
Information Fusion 101 (2024) 102012

A
1

M
B
a

U
b

A

K
M
O
M

1

a
l
o
u
p
b
d
y
m
c
b

d
o
f
a
c
d

(

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ulti-view Outlier Detection via Graphs Denoising
oao Hu a, Xu Wang a, Peng Zhou a,∗, Liang Du b

Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, School of Computer Science and Technology, Anhui
niversity, Hefei 230601, China
School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

R T I C L E I N F O

eywords:
ulti-view learning
utlier detection
ultiple graph learning

A B S T R A C T

Recently, multi-view outlier detection attracts increasingly more attention. Although existing multi-view outlier
detection methods have demonstrated promising performance, they still suffer from some problems. Firstly,
many methods make the assumption that the data have a clear clustering structure and detect the outliers
by using some off-the-shelf clustering methods. Therefore, the performance of these methods depends on
the clustering methods they used, and thus these methods are hard to handle complicated data. Secondly,
some methods ignore the complicated structure or distribution of class outliers and directly learn a consensus
representation by simply combining the representation of different views linearly. To tackle these problems,
we propose a novel method named Multi-view Outlier Detection with Graph Denoising (MODGD). We first
construct a graph for each view, and then learn a consensus graph by ensembling the multiple graphs. When
fusing the multiple graphs, we explicitly characterize and extract the structured outliers on each graph and
recover the multiple clean graphs for the ensemble. During the process of multiple graph denoising and
fusion, we carefully design an outlier measurement criterion based on the characteristics of attribute and class
outliers. The extensive experiments on benchmark data sets demonstrate the effectiveness and superiority of the
proposed method. The codes of this paper are released in http://Doctor-Nobody.github.io/codes/MODGD.zip.
. Introduction

Unsupervised outlier detection is a challenging task in data mining
nd machine learning. It identifies the outliers in collected data without
abels, which has attracted a lot of attention [1–8]. Unsupervised
utlier detection has been widely applied in many fields, such as
rban traffic [9], social media [10,11], and fraud detection [12]. In
ast decades, a massive number of outlier detection methods have
een proposed, e.g., graph-based methods, clustering-based methods,
istance-based methods, and density-based methods [13]. In recent
ears, deep learning has made significant progress in many tasks of
achine learning due to its ability to learn the representation of

omplex data. A lot of deep unsupervised outlier detection models have
een proposed [14–20], and demonstrate promising performance.

Although these different types of outlier detection methods have
emonstrated promising performance, they only focus on data from
ne source, i.e., single-view data. However, nowadays obtaining data
rom different sources is no longer as difficult as before. These data
re called multi-view data, where features from a specific source are
onsidered as a specific view. These views characterize the object from
ifferent perspectives. Therefore, compared to single-view data, these
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L. Du).

multi-view data contain more rich information. How to detect outliers
on such multi-view data attracts increasingly more attention.

To tackle this problem, multi-view outlier detection methods have
been proposed. In the single-view outlier detection task, one basic
assumption is that normal instances should be close to the majority
of instances [21,22]. However, in multi-view data, even though one
instance is close to the majority of instances, if it behaves inconsistently
among all views, it may still be an outlier. Therefore, the definition
of the outlier in multi-view data is different from that in single-view
data. Three widely used types of outliers on multi-view data in previous
literature are defined as follows [23,24]:

• Class outlier: The behaviors of this type of outlier are inconsis-
tent among all views. Specifically, the outliers in this type are
close to their neighbors, but they may belong to different clusters
or classes in different views.

• Attribute outlier: The characteristic of this type of outlier is that
it exhibits great difference to most other instances in each view,
namely consistent abnormal behaviors.
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Fig. 1. Illustration of three types of outliers: (1) Class outlier (the orange diamond)
belongs to the cluster of the blue squares in the first view, while it is similar to the
red triangles in the second view; (2) Attribute outlier (the green star) is dissimilar to
the majority of instances in both views; (3) Class-Attribute outlier (the black circle) is
similar to red triangles in first view and is remote from the other instances in another
view.

• Class-Attribute outlier: This type of outlier is the mixture of
the above two types. It means that, in some views, they have
the characteristics of the class outliers, while in other views they
behave like the attribute outliers.

Fig. 1 shows an example of the three types of outliers in multi-
view data. The blue squares and red triangles denote two clusters in
two views. The orange diamond is one of the class outlier, because it
belongs to the cluster of blue squares in the first view but belongs to
the cluster of red triangles in the second view. The green star is one of
the attribute outliers because it is far from other instances in both two
views. The black dot is one of the class-attribute outliers because it is
a class outlier in the first view and is an attribute outlier in the second
view.

To detect these types of outliers on multi-view data, some multi-
view outlier detection methods have been proposed [23–31]. Although
these methods have achieved a certain extent of success, they still
have some shortcomings. First, most methods are based on the cluster
structure of data [24–29]. The performance of these methods depends
on the performance of the used clustering methods and may fail when
the data do not have a clear cluster structure or when the used clus-
tering method cannot reveal the cluster structure of data. Secondly,
some methods, such as [24,28,31], detect the outliers by learning a
consensus representation from all views. However, when learning the
consensus representation, they simply linearly combine the information
in multiple views without paying more attention to the complicated
structure or distribution of the outliers. Thirdly, some methods first
learn the representations of data in a specific view, and then use
pair-wise constraint between two views to align all representations
of data [25–27,29]. Such approaches are often prone to pay more
attention to one specific view and thus cannot fully utilize the abundant
information of multi-view data. If the quality of the specific view is
not good, the performance of multi-view learning may also be limited.
Besides, some methods cannot handle all three types of outliers, such
as [26,27].

