Data sets Metric Number of base kernels

1 2 3 4

Corel ACC 0.3035 0.3312 0.3481 0.3444
NMI 0.3850 0.4079 0.4307 0.4272

UCI Digit ACC 0.9568 0.9761 0.9723 0.9721
NMI 0.9071 0.9477 0.9362 0.9348

AwA ACC 0.1619 0.4918 0.3782 0.4212
NMI 0.1872 0.5222 0.4161 0.4613

Sun397 ACC 0.0551 0.0663 0.0701 0.0694
NMI 0.3017 0.3270 0.3319 0.3316

Gas Sensor ACC 0.4551 0.5057 0.4111 0.5017
NMI 0.5259 0.5255 0.4501 0.5470

CM ACC 0.8136 0.9420 0.8503 0.7583
NMI 0.5885 0.8171 0.7876 0.5605

5.8. Handling new data and missing data

In this subsection, we evaluate the ability of our method to
handle new data and missing data. Given a multi-view data set,
in the first two views, we randomly remove p% of data as missing
data. Then, in following each view, we add p/(v − 2)% of data
as new data and simultaneously remove p/(v − 2)% of data as
missing data, where v is the number of views. Thus in each view,
the ratio of missing data is p%. We show the ACC and NMI on UCI
Digit and Corel data sets in Fig. 3. The results on other data sets
are similar.

In Fig. 3, we show the results of missing data from 10% to
70%. Note that p = 0 means that the data is complete without
missing data. As expected, the clustering performance is degraded
with the increasing of missing data. Despite all this, the clustering
performance of our method on the data whose ratio of missing
data is lower than 30% is close to it on the complete data. It
demonstrates that our method can handle the case with a small
quantity of missing data and new data well.

5.9. Parameter study

We study the effects of parameters λ1, λ2 and γ by tuning
them in the range {10−4, 10−2, 100, 102, 104

}. The experimental
results on the Corel and UCI Digit data sets are shown in Fig. 4.
Experiments on the other data sets have similar results.

We see that the parameters can be chosen in a wide range;
it is suitable to choose λ1 ≥ 1, λ2 ≤ 100 and γ ≤ 1. λ2 is
used to tune the rank of kernels. If λ2 is too large (greater than
100), the rank of the learned kernels will be too small, so that the



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 83

Fig. 3. Clustering performance in the missing data setting.

kernels may be like an all-zero matrix, which will lead to worse
clustering performance. Similarly, γ is used to balance the effect
of the previous views and the new view. When γ is greater than 1,
the performance will not get further improved by the new view.

6. Conclusion

In this paper, we introduced a novel incremental multi-view
spectral clustering method. We learned a model from a few views,
and when a new view was available, we updated the model with
the new view and learned a consensus result by applying the
updated model. This essentially differs from the existing multi-
view learning methods, which learn a consensus result over the
collection of all views. To further reduce the time and space
complexity, we applied low rank approximation by means of
random Fourier features to construct the base kernels and did
low rank SVD accordingly. Our extensive experimental study on
benchmark multi-view data sets demonstrated that while being
comparable in clustering quality, IMSC was significantly faster
than the state-of-the-art multi-view spectral clustering methods.

As future work, we are considering applying the idea to the
task of incremental multi-view classification, i.e., we learn a clas-
sifier from multi-view data in an incremental way.

Acknowledgments

This work is supported by the National Natural Science Fund
of China grants 61806003, and 61502289, the China National 973
program 2014CB340301, and the Key Natural Science Project of
Anhui Provincial Education Department KJ2018A0010 and
KJ2018A0011.

