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Abstract
Consensus clustering provides a framework to en-
semble multiple clustering results to obtain a con-
sensus and robust result. Most existing consen-
sus clustering methods usually apply all data to en-
semble learning, whereas ignoring the side effect-
s caused by some difficult or unreliable instances.
To tackle this problem, we propose a novel self-
paced consensus clustering method to gradually in-
volve instances from more reliable to less reliable
ones into the ensemble learning. We first construc-
t an initial bipartite graph from the multiple base
clustering results, where the nodes represent the
instances and clusters and the edges indicate that
an instance belongs to a cluster. Then, we learn
a structured bipartite graph from the initial one by
self-paced learning, i.e., we automatically decide
the reliability of each edge and involves the edges
into graph learning in order of their reliability. At
last, we obtain the final consensus clustering re-
sult from the learned bipartite graph. The extensive
experimental results demonstrate the effectiveness
and superiority of the proposed method.

1 Introduction
Clustering is a fundamental problem in unsupervised learning
and attracts many attentions in past decades. However, ac-
cording to [Wang et al., 2009a], traditional clustering meth-
ods suffer from the stable and robust problems. To address
these problems, consensus clustering is proposed.

Consensus clustering provides an elegant framework for
integrating multiple weak base clusterings to generate a
consensus clustering result [Topchy et al., 2004]. In re-
cent years, many consensus clustering methods have been
proposed [Strehl and Ghosh, 2003; Zhou and Tang, 2006;
Zhou et al., 2015a; Liu et al., 2018]. For example, [Strehl
and Ghosh, 2003] and [Topchy et al., 2003] proposed infor-
mation theoretic based consensus clustering methods; [Zhou
and Tang, 2006] proposed an alignment method to combine
multiple k-means clustering results; [Liu et al., 2015] pro-
vided a spectral clustering based ensemble method; [Wang et
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al., 2009b] and [Huang et al., 2016a] introduced probabilis-
tic graphical model into consensus clustering. Besides these
works which ensembled all base clustering results, some
works tried to select some informative and non-redundant
base clustering results for ensemble. For example, [Azim-
i and Fern, 2009] proposed an adaptive clustering ensemble
selection method; [Zhao et al., 2017] applied internal validity
indices to select based clustering results.

Note that, these methods always apply all instances for en-
semble learning. However, since the base results may not
be fully reliable, it is inappropriate to always use all data for
ensemble. Intuitively, some instances are unreliable for clus-
tering or even outliers, which lead to the poor performance
of the base clusterings. At the beginning of learning, these
unreliable instances may mislead the model, because the ear-
ly model may not have the ability to handle these unreliable
ones.

To address this issue, we propose a novel Self-paced Con-
sensus Clustering with Bipartite Graph (SCCBG), which in-
volves instances from more reliable to less reliable ones into
the ensemble learning. The basic idea is that, we train the
model with the easier or more reliable instances in the pro-
cess of ensemble, until it is strong enough to handle the diffi-
cult ones. Firstly, we construct an initial bipartite graph from
base clustering results, where a node represents an instance
or a cluster and an edge indicates that an instance belongs to
a cluster. Then, from it, we learn a structured bipartite graph,
which contains exact c components, where c is the number
of clusters. As introduced before, since the base clustering
results are imperfect, some edges in the graph are also unreli-
able. Therefore, we apply the self-paced learning framework
to learn the structured graph, i.e., we automatically decide the
reliability of each edge and use the edges for learning in or-
der of their reliability. On the one hand, the reliable edges are
helpful to the graph learning; and on the other hand, with the
process of graph learning, the edges become more and more
reliable. By introducing a carefully designed regularized ter-
m to characterize the reliability, we seamlessly integrate the
reliability evaluating and graph learning into a unified self-
paced learning framework. At last, we obtain the final clus-
tering result from the learned structured graph by finding its
connective components. The extensive experiments show that
our methods often outperform the state-of-the-art consensus
clustering methods.
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Figure 1: An illustration of constructing the bipartite graph.