To overcome these shortcomings of existing methods, we propose
a method named Multi-view Outlier Detection with Graphs Denoising
(MODGD). To avoid the clustering assumption, we apply the graph to
reveal the structure of the data. In more detail, we first construct a
graph for each view. Since the attribute outliers are far away from
other data, we detect the attribute outliers on the graph by observing
the similarity between them and their neighbors. In this way, attribute
outliers can be detected even if there is no clear clustering structure
in the data. To identify the class outliers, we discover the inconsistent
behavior by learning a consensus graph from the multiple graphs.
Different from conventional multiple graph learning, which directly
ensembles multiple graphs, we ensemble them by recovering multiple
clean graphs via graph denoising. We observe that the class outliers on
the graph have some special structure that can help us to detect them.
Specifically, if an instance is an outlier, both the corresponding row
2

and column in the adjacency matrix of the graph are simultaneously
contaminated, which means the outliers on the graph are symmetric
and row-wise and column-wise. Then, we can extract such row-wise
and column-wise outliers and recover multiple clean graphs for fusion.
During the process of multiple graph denoising and fusion, we can
directly identify the class outliers. At last, we design an outlier mea-
surement criterion to score each instance according to its probability
of being an outlier.

The main contributions of this paper are summarized as follows:

• We propose a novel unsupervised multi-view outlier detection
method, which can detect all three types of outliers.

• Different from existing multi-view learning methods, which sim-
ply ensembling the information of different views linearly, we
propose a new multiple graph learning method that can directly
characterize the structured outliers (i.e., the symmetric and row-
wise and column-wise outliers) on the graph.

• The extensive experiments on benchmark multi-view data show
that the proposed method outperforms the state-of-the-art multi-
view outlier detection methods.

2. Related work

Unsupervised outlier detection is a fundamental problem in data
mining and machine learning. It aims to accurately identify the outliers
in the data set. Nevertheless, most existing works only focus on single-
view data. In the single-view setting, the definition of outliers is simple.
The outliers are the instances that are far away from the majority
instances, which is similar to the attribute outliers in the multi-view
setting. In the single-view setting, there are no class outliers. However,
in the multi-view setting, the cases are more complicated. In addition
to the attribute outliers, which are similar to the outliers in the single-
view setting, the multi-view setting also has class outliers, which are
the instances having different behaviors in each view. Combining the
attribute outliers and the class outliers, there exists the third type of
outliers, i.e., class-attribute outliers. Therefore, the outliers in the multi-
view setting are much more complicated than those in the single-view
setting.

In the past decade, several multi-view methods have been proposed.
For example, Gao et al. [26] first extended outlier detection from single-
view to multiple views and proposed a method named HOAD. It applied
spectral clustering in each view, while instances were constrained to be
allocated to the same cluster across multiple views. The inconsistency
of instances was used to determine whether ones were outliers. Marcos
Alvarez et al. [27] proposed a method named APOD, it performed
affinity propagation clustering separately in the different views and
obtained the affinity vectors for each object. Then, it identified the
outliers by comparing instances’ affinity vectors in the multiple views.
The frameworks of HOAD and APOD are both simple and only focus
on class outliers while ignoring other types of outliers.

Furthermore, Zhao et al. [25] expanded the definition of the outlier
in multiple views and proposed the method DMOD. It first studied
the attribute outlier in multi-view outlier detection. Based on the
framework of k-means, it represented the multi-view data with latent
coefficients and construction errors. A pair-wise constraint between two
views was used to align all representations. Moreover, a well-designed
outlier measurement criterion was proposed in this paper. Another
method MLRA [29] obtained the coefficient matrix of each view, and
then minimized their rank. Similarly, coefficient matrices were also
aligned by pair-wise constraint. These methods, HOAD, APOD, DMOD,
and MLRA are all based on pair-wise constraints which cannot fully
utilize the information of multiple view data.

Li et al. [24] supplemented the definition of a class-attribute outlier
in multi-view outlier detection and proposed the LDSR method. To
overcome the shortcomings of pair-wise constraint, it separated the
representations as consensus and residual parts. The relationship be-
tween CRMOD [28] and DMOD is similar to the one between MLRA and
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Table 1
Notations used in our method and their descriptions.

Notations Descriptions

𝑛 Number of instances.
𝑉 Number of views.
𝐗𝑣 ∈ R𝑑𝑣×𝑛 The feature matrix of the 𝑣th view.
𝐱𝑣𝑖 ∈ R𝑑𝑣 The 𝑖th instance in the 𝑣th view.
𝐒𝑣 ∈ R𝑛×𝑛 The adjacency matrix of the 𝑣th graph.
�̂�𝑣 ∈ R𝑛×𝑛 Normalized adjacency matrix of the 𝑣th graph.
𝐒 ∈ R𝑛×𝑛 The consensus matrix.
𝐖 ∈ R𝑛×𝑛 The weight matrix.
𝐋 ∈ R𝑛×𝑛 The Laplacian matrix of 𝐒.
𝐄𝑣 ∈ R𝑛×𝑛 The row-wise sparse outlier matrix.
𝐬𝑛 ∈ R𝑛 The neighborhood score.
𝐬𝑐 ∈ R𝑛 The consistency score.
𝐬 ∈ R𝑛 The final score.

LDSR. CRMOD minimized the disagreement among the consensus rep-
resentation and others. Nevertheless, these methods mentioned above
all depend on some standard clustering methods, which means they
may fail if there is no clear cluster structure in the data or if the used
clustering method is inappropriate for the given data set.