Appendix. Proofs

Proof of Theorem 2. We have:

∥K(t)
− A∥

2
F = tr(K(t)TK(t)) − 2tr(K(t)AT ) + tr(AAT )

=

n∑
i=1

σ 2
i − 2tr(K(t)AT ) + tr(AAT ) (26)

According to Von Neumann’s trace inequality, we have tr(K(t)AT )
≤ tr(S(t)SA), then

tr(U(t)S(t)U(t)TA) = tr(K(t)AT ) ≤ tr(S(t)SA) = tr(UAS(t)UT
AUASAUT

A)

= tr(UAS(t)UT
AA)

which leads to

∥K(t)
− A∥

2
F ≥ ∥UAS(t)UT

A − A∥
2
F =

n∑
i=1

(σi − θi)2 (27)

Thus, to minimize Eq. (8), we should set U(t)
= UA, i.e., the

eigenvectors of K(t) should be the same as eigenvectors of A.
To handle the rank function, we define the function f :

f (x) =

{
1, x ̸= 0
0, x = 0

Since the rank of K(t) is the number of non-zero singular values
of K(t), Eq. (8) can be rewritten as:

min
σ1,...,σn

n∑
i=1

(σi − θi)2 + τ

n∑
i=1

f (σi), s.t. σi ≥ 0. (28)

It is obvious that the solution of Eq. (28) is:

σi =

{
θi, θi ≥

√
τ

0, θi <
√

τ
(29)



84 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

Fig. 4. ACC and NMI w.r.t λ1 , λ2 and γ on UCI Digit and Corel.



P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86 85

To sum up, we get the global optima of this sub-problem K(t)
=

UAS(t)UT
A , where S(t) is obtained by Eq. (29). Since K(i)

b (1 ≤ i ≤

m) and K(t)
c are kernel matrices which are symmetric, A is also

symmetric and it leads to that K(t) is also symmetric.

Proof of Theorem 3. (1)

(Ŷl+1)T Ŷl+1 (30)

= ŶlT
(
I −

η

2
R
)T((

I +
η

2
R
)T)−1(

I +
η

2
R
)−1(

I −
η

2
R
)
Ŷl

= ŶlT
(
I +

η

2
R
)(

I −
η

2
R
)−1 (

I +
η

2
R
)−1 (

I −
η

2
R
)
Ŷl

= ŶlT
(
I +

η

2
R
)((

I +
η

2
R
)(

I −
η

2
R
))−1 (

I −
η

2
R
)
Ŷl

Furthermore, we have(
I +

η

2
R
)(

I −
η

2
R
)

= I −
η2

4
RR =

(
I −

η

2
R
)(

I +
η

2
R
)

(31)

Take it back into Eq. (30),

(Ŷl+1)T (Ŷl+1) (32)

= ŶlT
(
I +

η

2
R
)((

I −
η

2
R
)(

I +
η

2
R
))−1 (

I −
η

2
R
)
Ŷl

= ŶlT
(
I +

η

2
R
)(

I +
η

2
R
)−1 (

I −
η

2
R
)−1 (

I −
η

2
R
)
Ŷl

= ŶlT Ŷl
= I

(2) To prove that updating Ŷl+1 is in a descent direction, we
first introduce the following lemma:

Lemma 1. If Ŷl+1 follows Eq. (23) and let J (Ŷl+1) = tr(Ŷl+1TPŶl+1)
+ 2tr(Ŷl+1TQ) which is the objective function of our method, then

∂J (Ŷl+1)
∂η

⏐⏐⏐⏐⏐
η=0

= −
1
2
∥R∥

2
F ≤ 0. (33)

Proof of Lemma 1. According to the chain rule, we have

∂J (Ŷl+1)
∂η

= tr

⎛⎝(∂J (Ŷl+1)

∂Ŷl+1

)T
∂Ŷl+1

∂η

⎞⎠ (34)

When η = 0, Ŷl+1
= Ŷl, and ∂J (Ŷl+1)

∂Ŷl+1

⏐⏐⏐
η=0

= 2(PŶl
+ Q),

∂Ŷl+1

∂η

⏐⏐⏐
η=0

= −RŶl.
On one hand,

∂J (Ŷl+1)
∂η

⏐⏐⏐⏐⏐
η=0

= −2tr
(
(PŶl

+ Q)TRŶl
)