2 Preliminaries
Throughout this paper, we use boldface uppercase and lower-
case letters to denote matrices and vectors, respectively. For
a matrix M, we use Mi. and M.i to denote the i-th row and
column of M, respectively. We denote the (i, j)-th element
in M as Mij .

2.1 Consensus Clustering
Let X = {x1, · · · ,xn} be a data set with n instances. Giv-
en a set of m base clusterings C = {C1, · · · , Cm} of X ,
each clustering Ci consists of a set of clusters {πi

1, · · · , πi
ki
},

where ki is the number of clusters in Ci and X =
⋃ki

j=1 π
i
j .

Consensus clustering aims to learn a consensus partition ofX
from the m base clusterings C = {C1, · · · , Cm} [Strehl and
Ghosh, 2003; Topchy et al., 2003; Topchy et al., 2004].

To learn the consensus partition, in this paper, we construct
a bipartite graph G = {V1,V2, E} from C = {C1, · · · , Cm}.
In more detail, V1 contains n nodes and each node represents
an instance. V2 contains k =

∑m
i=1 ki nodes and each node

represents a cluster πi
j (i = 1, · · · ,m, and j = 1, · · · , ki).

E is a set of edges which link nodes between V1 and V2. If
instance xi belongs to the cluster πq

p, then there is an edge
between xi and πq

p. Fig. 1 shows an illustration of construct-
ing the bipartite graph. In this example, we have 5 instances
x1, · · · ,x5 and 3 base clusterings. For example, in the first
clustering C1, x1 and x2 belong to cluster π1

1 , and x3, x4 and
x5 belong to the cluster π1

2 . The right side of Fig.1 shows the
corresponding bipartite graph G. V1 contains the blue nodes,
V2 contains the red nodes, and E denotes the set of edges. Af-
ter obtaining the bipartite graph G, we aim to learn a partition
on G as the consensus clustering result.

2.2 Self-paced Learning
The basic idea of self-paced learning is to incrementally
involve instances into learning, where easy ones are in-
volved first and difficult ones are then involved gradual-
ly [Kumar et al., 2010]. More formally, given a data set
D = {(x1, y1), · · · , (xn, yn)}, where xi ∈ Rd is the fea-
ture vector of the i-th instance and yi is its label, we denote
L(g(xi,θ), yi) as the loss function of the i-th instance, where

g(xi,θ) is the decision function and θ is the model parame-
ter. According to [Zhang et al., 2017], the self-paced learning
introduces a weighted loss term on instances and a general
regularized term on the weights as follows:

min
w,θ

n∑
i=1

wiL(g(xi,θ), yi) + f(wi, λ). (1)

where λ is the ”age” parameter to control the learning pace
and grows with the learning process, and f(wi, λ) is the self-
paced regularized term.

In Eq.(1), if we fix the model parameter θ, suppos-
ing w∗i (λ, li) is the optimum weight of xi, where li =
L(g(xi,θ), yi), then f(wi, λ) should satisfy that w∗i (λ, li) is
monotonically decreasing with li and increasing with λ as
suggested in [Jiang et al., 2015; Meng et al., 2017]. Note
that, on the one hand, since w∗i (λ, li) is decreasing with li,
easy instances, which has low loss, will have a large weight,
which means they will be involved in learning first. On the
other hand, w∗i (λ, li) is increasing with λ, which means with
the learning process (λ grows), more and more instances are
involved in learning.

Therefore, self-paced learning optimizes Eq.(1) via alter-
nating minimization. Fixing θ and solving w is to learn the
weight of each instance and finding the easy ones; solving θ
by fixing w is to learn the model using the easy instances.
Due to its promising performance and the benefit of allevi-
ating the local optimum problem in non-convex optimization
[Basu and Christensen, 2013], self-paced learning has been
widely used in many scenarios, such as multi-task learning
[Li et al., 2017], robust classification [Ren et al., 2017] and
subspace learning [Jiang et al., 2018]. In this paper, we will
extend it to unsupervised ensemble learning.

3 Self-paced Consensus Clustering with
Bipartite Graph

In this section, we introduce the proposed SCCBG method in
detail.