Recently, some methods based on the local similarity between the
instance and its neighbors have been proposed. In this way, these
methods can handle data without clustering methods. In MUVAD [30],
Sheng et al. proposed a nearest neighbor-based outlier measurement
criterion. Then, they designed an objective function according to this
criterion to find normal instances. Based on an autoencoder network,
Cheng et al. [23] proposed a neighborhood consensus network in
NCMOD. Through the autoencoder, it mapped instances to a latent
space for each view. Wang et al. designed SRLSP [31] method which
contained three terms. First, with the adaptive similarity learning term,
it obtained the similarity between an instance and its neighbors in each
view. Then, it acquired the consensus similarity by a graph fusion term.
Finally, it minimized the reconstruction error by a self-representation
term. However, similar to other methods of learning consistent rep-
resentations (i.e., LDSR and CRMOD), it failed to characterize the
structure of class outliers, and obtained the consensus result by a simple
linear combination of the information in multiple views.

3. Multi-view outlier detection with graphs denoising

In this section, we introduce our method in detail. First, we in-
troduce some notations. We denote a multi-view data set  with 𝑛
instances and 𝑉 views as  = {𝐗1,𝐗2,… ,𝐗𝑉 }, where 𝐗𝑣 = {𝐱𝑣1 , 𝐱

𝑣
2 ,… ,

𝐱𝑣𝑛} ∈ R𝑑𝑣×𝑛 is the feature matrix of the 𝑣th view and each column of
this matrix represents one instance. 𝑑𝑣 refers to the feature dimension
of the 𝑣th view. In this paper, 𝐀𝑖. and 𝐀.𝑖 denote the 𝑖th row and
column vector of matrix A, respectively. 𝐀𝑖𝑗 is the (𝑖, 𝑗)-th element of
A. The main notations used in our method and their descriptions are
summarized in Table 1.

The task of unsupervised outlier detection is to score each instance
according to its probability of being an outlier. A common approach
is to design two scores to detect attribute outliers and class outliers,
respectively, and then obtain the final score by combining these two
scores. In our method, we calculate two scores named neighborhood
score 𝐬𝑛 ∈ R𝑛 to detect the attribute outliers, and consistency score 𝐬𝑐 ∈
R𝑛 to detect the class outliers. We first construct a 𝑘-nearest neighbors
(KNN) graph for each view, and calculate the instances’ probability of
being the attribute outlier from the instance and its top-𝑘 neighbors as
the neighborhood score. Then, we normalize these graphs and calculate
the consistency score by carefully characterizing the structure of the
class outliers. Fig. 2 shows the entire process of the method. In the
3

following, we will introduce our method in more detail. c
3.1. Calculating the neighborhood score

We calculate the neighborhood score 𝐬𝑛 to detect the attribute
outliers. When detecting the attribute outliers, we follow the assump-
tion used in single-view outlier detection that is the outliers are often
far away from other instances. It means that, compared with normal
instances, the outliers are far away from their neighbors. To this end,
we use neighborhood information to detect the attribute outliers.

In more detail, given a data set with 𝑉 views, we first construct
the KNN graph for each view. Specifically, in the 𝑣th view, we find
each instance’s top-𝑘 similar neighbors and set an edge between it and
each selected neighbor. There are many approaches to construct the
KNN graph. In our method, we adopt the Heat Kernel to calculate the
similarity between the instances 𝐱𝑣𝑖 and 𝐱𝑣𝑗 . Formally, we construct the
KNN graph 𝑣 whose adjacency matrix 𝐒𝑣 is:

𝑆𝑣
𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑒−
‖

‖

‖

‖

𝐱𝑣𝑖 −𝐱
𝑣
𝑗
‖

‖

‖

‖

2

2
2𝑡2 , if 𝐱𝑣𝑗 ∈  𝑣

𝑖 ,
0, otherwise

(1)

here 𝑡 is the bandwidth parameter in heat conduction equation and
𝑣
𝑖 denotes the neighbor set of 𝐱𝑖. We construct KNN graphs {𝑣}𝑉𝑣=1
hose adjacency matrices are {𝐒𝑣}𝑉𝑣=1 as described above. Then, we can
btain the neighborhood score of an instance with the mean similarity
f the instance and its neighbors. More formally, the neighborhood
core of 𝐱𝑖, which is denoted as 𝑠𝑛𝑖 , is defined as:

𝑛
𝑖 =

𝑉
∑

𝑣=1

1
| 𝑣

𝑖 |

∑

𝐱𝑣𝑗∈
𝑣
𝑖

𝑆𝑣
𝑖𝑗 (2)

he smaller 𝑠𝑛𝑖 is, which means 𝐱𝑖 is less similar to its neighbors, the
ore likely 𝐱𝑖 is an attribute outlier.

.2. Calculating the consistency score

When detecting the class outliers, we should discover the inconsis-
ent behaviors of instances. As claimed before, our method does not
epend on the standard clustering method and discovers inconsistent
ehaviors from the intrinsic structure of data. To achieve this, we also
se the KNN graphs constructed before and learn a consensus graph
from these KNN graphs. Then we explore the inconsistent behaviors

ccording to the consensus graph.
One natural way to learn the consensus graph  is to directly ensem-

le {𝐒𝑣}𝑉𝑣=1 to obtain the consensus adjacency matrix. Here, for more
ffectively ensembling the multiple KNN graphs, we first normalize
hem. More formally, we normalize {𝐒𝑣}𝑉𝑣=1 by:

̂ 𝑣 = (𝐃𝑣)−
1
2 𝐒𝑣(𝐃𝑣)−

1
2 (3)

where 𝐃𝑣 is a diagonal matrix with diagonal elements 𝐷𝑣
𝑖𝑖 =

∑𝑛
𝑗 𝑆

𝑣
𝑖𝑗 .