(35)

= − 4tr
(
(PŶl

+ Q)T (PŶl
+ Q) − (PŶl

+ Q)T Ŷl(PŶl
+ Q)T Ŷl

)
On the other hand, we have

∥R∥
2
F = tr(RTR) (36)

= 4tr
((

(PŶl
+ Q)ŶlT

− Ŷl(PŶl
+ Q)T

)T
×

(
(PŶl

+ Q)ŶlT
− Ŷl(PŶl

+ Q)T
))

= 8tr
(
(PŶl

+ Q)T (PŶl
+ Q) − (PŶl

+ Q)T Ŷl(PŶl
+ Q)T Ŷl

)
So we have ∂J (Ŷl+1)

∂η

⏐⏐⏐
η=0

= −
1
2∥R∥

2
F ≤ 0

Now we have ∂J (Ŷl+1)
∂η

⏐⏐⏐
η=0

= −
1
2∥R∥

2
F , which means if Ŷ moves a

small step ∆η > 0 in the update direction, the objective function
J will have a change −

1
2∥R∥

2
F∆η and since −

1
2∥R∥

2
F ≤ 0, the

objective function J will decrease. Thus the update direction is a
descent direction. Moreover, since the objective function is lower
bounded by 0, the algorithm will converge.

To prove that it will converge to a stable point, we intro-
duce the following lemma which shows the first-order optimality
condition of the objective function:

Lemma 2. Let L = tr(ŶTPŶ) + 2tr(ŶTQ) − tr(Λ(ŶT Ŷ − I)) be the
Lagrangian function of our objective function, then ∂L

∂Ŷ
= 0 if and

only if R = 0, so R = 0 is the first-order optimality condition of our
objective function.

Proof of Lemma 2. On one hand, according to the definition of
R, we have ∂L

∂Ŷ
= RŶ, so if R = 0, then ∂L

∂Ŷ
= 0.

On the other hand, if ∂L
∂Ŷ

= 0, i.e.,
(
PŶŶT

+ QŶT
− Ŷ(PŶ +

Q)T
)
Ŷ = 0. Let Z = PŶ + Q, then we have Z = ŶZT Ŷ due to

ŶT Ŷ = I. Thus,

Z = ŶZT Ŷ = Ŷ(ŶZT Ŷ)T Ŷ = ŶŶTZ (37)

here we also use the fact that ŶT Ŷ = I.
Take the transposition of both sides, we have ZT

= ZT ŶŶT .
Then we obtain

ŶZT
= ŶZT ŶŶT

= ZŶT (38)

which means ZŶT
− ŶZT

= 0. Note that R = 2(ZŶT
− ŶZT ), so

R = 0.
In summary, R = 0 is the first-order optimality conditions.

Now, get back to Theorem 3. The algorithm converges when
∂J (Ŷl+1)

∂η

⏐⏐⏐
η=0

= 0, which means Ŷ cannot move a small step in the
descent direction to make the objective function decreases. Since
∂J (Ŷl+1)

∂η

⏐⏐⏐
η=0

= −
1
2∥R∥

2
F , ∥R∥

2
F = 0, i.e., R = 0. Due to Lemma 2,

it satisfies the first-order optimality condition, so the algorithm
converges to a stable point.

References

[1] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int.
J. Comput. Vis. 60 (2) (2004) 91–110.

[2] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: CVPR, vol. 1, IEEE, 2005, pp. 886–893.

[3] S. Rüping, T. Scheffer, Learning with multiple views, in: Proc. ICML
Workshop on Learning with Multiple Views, 2005.

[4] A. Kumar, P. Rai, H. Daume, Co-regularized multi-view spectral clustering,
in: Advances in NIPS, 2011, pp. 1413–1421.

[5] X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in:
IJCAI, AAAI Press, 2013, pp. 2598–2604.