3.1 Formulation
Given m base clustering results, we first construct the ini-
tial bipartite graph as introduced in Section 2.1. Note that
this initial bipartite graph may not have a very clear cluster-
ing structure since each base clustering may not be perfect.
Taking Fig. 1 as an example, we find that there is only 1
connective component in the graph, i.e., all instances are en-
tangled together. To make it have a clearer clustering struc-
ture and obtain the final consensus partition, we need to learn
a structured graph G′ which has exact c connective compo-
nents where c is the number of clusters. Then clustering on
G′ is trivial because we just need to put instances in the same
connective components into the same cluster.

More formally, we define the adjacent matrix of G as

G =

[
0 Y

YT 0

]
(2)

where Y ∈ {0, 1}n×k and k =
∑m

i=1 ki is the total number
of clusters in all clustering results. Yij = 1 means there is an
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edge linking the i-th instance (xi) and the j-th cluster (πj),
and Yij = 0 means there is no edge between them.

Similarly, we can define the adjacent matrix of the struc-
tured bipartite graph G′ as

G′ =

[
0 S

ST 0

]
(3)

where S ∈ [0, 1]n×k. To make G′ preserve G as well as possi-
ble, we should minimize ‖S−Y‖2F . Moreover, we also need
to impose some constraints on S to make sure that G′ has c
connective components.

Given G′, we can first obtain its normalized Laplacian
matrix L = I − D−

1
2 G′D−

1
2 , where I is an identity ma-

trix and D is a diagonal matrix whose diagonal elemen-
t Dii =

∑k+n
j=1 G

′
ij . Then according to [Nie et al., 2017],

we have that the number of connected components in G′ is e-
qual to n+k minus the rank of L, i.e., rank(L) = n+k− c.
To this end, we obtain the following formula:

min
S

‖S−Y‖2F , (4)

s.t. 0 ≤ Sij ≤ 1, rank(L) = n+ k − c.
As introduced before, since the base clusterings may not

be perfect, each edge obtained from the base clusterings may
also be unreliable. To characterize the reliability of each edge,
we introduce a weight matrix W ∈ [0, 1]n×k where the larger
Wij is, the more reliable the corresponding edge is. With
W we can integrate our consensus clustering task into the
self-paced learning framework seamlessly. We involve edges
gradually from more reliable edges to less reliable ones. As
suggested in [Jiang et al., 2015], we set f(wi, λ) in Eq.(1) as
−λ‖W‖1, and obtain:

min
S,W

‖W � (S−Y)‖2F − λ‖W‖1, (5)

s.t. 0 ≤ Sij ≤ 1, rank(L) = n+ k − c,
0 ≤Wij ≤ 1.

where� is the Hadamard product, which means the element-
wise production of two matrices; the second term is the self-
paced regularized term, and λ is the age parameter and be-
comes increasingly larger in the process of optimization.

Unfortunately, it is not enough to characterize the reliabil-
ity of edges only by the first term in Eq.(5). We need to take
a closer look at W. Note that, if two cluster πp and πq are
similar, then for any instance xi, either xi belongs to the both
clusters or xi belongs to neither. Therefore, if (Sip − Siq)

2

is large, which means xi is more likely to belong to one of
the clusters, then at least one of Sip and Siq is unreliable, i.e.,
at least one of Wip and Wiq should be small. More formally,
we use the following carefully designed regularized term to
characterise the reliability of edges:

min
W

n∑
i=1

k∑
p,q=1

Cpq(Sip − Siq)
2WipWiq. (6)

where Cpq is the (p, q)-th element in C ∈ Rk×k, which char-
acterizes the similarity of two clusters. C can be easily ob-
tained by C = YTY. We can find that, if Cpq is large (i.e.,

πp and πq are similar) and (Sip − Siq)
2 is large (i.e., xi only

belongs to one of the clusters), then by minimizing Eq.(6), at
least one of Wip and Wiq should be small. Taking it into our
self-paced framework (Eq.(5)), we obtain the final objective
function:

min
S,W

‖W � (S−Y)‖2F − λ‖W‖1 (7)

+γ
n∑

i=1

k∑
p,q=1

Cpq(Sip − Siq)
2WipWiq

s.t. 0 ≤ Sij ≤ 1, rank(L) = n+ k − c,
0 ≤Wij ≤ 1.

where γ is a balanced parameter.