By this normalization, it can maintain the original distribution to
prevent significant differences in distribution between high-degree and
low-degree vertices in graphs.

Then, we consider how to ensemble {�̂�𝑣}𝑉𝑣=1 to obtain the consensus
matrix 𝐒. Notice that since the data contains outliers, {�̂�𝑣}𝑉𝑣=1 are also
contaminated by the outliers. To effectively obtain a clean consensus
matrix, we should recover the clean adjacency matrix for each view.
Therefore, we need to take a closer look at the structures of outliers
in {�̂�𝑣}𝑉𝑣=1. Assuming that in the 𝑣th view 𝐱𝑖 is an outlier, then the 𝑖th
ow of �̂�𝑣 is corrupted and incorrect. Since �̂�𝑣 is symmetric, the 𝑖th
olumn of �̂�𝑣 is also corrupted. Therefore, the structure of outliers in the
djacency matrix should be row-wise and column-wise, and symmetric.
o this end, we introduce a row-wise sparse outlier matrix 𝐄𝑣 ∈ R𝑛×𝑛 to
haracterize the outliers. Then 𝐄𝑣𝑇 is a column-wise sparse matrix. We
an use 𝐄𝑣 + 𝐄𝑣𝑇 to denote such row-wise and column-wise symmetric
utlier matrix for the 𝑣th view.

After obtaining the structured outlier matrix, we can recover the
lean adjacency matrix for the 𝑣th view as �̂�𝑣 − (𝐄𝑣 + 𝐄𝑣𝑇 ). Then, we
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Fig. 2. The flowchart of the proposed MODGD. We first construct 𝑉 KNN graphs from the multi-view data, and then compute the neighborhood score 𝐬𝑛 from these adjacency
matrices 𝐒1 ,… ,𝐒𝑉 . Then we learn the consensus graph 𝐒 and the structured outlier matrices 𝐄𝑣 + 𝐄𝑣𝑇 from the normalized adjacency matrices. Next, we compute the consistency
scores 𝐬𝑐 from these outlier matrices. At last, we combine 𝐬𝑛 and 𝐬𝑐 to get the final outlier score 𝐬.
ensemble these �̂�𝑣−(𝐄𝑣+𝐄𝑣𝑇 ) to obtain the consensus matrix 𝐒 as many
multi-view learning methods did [32–37]:

min
𝐒,𝐄𝑣 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

‖

‖

‖

‖

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
)

‖

‖

‖

‖

2

𝐹
+ 𝜆 ‖𝐄𝑣

‖2,1

)

𝑠.𝑡. 𝐒 = 𝐒𝑇 , 𝐒 ≥ 𝟎, �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 ≥ 𝟎
𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0,

(4)

where 𝜆 is a balancing parameter. 𝓁2,1-norm is used to ensure the row
sparsity of 𝐄𝑣 [38]. The constraints on 𝐒 ensure that 𝐒 is symmetric
and non-negative. The constraint �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 ≥ 0 makes sure that
the cleaned matrix �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 is non-negative and thus is a valid
adjacency matrix. 𝛼𝑣 is the non-negative weight of the 𝑣th view. The
constraint ∑𝑉

𝑖=1 𝛼𝑣 = 1 is to avoid trivial solution. The larger 𝛼𝑣 is, the
higher quality of the 𝑣th view is.

Notice that in this step we wish to detect the class outliers by
computing the consistency score. However, if we directly optimize
Eq. (4), it also involves the attribute outliers because the attribute
outliers are still in the adjacency matrices {�̂�𝑣}𝑉𝑣=1. To address this issue,
we reformulate Eq. (4) to alleviate the effects of attribute outliers. To
this end, we can introduce a weight matrix 𝐖 ∈ R𝑛×𝑛 on 𝐒 to make
sure that the weights of attribute outliers should be small, which means
the attribute outliers will hardly influence the optimization of Eq. (4).
Since we already obtain the neighborhood score 𝐬𝑛, we can design the
weight 𝑊 for the instance pair (𝐱 , 𝐱 ) as the geometric average of the
4

𝑖𝑗 𝑖 𝑗
neighborhood score of 𝐱𝑖 and 𝐱𝑗 :

𝑊𝑖𝑗 =
√

𝑠𝑛𝑖 ⋅ 𝑠
𝑛
𝑗 (5)

Here we use the geometric average because as long as one of 𝐱𝑖
and 𝐱𝑗 is the attribute outliers, 𝑊𝑖𝑗 will be small and its influence
will be alleviated. Then, we impose 𝐖 on the ensemble term, lead-

ing to
‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹
, where ⊙ is the element-wise

production.
In addition, to make the consensus matrix have a clearer structure,

we impose a low-rank constraint on it. In more detail, we wish the con-
sensus graph  have a small number of (i.e., 𝑐) connective components.
Following [39], we have that the number of connective components in
 is equal to the multiplicity of the eigenvalue 0 of the Laplacian matrix
𝐋 = 𝐃− 𝐒, where 𝐃 is a diagonal matrix whose 𝑖th diagonal element is
𝐷𝑖𝑖 =

∑𝑛
𝑗=1 𝑆𝑖𝑗 . To this end, we add the constraint 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐 and

obtain the final objective function:

min
𝐒,𝐄𝑣 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹
+ 𝜆 ‖𝐄𝑣

‖2,1

)

𝑠.𝑡. 𝐒 = 𝐒𝑇 , 𝐒 ≥ 0, �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 ≥ 0,
𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0, 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐.