[6] M.D. Collins, J. Liu, J. Xu, L. Mukherjee, V. Singh, Spectral clustering with a
convex regularizer on millions of images, in: Computer Vision–ECCV 2014,
Springer, 2014, pp. 282–298.

[7] R. Xia, Y. Pan, L. Du, J. Yin, Robust multi-view spectral clustering via
low-rank and sparse decomposition, in: AAAI, 2014, pp. 2149–2155.

[8] F. Nie, J. Li, X. Li, Self-weighted multiview clustering with multiple graphs,
in: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017, pp. 564–2570.

[9] Z. Zhang, Z. Zhai, L. Li, Uniform projection for multi-view learning, IEEE
Trans. Pattern Anal. Mach. Intell. 39 (8) (2017) 1675–1689.

[10] S. Sun, Multi-view laplacian support vector machines, in: Advanced Data
Mining and Applications, Springer, 2011, pp. 209–222.

[11] Q. Chen, S. Sun, Hierarchical multi-view fisher discriminant analysis, in:
Neural Information Processing, Springer, 2009, pp. 289–298.

[12] J. Liu, C. Wang, J. Gao, J. Han, Multi-view clustering via joint nonnegative
matrix factorization, in: Proc. of SDM, vol. 13, 2013, SIAM, pp. 252–260.

[13] H. Wang, Y. Yang, B. Liu, H. Fujita, A study of graph-based system for
multi-view clustering, Knowl.-Based Syst. 163 (2019) 1009–1019.

http://refhub.elsevier.com/S0950-7051(19)30103-0/sb1
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb1
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb1
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb4
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb4
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb4
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb5
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb6
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb9
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb9
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb9
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb10
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb10
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb10
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb11
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb11
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb11
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb13
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb13
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb13


86 P. Zhou, Y.-D. Shen, L. Du et al. / Knowledge-Based Systems 174 (2019) 73–86

[14] Y. Zhang, Y. Yang, T. Li, H. Fujita, A multitask multiview clustering
algorithm in heterogeneous situations based on LLE and LE, Knowl.-Based
Syst. 163 (2019) 776–786.

[15] Q. Wang, M. Chen, F. Nie, X. Li, Detecting coherent groups in crowd scenes
by multiview clustering, IEEE Trans. Pattern Anal. Mach. Intell. (2018).

[16] W. Ding, T.F. Stepinski, Y. Mu, L. Bandeira, R. Ricardo, Y. Wu, Z. Lu, T. Cao,
X. Wu, Subkilometer crater discovery with boosting and transfer learning,
ACM Trans. Intell. Syst. Technol. (TIST) 2 (4) (2011) 39.

[17] K. Yu, W. Ding, D.A. Simovici, H. Wang, J. Pei, X. Wu, Classification with
streaming features: An emerging-pattern mining approach, Trans. Knowl.
Discov. Data 9 (4) (2015) 30.

[18] A. Vergara, J. Fonollosa, J. Mahiques, M. Trincavelli, N. Rulkov, R. Huerta,
On the performance of gas sensor arrays in open sampling systems
using inhibitory support vector machines, Sensors Actuators B 185 (2013)
462–477.

[19] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in:
Advances in NIPS, 2007, pp. 1177–1184.

[20] S. Günnemann, I. Färber, T. Seidl, Multi-view clustering using mixture
models in subspace projections, in: SIGKDD, 2012, pp. 132–140.

[21] X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view
subspace clustering, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[22] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, D. Xu, Generalized latent
multi-view subspace clustering, IEEE Trans. Pattern Anal. Mach. Intell.
(2018).

[23] Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang, Y. Qu, On unifying multi-view
self-representations for clustering by tensor multi-rank minimization, Int.
J. Comput. Vis. 126 (11) (2018) 1157–1179.

[24] P. Ren, Y. Xiao, P. Xu, J. Guo, X. Chen, X. Wang, D. Fang, Robust
auto-weighted multi-view clustering, in: IJCAI, 2018, pp. 2644–2650.