3.2 Optimization
Eq.(7) involves the constraint rank(L) = n + k − c which
is hard to optimize. We first handle this constraint. By intro-
ducing the auxiliary orthogonal matrix F ∈ R(n+k)×c and a
large enough parameter ρ, Eq.(7) is equivalent to the follow-
ing formula:

min
S,W,F

‖W � (S−Y)‖2F − λ‖W‖1 (8)

+γ

n∑
i=1

k∑
p,q=1

Cpq(Sip − Siq)
2WipWiq + ρtr(FTLF)

s.t. 0 ≤ Sij ≤ 1,

0 ≤Wij ≤ 1,

FTF = I.

Then we optimize W, F, S respectively by fixing the other
variables.

Optimizing W
When optimizing W, we find that Eq.(8) can be decoupled
into n independent subproblems by rows. Considering the
i-th subproblem, we have

min
Wi.

k∑
p=1

W 2
ipA

2
ip − λ

k∑
p=1

Wip + γ
k∑

p,q=1

WipBpqWiq (9)

s.t. 0 ≤Wij ≤ 1.

where Aip = Sip − Yip and Bpq = Cpq(Sip − Siq)
2.

Note that, Eq.(9) is a quadratic programming with bound-
ed constraint and can be solved by standard optimization
method, such as trust region reflective algorithm. In our im-
plication, we use quadprog function provided in Matlab.

Optimizing F
When optimizing F, we need to solve the following sub-
problem:

min
FTF=I

tr(FTLF) (10)

Eq.(10) can be solved by computing the eigen-decomposition
of L. However, conducting eigen-decomposition on an (n +
k)× (n+ k) matrix is often in O((n+ k)3) time and is very
time consuming. Fortunately, since L is a Laplacian matrix of
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a bipartite graph, according to Lemma 1 in [Nie et al., 2017],
Eq.(10) can be solved by conducting Singular Valued Decom-
position (SVD) on a small rectangle matrix. In more detail,
define diagonal matrices D̂ ∈ Rn×n and D̃ ∈ Rk×k whose
diagonal elements are D̂ii =

∑k
j=1 Sij and D̃jj =

∑n
i=1 Sij

respectively, and then compute the SVD of D̂−
1
2 SD̃−

1
2 as

D̂−
1
2 SD̃−

1
2 = UΣVT , where U and V contain the left and

right singular vectors respectively, and Σ is a diagonal ma-
trix which contains the singular values. Let U′ ∈ Rn×c and
V′ ∈ Rn×c be the c left and right singular vectors in U and V
corresponding to the smallest c singular values, respectively.
Then, the closed-form solution of Eq.(10) is:

F =

[
U′

V′

]
(11)

Note that since D̂−
1
2 SD̃−

1
2 is an n × k matrix and often

has n � k, the time complexity of computing its SVD is
O(nk2) which is much smaller than O((n+ k)3).

Optimizing S
When optimizing S, Eq.(8) can also be decoupled into n sub-
problems by rows. Considering the i-th subproblem, we have:

min
Si.

k∑
p=1

W 2
ip(Sip − Yip)2 + γ

k∑
p,q=1

Epq(Sip − Siq)
2

+ρ
k∑

p=1

HipSip

s.t. 0 ≤ Sip ≤ 1. (12)

where Epq = CpqWipWiq , and Hip = 1
2

∥∥∥∥ Fi.√
di
− Fp.√

dp

∥∥∥∥2
2

,

and di =
∑k

j=1 Sij and dp =
∑k

j=1 Spj .
Similar to Eq.(9), Eq.(12) is also a quadratic programming

with bounded constraint and can be solved similarly.
Algorithm 1 summarizes the whole process of SCCBG.

Algorithm 1 SCCBG

Input: m base clustering results, number of clusters c, pa-
rameter γ.