(6)

Eq. (6) contains the constraint 𝑟𝑎𝑛𝑘(𝐋) = 𝑛 − 𝑐, making it hard
to optimize. Fortunately, according to Ky Fan Theorem [40], we can
introduce an auxiliary orthogonal matrix 𝐘 ∈ R𝑛×𝑐 and a large enough
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parameter 𝜌 to reformulate it as:

min
𝐒,𝐄𝑣 ,𝐘,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2
𝑣

(

‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹
+ 𝜆 ‖𝐄𝑣

‖2,1

)

+ 2𝜌𝑡𝑟(𝐘𝑇𝐋𝐘)

𝑠.𝑡. 𝐒 = 𝐒𝑇 , 𝐒 ≥ 0, �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 ≥ 0, 𝐘𝑇𝐘 = 𝐈,
𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0.

(7)

Notice that, 𝜌 is a large enough parameter to make sure that the rank
of 𝐋 is 𝑛 − 𝑐.

Then, we adopt an alternating optimization strategy to optimize
each variable in Eq. (7). More specifically, we optimize 𝐒, 𝐄𝑣, 𝛼𝑣, 𝐘
respectively by fixing the other variables.

3.2.1. Optimizing 𝐒
When optimizing 𝐒, we first rewrite Eq. (7) as

min
𝐒

𝑉
∑

𝑣=1

(

𝛼2𝑣
‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹

)

+ 𝜌
𝑛
∑

𝑝,𝑞=1

‖

‖

‖

𝐲𝑝 − 𝐲𝑞
‖

‖

‖

2

2
𝑆𝑝𝑞

𝑠.𝑡. 𝐒 = 𝐒𝑇 , 𝐒 ≥ 𝟎,

(8)

where 𝐲𝑝 and 𝐲𝑞 are the 𝑝th and 𝑞th row vectors in 𝐘, respectively.
We first remove the symmetric constraint and decouple it into 𝑛 × 𝑛
independent subproblems:

min
𝑆𝑝𝑞

𝑉
∑

𝑣=1
𝛼2𝑣𝑊

2
𝑝𝑞

(

𝑆𝑝𝑞 −
(

�̂�𝑣
𝑝𝑞 − 𝐸𝑣

𝑝𝑞 − 𝐸𝑣
𝑞𝑝

))2
+ 𝜌 ‖‖

‖

𝐲𝑝 − 𝐲𝑞
‖

‖

‖

2

2
𝑆𝑝𝑞

𝑠.𝑡. 𝑆𝑝𝑞 ≥ 0.

(9)

Let 𝐵𝑝𝑞 =
2𝑊 2

𝑝𝑞
∑𝑉

𝑣=1 𝛼
2
𝑣 (�̂�

𝑣
𝑝𝑞−𝐸

𝑣
𝑝𝑞−𝐸

𝑣
𝑞𝑝)−𝜌

‖

‖

‖

𝐲𝑝−𝐲𝑞
‖

‖

‖

2

2
2𝑊 2

𝑝𝑞
∑𝑉

𝑣=1 𝛼
2
𝑣

, we rewrite Eq. (9) as:

min
𝑆𝑝𝑞

(

𝑆𝑝𝑞 − 𝐵𝑝𝑞
)2

𝑠.𝑡. 𝑆𝑝𝑞 ≥ 0.

The closed-form solution is

𝑆𝑝𝑞 = max(0, 𝐵𝑝𝑞) (10)

Notice that �̂�𝑣, 𝐄𝑣 + 𝐄𝑣𝑇 , and 𝐖 are all symmetric. Therefore 𝐁 is also
symmetric and thus 𝐒 learned from Eq. (10) satisfies the symmetric
constraint.

3.2.2. Optimizing 𝐄𝑣

When fixing 𝐒, 𝐘 and 𝛼𝑣, we have:

min
𝐄𝑣

‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹
+ 𝜆 ‖𝐄𝑣

‖2,1

𝑠.𝑡. �̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇 ≥ 𝟎.
(11)

For simplicity, We first ignore the constraint, and after obtaining the
solution, we will prove that the obtained solution can satisfy this
constraint. To handle the 𝑙2,1-norm, following [41], we introduce a
diagonal matrix 𝐃𝑣, where 𝑖th diagonal element is 1

2‖‖
‖

𝐄𝑣
𝑖
‖

‖

‖2

.

Setting the partial derivative of Eq. (11) w.r.t 𝐄𝑣 to zero, we get:

2𝐖2 ⊙
(

𝐄𝑣 + 𝐄𝑣𝑇 ) + 𝜆𝐃𝑣𝐄𝑣 = 2𝐖2 ⊙ (𝐒𝑣 − 𝐒) (12)

Let 𝐅𝑣 = 2𝐖2 ⊙
(

�̂�𝑣 − 𝐒
)

. Considering pairwise elements 𝐸𝑣
𝑝𝑞 and 𝐸𝑣

𝑞𝑝
in Eq. (12), we obtain:
{

2𝑊 2
𝑝𝑞𝐸

2
𝑝𝑞 + 2𝑊 2

𝑝𝑞𝐸
2
𝑞𝑝 + 𝜆𝐷𝑣

𝑝𝑝𝐸
𝑣
𝑝𝑞 = 𝐹 𝑣

𝑝𝑞
2 𝑣 2 𝑣 𝑣 𝑣 𝑣

(13)
5

2𝑊𝑞𝑝𝐸𝑞𝑝 + 2𝑊𝑞𝑝𝐸𝑝𝑞 + 𝜆𝐷𝑞𝑞𝐸𝑞𝑝 = 𝐹𝑞𝑝
w

Then, we get the solution of Eq. (13):