[25] X. Liu, L. Wang, G.B. Huang, J. Zhang, J. Yin, Multiple kernel extreme
learning machine, Neurocomputing 149 (2015) 253–264.

[26] X. Liu, Y. Dou, J. Yin, L. Wang, E. Zhu, Multiple kernel k-means clustering
with matrix-induced regularization, in: AAAI, 2016, pp. 1888–1894.

[27] X. Liu, S. Zhou, Y. Wang, M. Li, Y. Dou, E. Zhu, J. Yin, H. Li, Optimal
neighborhood kernel clustering with multiple kernels, in: AAAI, 2017.

[28] D. Peluffo-Ordónez, S. Garcia-Vega, R. Langone, J.A. Suykens, G. Castellanos-
Dominguez, Kernel spectral clustering for dynamic data using multiple
kernel learning, in: Neural Networks (IJCNN), The 2013 International Joint
Conference on, IEEE, 2013, pp. 1–6.

[29] C. Alzate, J.A. Suykens, Multiway spectral clustering with out-of-sample
extensions through weighted kernel pca, IEEE Trans. Pattern Anal. Mach.
Intell. 32 (2) (2010) 335–347.

[30] A. Kumar, H. Daumé, A co-training approach for multi-view spectral
clustering, in: ICML, 2011, pp. 393–400.

[31] F. Nie, J. Li, X. Li, Parameter-free auto-weighted multiple graph learning:
A framework for multiview clustering and semi-supervised classification,
in: IJCAI, 2016.

[32] F. Nie, G. Cai, J. Li, X. Li, Auto-weighted multi-view learning for image
clustering and semi-supervised classification, IEEE Trans. Image Process.
27 (3) (2018) 1501–1511.

[33] Y. Li, F. Nie, H. Huang, J. Huang, Large-scale multi-view spectral clustering
via bipartite graph, in: AAAI, 2015, pp. 2750–2756.

[34] F. Nie, L. Tian, X. Li, Multiview clustering via adaptively weighted pro-
crustes, in: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ACM, 2018, pp. 2022–2030.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization
and statistical learning via the alternating direction method of multipliers,
Found. Trends Mach. Learn. 3 (1) (2011) 1–122.

[36] I. Ahmad, Multi-view video: get ready for next-generation television, IEEE
Distrib. Syst. Online 8 (3) (2007).

[37] D. Vlasic, I. Baran, W. Matusik, J. Popović, Articulated mesh animation from
multi-view silhouettes, in: ACM Trans. Graph., vol. 27, 2008, ACM, p. 97.

[38] R. Langone, O.M. Agudelo, B. De Moor, J.A. Suykens, Incremental
kernel spectral clustering for online learning of non-stationary data,
Neurocomputing 139 (2014) 246–260.

[39] U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4)
(2007) 395–416.

[40] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (8) (2000) 888–905.

[41] M. Meila, J. Shi, A random walks view of spectral segmentation, in:
International conference on artificial intelligence and statistics, 2001.

[42] S.X. Yu, J. Shi, Multiclass spectral clustering, in: Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, IEEE, 2003, pp.
313–319.

[43] W. Rudin, Fourier Analysis on Groups, vol. 12, John Wiley & Sons, 1990.
[44] B. Kulis, M. Sustik, I. Dhillon, Learning low-rank kernel matrices, in: ICML,

ACM, 2006, pp. 505–512.
[45] P. Zhou, L. Du, L. Shi, H. Wang, Y.D. Shen, Recovery of corrupted multiple

kernels for clustering, in: IJCAI, AAAI Press, 2015, pp. 4105–4111.
[46] M. Brand, Fast low-rank modifications of the thin singular value

decomposition, Linear Algebra Appl. 415 (1) (2006) 20–30.
[47] D. Goldfarb, Z. Wen, W. Yin, A curvilinear search method for p-harmonic

flows on spheres, SIAM J. Imaging Sci. 2 (1) (2009) 84–109.
[48] Z. Wen, W. Yin, A feasible method for optimization with orthogonality

constraints, Math. Program. 142 (1–2) (2013) 397–434.
[49] K.B. Petersen, M.S. Pedersen, et al., The matrix cookbook, Tech. Univ.