Output: Consensus clustering results
1: Construct the initial bipartite graph from m based clus-

tering and obtain Y, and initialize the age parameter
λ = 0.5, S = Y.

2: Compute the cluster similarity matrix C = YTY.
3: while not converge do
4: Update W by solving Eq.(9).
5: Update F by solving Eq.(10).
6: Update S by solving Eq.(12).
7: Update the age parameter by λ = λ ∗ 2.
8: end while
9: Obtain the final bipartite graph G′ from S.

10: Obtain the final clustering result from the c connective
component in G′.

#instances #features #classes
ALLAML 72 7129 2
GLIOMA 50 4434 4

K1b 2340 21839 6
Lung 203 3312 5

Medical 706 1449 17
Tr41 878 7454 10
Tdt2 10212 36771 96
TOX 171 5748 4

Table 1: Description of the data sets.

3.3 Discussion

Firstly, we analyze the space and time complexity of our
method. Since the graph we used is a bipartite graph, the
space complexity of our method is O(nk).

For the time complexity, we analyze it step by step. First-
ly, computing C needs O(nk2) time. Then, in each itera-
tion, when updating W, we need to solve n quadratic pro-
gramming problem and each problem involves k variables.
Note that, in practice, we set γ a small value to make sure the
quadratic programming problem is convex. Therefore, each
subproblem costs O(k3) time and updating W costs O(nk3)
time. Updating F needs O(nk2) as introduced in previous
subsection. Updating S also needs to solve n quadratic pro-
gramming problem and each problem involves k variables.
The time complexity is also O(nk3). Supposing the number
of iterations is l, the whole time complexity is O(lnk3).

Last but not the least, we discuss the robust consensus
clustering, which is very related to our self-paced ensemble.
Robust consensus clustering extracts the noises from data or
base results and recovers the clean results for ensemble. For
example, [Tao et al., 2016; Tao et al., 2019] proposed ro-
bust consensus clustering methods based on spectral cluster-
ing; [Huang et al., 2016b] used probability trajectories to ro-
bust consensus clustering; [Wang et al., 2019] provided an
ensemble method on incomplete data. These methods on-
ly focus on the noises or outliers without distinguishing be-
tween uncontaminated instances. However, in our method,
the contaminated instances can be regarded as the most un-
reliable ones, and in addition, the uncontaminated instances
can also be handled in order of reliability. Therefore, our
method provides a more sophisticated framework to handle
instances. Moreover, in our self-paced framework, the relia-
bility of edges is changing in the process of learning. With
the growth of λ, W will be increasingly large until it reaches
1, which means the edges become increasingly more reliable
with learning.

4 Experiments

In this section, we conduct the extensive experiments by com-
paring our SCCBG with several state-of-the-art consensus
clustering methods on benchmark data sets.
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Methods ALLAML GLIOMA K1b Lung Medical Tr41 Tdt2 Tox
KM 0.6545 0.4239 0.6726 0.7114 0.3996 0.5626 0.4104 0.4229

KM-best 0.7292 0.4880 0.8559 0.8675 0.4707 0.6946 0.4460 0.4825
CSPA 0.6583 0.4100 0.4531 0.4138 0.3500 0.5213 0.2850 0.4246
HGPA 0.5444 0.4180 0.5326 0.5025 0.2950 0.4894 0.2959 0.3854
MCLA 0.6722 0.4000 0.7383 0.7084 0.4017 0.5698 0.4000 0.4152
NMFC 0.6722 0.4140 0.5860 0.6764 0.3789 0.6323 0.3716 0.4269
BCE 0.6708 0.4280 0.6345 0.6700 0.3965 0.6205 0.1806 0.4140
RCE 0.6708 0.4260 0.6887 0.7143 0.3851 0.6391 - 0.4105
MEC 0.6056 0.3940 0.8190 0.7379 0.3627 0.6559 - 0.4304

LWEA 0.6736 0.4320 0.8279 0.7458 0.4208 0.6719 0.5744 0.4234
LWGP 0.6750 0.4320 0.7172 0.6498 0.4047 0.6483 0.4288 0.4193
RSEC 0.5917 0.4180 0.8409 0.8217 0.3490 0.6367 0.4222 0.4041
DREC 0.6819 0.4280 0.6462 0.6379 0.3926 0.6243 0.3684 0.4205