⎧

⎪

⎨

⎪

⎩

𝐸𝑣
𝑝𝑞 =

𝐷𝑣
𝑞𝑞𝐹

𝑣
𝑝𝑞

2𝑊 2
𝑝𝑞𝐷𝑣

𝑞𝑞+2𝑊 2
𝑞𝑝𝐷𝑣

𝑝𝑝+𝜆𝐷𝑝𝑝𝐷𝑞𝑞

𝐸𝑣
𝑞𝑝 =

𝐷𝑣
𝑝𝑝𝐹

𝑣
𝑞𝑝

2𝑊 2
𝑞𝑝𝐷𝑣

𝑝𝑝+2𝑊 2
𝑝𝑞𝐷𝑣

𝑞𝑞+𝜆𝐷𝑝𝑝𝐷𝑞𝑞

It is easy to verify that both 𝐅𝑣 and 𝐖 are symmetric. Thus, 𝐸𝑣
𝑝𝑞 can

e simplified as the following form:

𝑣
𝑝𝑞 =

𝐷𝑣
𝑞𝑞𝐹

𝑣
𝑝𝑞

2𝑊 2
𝑝𝑞(𝐷𝑣

𝑝𝑝 +𝐷𝑣
𝑞𝑞) + 𝜆𝐷𝑣

𝑝𝑝𝐷𝑣
𝑞𝑞

(14)

Now, we show that the obtained solution satisfies the constraint:

�̂�𝑣
𝑝𝑞 − 𝐸𝑣

𝑝𝑞 − 𝐸𝑣
𝑞𝑝

�̂�𝑣
𝑝𝑞 −

𝐷𝑣
𝑞𝑞𝐹

𝑣
𝑝𝑞 +𝐷𝑣

𝑝𝑝𝐹
𝑣
𝑞𝑝

2𝑊 2
𝑝𝑞𝐷𝑣

𝑞𝑞 + 2𝑊 2
𝑞𝑝𝐷𝑣

𝑝𝑝 + 𝜆𝐷𝑝𝑝𝐷𝑞𝑞

𝜆𝐷𝑝𝑝𝐷𝑞𝑞�̂�𝑣
𝑝𝑞 + 2𝑊 2

𝑝𝑞(𝐷
𝑣
𝑝𝑝 +𝐷𝑣

𝑞𝑞)𝑆𝑝𝑞

2𝑊 2
𝑝𝑞𝐷𝑣

𝑞𝑞 + 2𝑊 2
𝑞𝑝𝐷𝑣

𝑝𝑝 + 𝜆𝐷𝑝𝑝𝐷𝑞𝑞

0

t is easy to verify that the obtained solution above satisfies the con-
traint because �̂�𝑣

𝑝𝑞 , 𝑆𝑝𝑞 , and 𝐃𝑣 are non-negative.

.2.3. Optimizing 𝐘
When fixing 𝐒, 𝛼 and 𝐄𝑣, the optimization problem w.r.t. 𝐘 is:

min
𝐘

𝑡𝑟(𝐘𝑇𝐋𝐘)

𝑠.𝑡. 𝐘𝑇𝐘 = 𝐈.
(15)

According to Ky Fan’s theorem [40], we compute the eigen-decompos-
ition of 𝐋. Then we obtain the closed-form solution, which is consisted
of the 𝑐 eigenvectors of 𝐋 corresponding to the 𝑐 smallest eigenvalues.

3.2.4. Optimizing 𝛼𝑣
When fixing 𝐒, 𝐘 and 𝐄𝑣, we obtain 𝛼𝑣 by solving the following

problem:

min
𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣𝑜𝑣

𝑠.𝑡. 0 ≤ 𝛼𝑣 ≤ 1,
𝑉
∑

𝑣=1
𝛼𝑣 = 1,

(16)

where 𝑜𝑣 =
‖

‖

‖

‖

𝐖⊙
(

𝐒 −
(

�̂�𝑣 − 𝐄𝑣 − 𝐄𝑣𝑇
))

‖

‖

‖

‖

2

𝐹
+ 𝜆 ‖𝐄𝑣

‖2,1. According to
Cauchy–Schwarz inequality, we can obtain the closed-form solution of
Eq. (16):

𝛼𝑣 =
𝑜−1𝑣

∑𝑉
𝑣=1 𝑜−1𝑣

(17)

The whole algorithm to optimize Eq. (7) is summarized in Algorithm
. When optimizing 𝐒, 𝐘, and 𝛼𝑣, we can obtain the closed-form
olution of the subproblems. When optimizing 𝐄𝑣, according to [41],
he objective function can also decrease monotonously. Moreover, the
bjective function has a lower bound. Therefore, Algorithm 1 always
onverges. In fact, Algorithm often converges very fast in practice.

.2.5. Consistency score
Then, we apply the outlier matrix 𝐄𝑣 to compute the consistency

core. Intuitively, since 𝐄𝑣 characterizes the class outliers on the graph,
e can detect the outliers by finding the instances which have large 𝐄𝑣

𝑖..
ormally, we calculate the consistency score by:

𝑐
𝑖 =

𝑉
∑

𝑣=1

‖

‖

𝐄𝑣
𝑖.
‖

‖

2
2 . (18)

or a class outlier 𝐱𝑣𝑖 , it behaviors inconsistently across multiple views,
∑𝑉 ‖ 𝑣‖2 𝑐
hich means 𝑣=1 ‖

‖

𝐄𝑖.‖
‖2

is large, leading to large value of 𝑠𝑖 . Notice
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Algorithm 1 Optimization of Eq. (7).

Input: {�̂�𝑣}𝑉𝑣=1, weight matrix 𝐖.
utput: consensus matrix S.