Denmark 7 (2008) 15.
[50] A.J. Smola, B. Schokopf, Sparse greedy matrix approximation for machine

learning, in: ICML, 2000, pp. 911–918.
[51] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear

embedding, Science 290 (5500) (2000) 2323–2326.
[52] J.C. French, J.V. Watson, X. Jin, W. Martin, Integrating multiple multi-

channel CBIR systems, in: Proc. Inter. Workshop on Multimedia
Information Systems (MIS), Citeseer, 2003.

[53] M. Van Breukelen, R.P. Duin, D.M. Tax, J. Den Hartog, Handwritten digit
recognition by combined classifiers, Kybernetika 34 (4) (1998) 381–386.

[54] C.H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object
classes by between-class attribute transfer, in: CVPR, IEEE, 2009, pp.
951–958.

[55] J. Xiao, J. Hays, K.A. Ehinger, A. Oliva, A. Torralba, Sun database: Large-scale
scene recognition from abbey to zoo, in: CVPR, IEEE, 2010, pp. 3485–3492.

[56] N. Helwig, E. Pignanelli, A. Schutze, Condition monitoring of a complex
hydraulic system using multivariate statistics, in: Instrumentation and
Measurement Technology Conference, 2015, pp. 210–215.

[57] K. Zhan, F. Nie, J. Wang, Y. Yang, Multiview consensus graph clustering,
IEEE Trans. Image Process. 28 (3) (2019) 1261–1270.

http://refhub.elsevier.com/S0950-7051(19)30103-0/sb14
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb14
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb14
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb14
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb14
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb15
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb15
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb15
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb16
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb16
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb16
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb16
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb16
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb17
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb17
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb17
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb17
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb17
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb18
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb19
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb19
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb19
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb22
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb22
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb22
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb22
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb22
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb23
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb23
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb23
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb23
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb23
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb25
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb28
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb29
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb32
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb32
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb32
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb32
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb32
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb34
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb34
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb34
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb34
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb34
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb35
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb35
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb35
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb35
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb35
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb36
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb36
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb36
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb38
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb38
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb38
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb38
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb38
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb39
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb39
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb39
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb40
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb40
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb40
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb42
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb42
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb42
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb42
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb42
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb44
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb44
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb44
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb45
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb45
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb45
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb46
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb46
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb46
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb47
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb47
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb47
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb48
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb48
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb48
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb49
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb49
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb49
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb51
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb51
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb51
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb52
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb52
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb52
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb52
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb52
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb53
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb53
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb53
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb54
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb54
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb54
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb54
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb54
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb55
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb55
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb55
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb57
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb57
http://refhub.elsevier.com/S0950-7051(19)30103-0/sb57

	Incremental multi-view spectral clustering
	Introduction
	Related work
	Preliminaries
	Spectral clustering
	Random Fourier features

	Incremental multi-view spectral clustering
	Learning a consensus kernel K(t) and update base kernels
	Optimize K(t) by fixing K(i)b
	Optimize K(i)b by fixing K(t)
	Algorithm for optimizing Eq. mk
	Learning an initial consensus kernel K(m)

	Speedup strategies
	Learning a consensus spectral embedding Y(t)
	Time and space complexity
	Handling new data and missing data

	Experiments
	Data set descriptions
	Baseline methods
	Experimental setup
	Experimental results on clustering quality
	Experimental results on efficiency
	Evaluation on sensitivity to the order of views
	Evaluation on different number of base kernels
	Handling new data and missing data
	Parameter study

	Conclusion
	Acknowledgments
	Appendix Proofs
	References