SCCBG-W 0.6681 0.4080 0.8405 0.8094 0.3980 0.6136 0.5011 0.4053
SCCBG 0.6861 0.4500 0.8663 0.8961 0.4592 0.6973 0.7164 0.4339

Table 2: ACC results on all the data sets

4.1 Data Sets
We use 8 data sets, including ALLAML1, GLIOMA1, K1b
[Zhao and Karypis, 2004], Lung1, Medical [Zhou et al.,
2015b], Tdt22, Tr41 [Zhao and Karypis, 2004], and TOX1.
The details of these data sets are summarized in Table 1.

4.2 Experimental Setup
Following the experimental setup in [Wang et al., 2009b;
Zhou et al., 2015b], we use k-means to generate the base
clusterings. In more detail, we run k-means 200 times with
different initializations to obtain 200 base results. Then we
divide them into 10 subsets, with 20 base results in each sub-
set. Next, we apply consensus clustering methods on each
subsets, and report the average results on the 10 subsets. We
compare our SCCBG with the following methods:

• KM, which is the average result of all base clustering.

• KM-best, which is the best result of all base results.

• Cluster-based Similarity Partitioning Algorithm
(CSPA) [Strehl and Ghosh, 2003], which signifies a re-
lationship between instances in the same cluster to es-
tablish a measure of pairwise similarity for ensemble.

• HyperGraph Partitioning Algorithm (HGPA) [Strehl
and Ghosh, 2003], which integrates base results with a
constrained minimum cut objective.

• Meta-CLustering Algorithm (MCLA)[Strehl and
Ghosh, 2003], which transforms the ensemble into a
cluster correspondence problem.

• Nonnegative Matrix Factorization based Consensus
clustering (NMFC) [Li and Ding, 2008], which uses
NMF to aggregate base results.

• Bayesian Clustering Ensemble (BCE) [Wang et al.,
2009b], which is a Bayesian model for ensemble.

1http://featureselection.asu.edu/datasets.php
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

• Robust Clustering Ensemble (RCE) [Zhou et al.,
2015b], which learns a robust consensus result via min-
imize the KL divergence among each base result.

• Multi-view Ensemble Clustering (MEC) [Tao et al.,
2017], which is a robust multi-view consensus cluster-
ing method using low-rank and sparse decomposition to
ensemble base clustering and detect the noises.

• Locally Weighted Evidence Accumulation (LWEA)
[Huang et al., 2018], which is a hierarchical agglomer-
ative consensus clustering method based on uncertainty
estimation and local weighting strategy.

• Locally Weighted Graph Partitioning (LWGP)
[Huang et al., 2018], which is a graph partition method
based on the local weighting strategy.

• Robust Spectral Ensemble Clustering (RSEC) [Tao et
al., 2019], which is a robust clustering ensemble method
based on spectral clustering.

• Dense Representation Ensemble Clustering (DREC)
[Zhou et al., 2019], which learns a dense representation
for clustering ensemble.

• SCCBG-W, which is our ensemble method without
self-paced learning. In more detail, we fix the weight
matrix W in SCCBG as 1 and do not update it.

The number of clusters is set to the true number of classes
for all data sets and algorithms. Our method adjusts λ au-
tomatically as introduced in Algorithm 1. The parameter ρ
is also automatically decided. We first initialize ρ = 1, and
then, if the rank of L is larger than n + k − c, we double
it. If its rank is smaller than n + k − c, we reduce ρ by
half. The only hyper-parameter needed to tune manually is
γ. As discussed before, γ should not be too large to make the
subproblem convex, thus we tune it in the range [10−5, 100].
We use Accuracy (ACC) and Normalized Mutual Information
(NMI) to evaluate the clustering performance. To validate the
statistic significance of results, we also calculate the p-value
of t-test.
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Methods ALLAML GLIOMA K1b Lung Medical Tr41 Tdt2 Tox
KM 0.0882 0.1629 0.5493 0.5284 0.4209 0.5843 0.6111 0.1374