1: Initial 𝐒 = 1
𝑉
∑𝑉

𝑣=1 �̂�
𝑣, 𝛼𝑣 = 1

𝑉 and 𝐄𝑣 = 1
2

(

�̂�𝑣 − 𝐒
)

.
2: Construct Laplacian matrix 𝐋, initialize 𝐘 by solving Eq. (15).
3: while not converge do
4: Compute 𝛼 by Eq. (17).
5: Compute 𝐒 by Eq. (10).
6: Compute 𝐄𝑣 by Eq. (14).
7: Compute 𝐘 by solving Eq. (15).
8: Adjust 𝜌 automatically.
9: end while

that the larger 𝑠𝑐𝑖 is, the more likely 𝐱𝑖 is a class attribute, which
behaves opposite to the neighborhood score 𝐬𝑛. To tackle this problem,
we impose a linear transformation on 𝐬𝑐 to reverse it, which maps the
maximum of the score to 0 and maps the minimum of the score to 1.
Denoting 𝑠𝑐𝑚𝑎𝑥 as the maximum of the score and 𝑠𝑐𝑚𝑖𝑛 as the minimum
of the score, we calculate the new consistency score as:

𝑠𝑐𝑖 =
𝑠𝑐𝑚𝑎𝑥 − 𝑠𝑐𝑖
𝑠𝑐𝑚𝑎𝑥 − 𝑠𝑐𝑚𝑖𝑛

. (19)

We use this 𝐬𝑐 obtained by Eqs. (18) and (19) as the final consistency
score.

3.3. Outlier scoring

Now, we introduce our outlier measurement criterion. As mentioned
above, we calculate two score vectors 𝐬𝑛 and 𝐬𝑐 to detect attribute
outliers and class outliers, respectively. Then, we define the final score
𝐬 ∈ R𝑛 by combining them:

𝐬 = 𝛽𝐬𝑛 + (1 − 𝛽)𝐬𝑐 . (20)

where 𝛽 ∈ (0, 1) is a balancing parameter. The smaller 𝑠𝑖 is, the more
likely it is an outlier. This outlier measurement criterion makes our
method able to handle all three types of outliers simultaneously. We
give the following explanations:

• For a normal instance, it is close to its neighbors, which makes the
value of 𝑠𝑛𝑖 large. On the other hand, since the normal instance is
consistent across multiple views, its representation in the graph
of each view is also close to the one in the consensus graph. Thus,
the value of 𝑠𝑐𝑖 should also be large. Consequently, its 𝑠𝑖 should
also be large.

• For an attribute outlier, it is obvious that the outlier is dissimilar
to the majority of instances in each view. Thus, its value of 𝑠𝑛𝑖 is
small, leading to that its final score 𝑠𝑖 will be smaller than that of
normal instances.

• For a class outlier, it behaves inconsistently across different views,
the difference between basic graphs and the consensus one should
be large, which may introduce a large 𝐄𝑣

𝑖., leading to a small value
of 𝑠𝑐𝑖 . Consequently, its final score 𝑠𝑖 will also be smaller than that
of normal instances.

∙ For a class-attribute outlier, since it is the mix of class outlier and
attribute outlier, both 𝑠𝑛𝑖 and 𝑠𝑐𝑖 will be small, making the value
of final score 𝑠𝑖 small.

Thus, all three types of outliers will be detected by observing 𝐬. We
summarize our method in Algorithm 2.

3.4. Parameter setting

In this subsection, we introduce how to set the parameter in our
method. We set t in Eq. (1) as the median of the Euclidean distances
6

Algorithm 2 MODGD Algorithm.

Input: Multi-view data set  = {X1,X2,… ,X𝑉 }, hyper-parameter 𝛽.
Output: Outlier score s.
1: Construct KNN graphs by Eq. (1).
2: Compute 𝐬𝑛, 𝐖 by Eqs. (2) and (5).
3: Compute {�̂�𝑣}𝑉𝑣=1 by Eq. (3).
4: Optimize Eq. (7) by Algorithm 1.
5: Compute 𝐬𝑐 by Eq. (18) and Eq. (19).
6: Compute 𝐬 by Eq. (20).

among all data. When constructing the KNN graphs, we fix 𝑘 = 25. We
fix 𝑐 = 5 and 𝜆 = 0.1. For 𝜌, we initialize 𝜌 = 1 and adjust it by observing
the rank of L. In detail, if rank(L) > n-c, which means the constraint is a
ittle too weak, we increase 𝜌 ← 2 ∗ 𝜌; And if rank(L) < n-c, we decrease
t by 𝜌 ← 0.5 ∗ 𝜌. To get the final score, we tune 𝛽 in {0.1, 0.2,… , 0.9}.

.5. Complexity analysis

Since we need to construct KNN graphs {�̂�𝑣}𝑉𝑣=1, the time complexity
s 𝑂(𝑛2𝑘𝑉 + 𝑛2𝑑𝑉 ). In each iteration, when updating 𝐄𝑣, the com-
lexity is 𝑂(𝑛2𝑉 ) due to element-wise optimizations. When updating
, we compute 𝑜 in 𝑂(𝑛2𝑉 ). For 𝐒, we first compute 𝐁, thus it costs
(𝑛2𝑐+𝑛2𝑉 ). Since updating 𝐘 involves an eigenvector decomposition,

t costs 𝑂(𝑛2𝑐). Supposing the number of iterations is 𝑇 , the whole time
omplexity is 𝑂

(

𝑇
(

𝑛2𝑉 + 𝑛2𝑐
)

+ 𝑛2𝑘𝑉 + 𝑛2𝑑𝑉
)

.