KM-best 0.1772 0.2347 0.6853 0.6558 0.4806 0.6713 0.6240 0.2164
CSPA 0.0815 0.1716 0.4071 0.3712 0.3992 0.5919 0.5589 0.1436
HGPA 0.0110 0.1509 0.3917 0.3372 0.3613 0.5084 0.5385 0.1083
MCLA 0.0909 0.1327 0.5944 0.5258 0.4296 0.6044 0.6070 0.1329
NMFC 0.0909 0.1550 0.4995 0.5202 0.4259 0.6512 0.5930 0.1434
BCE 0.0821 0.1658 0.5414 0.4977 0.4499 0.6398 0.0000 0.1370
RCE 0.0899 0.1624 0.6068 0.5248 0.4475 0.6499 - 0.1344
MEC 0.0485 0.1312 0.6818 0.5617 0.4089 0.6758 - 0.1313

LWEA 0.0935 0.1686 0.6948 0.5364 0.4185 0.6666 0.7183 0.1236
LWGP 0.0932 0.1682 0.6115 0.4993 0.4266 0.6535 0.6266 0.1333
RSEC 0.0495 0.1544 0.6615 0.6027 0.4036 0.6449 0.5243 0.1184
DREC 0.1006 0.1641 0.5774 0.4647 0.4510 0.6514 0.5971 0.1394

SCCBG-W 0.0894 0.1567 0.6888 0.5785 0.3220 0.6039 0.6433 0.1239
SCCBG 0.1252 0.2163 0.7262 0.6930 0.3918 0.6847 0.7568 0.2131

Table 3: NMI results on all the data sets

4.3 Experimental Results
Tables 2 and 3 shows the ACC and NMI results of all ensem-
ble methods. The bold fonts means the difference is statisti-
cally significant (i.e., the p-value is smaller than 0.05). Note
that, due to their high time and space complexity, RCE and
MEC run out of memory on the largest data set Tdt2.

From these tables, we find that: (1) many ensemble meth-
ods outperform the KM, which indicates the effectiveness
of consensus clustering. (2) Compared with other ensemble
methods, our algorithm outperforms them on most data sets,
which demonstrates its superiority. Even compared with the
robust methods (RCE, MEC, and RSEC), ours also perform-
s better, because our self-paced framework can handle data
more finely as discussed in Section 3.3. Moreover, to fur-
ther demonstrate the effectiveness of the self-paced learning
framework, we also compare it with SCCBG-W, which is the
version without self-paced learning. From the tables, we can
see that our method significantly outperforms it, which also
demonstrates the necessity of the self-paced learning frame-
work. (3) On most data sets, our method is closed to or even
better than KM-best. Note that, ours does not need to perform
exhaustive search on the predefined pool of base clusterings,
which also well demonstrates the effectiveness of SCCBG.

4.4 Parameter Study
The only hyper-parameter needed to tune manually is γ. As
discussed before, γ should not be too large to guarantee the
convexity of the subproblems. So we tune it in [10−5, 100].
Fig. 2 shows the results on Lung and Tr41 data sets. We
can see that our method works well when γ is in the range
[10−5, 10−3]. When γ becomes larger, the performance will
deteriorate, which is in line with our previous discussion.

5 Conclusion
In this paper, we proposed a novel self-paced consensus clus-
tering method with the bipartite graph. We constructed an
initial bipartite graph based on the base results. Then we
learned a structured graph from it. In the process of graph
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Figure 2: Clustering results on Lung and Tr41 with respect to differ-
ent values of γ.

learning, we adopted the idea of self-paced learning, which
automatically decided the reliability of each edge and in-
volves the edges into graph learning in the order of reliabili-
ty. At last, we obtained the final consensus clustering result
by finding the connective components of the learned graph.
We conducted extensive experiments on benchmark data set-
s. Compared with other state-of-the-art consensus cluster-
ing methods, our method often performs better than them,
which well demonstrates the effectiveness and superiority of
the proposed method.
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