. Experiment

In this section, we compare our method with some state-of-the-art
ulti-view outlier detection methods and evaluate it on benchmark
ata sets.

.1. Toy data set

To show the effectiveness of the proposed method, we first show
ome results on a toy data set. This data contains 200 instances and

views, with each view having a feature dimension of 2, which is
hown in Fig. 3. Figs. 3(a) and (b) show the two views of the data,
here red triangles and red squares denote the two classes of the
ormal instances, respectively. The blue stars, diamonds, and dots
enote the attribute outliers, class outliers, and class-attribute outliers,
espectively.

Fig. 3(c) and (d) show the outlier scores learned by our method. The
olor represents the score. The red color means the score is high and
he blue color means the score is low. It can be seen that most normal
nstances obtain high scores and most outliers obtain low scores in our
ethod, which means our method correctly detects most of all three

ypes of outliers.

.2. Real data sets

We also conduct experiments on 6 widely used real-world multi-
iew data sets, including 20newsgroup,1 YaleB [42], Coil20 [43], Hand-
ritten,2 LandUse-21 [44], and Caltech101.3 We summarize the de-

ailed information of these data sets in Table 2.

.3. Experimental setup

Following the setting of [23], we generate three types of outliers
n these data sets. Specifically, for each data set, we add 6 different

1 https://lig-membres.imag.fr/grimal/data.html
2 https://archive.ics.uci.edu/ml/datasets/Multiple+Features
3
 http://www.vision.caltech.edu/datasets/

https://lig-membres.imag.fr/grimal/data.html
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.vision.caltech.edu/datasets/
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Fig. 3. Results on the toy data.
Table 2
Description of the data sets.

#instances #views Features #classes

20newsgroup 500 3 2000:2000:2000 5
YaleB 650 3 2500:3304:6750 10
Coil20 1440 3 1024:3304:6750 20
Handwritten 2000 6 216:76:64:6:240:47 10
LandUse-21 2100 3 20:59:40 21
Caltech101 9144 6 48:40:254:1984:512:680:32 102

Table 3
The settings of outlier ratios for different id.
id D1 D2 D3 D4 D5 D6

𝜌1 0.02 0.02 0.05 0.05 0.08 0.08
𝜌2 0.05 0.08 0.02 0.08 0.02 0.05
𝜌3 0.08 0.05 0.08 0.02 0.05 0.02

ratios of outliers to generate six corrupted data sets, which are named
‘‘D + id’’. The id indicates the ratio of outliers attribute outlier (𝜌1),
class outlier (𝜌2), and class-attribute outlier (𝜌3) contained in the data
set, whose detailed information is shown in Table 3. For example,
in Table 3, D1 means that 2% of the instances are attribute outliers,
5% of the instances are class outliers, and 8% of the instances are
class-attribute outliers. The other 85% instances are normal instances.

We compare our method with the following unsupervised multiview
outlier detection methods:

∙ HOAD [26]. It is a spectral clustering based outlier detection
method.

∙ APOD [27]. It is an outlier detection method based on affinity
propagation clustering.

∙ DMOD [25]. It is an outlier detection method based on k-means.
It uses pair-wise constraints between two views to align all rep-
resentations of data.
7

∙ CRMOD [28]. It applies k-means to learn consensus representa-
tions of data from all views for outlier detection.

∙ MLRA [29]. It is based on low-rank subspace clustering and uses
pair-wise constraints to align all representations of data.

∙ LDSR [24]. It is similar to MLRA, but it separates the representa-
tions of different views into a consensus part and a view-specific
part.

∙ MUVAD-FSR [30]. It estimates the set of normal instances based
on the nearest neighbor-based outlier measurement criterion, and
solves it with a fast spectral relaxation approach.

∙ MUVAD-QPR [30]. It solves the problem of MUVAD with a
quadratic programming relaxation approach.

∙ NCMOD [23]. It is an outlier detection method based on a neigh-
borhood consensus network.

∙ SRLSP [31]. It is a self-representation method for outlier detec-
tion, which preserves local similarity.

We use Area Under Curve (AUC) which is widely used in outlier
detection tasks, to evaluate the results. We repeat the experiments 5
times and report the average results and standard deviations.

4.4. Experiment results

Tables 4–9 show the AUC results of our method and other compared
multi-view outlier detection methods on each data set, respectively.
We report the average results and the standard deviation of AUC. The
best results of methods are in boldface. From Tables 4–9, we have the
following points:

• Compared with the state-of-the-art methods based on the lo-
cal similarity (i.e., MUVAD, NCMOD, and SRLSP), our method
performs better on most data sets. Notice that NCMOD is the
most recent deep multi-view outlier detection method, while
ours is a shallow model and has a much simpler model. It well
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Table 4
Detection performance on 20newsgroup.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

LDSR
[24]

MLRA
[29]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.2449±
0.0085

0.2067±
0.0097

0.3102±
0.2014

0.4903±
0.0262

0.5912±
0.0239

0.3984±
0.1634

0.6863±
0.0406

0.6982±
0.0382

0.8037±
0.0294

0.8371±
0.0234

0.8947±
0.0063

D2 0.3790±
0.0155

0.3239±
0.0367

0.3521±
0.1962

0.4870±
0.0079

0.5314±
0.0159

0.4207±
0.0833

0.6389±
0.0506

0.6489±
0.0481

0.7689±
0.0423

0.7655±
0.0281

0.8419±
0.0086

D3 0.0961±
0.0108

0.0915±
0.0079

0.5473±
0.4251

0.5895±
0.0430

0.4781±
0.0274

0.4459±
0.1128

0.7487±
0.0371

0.7601±
0.0378

0.8773±
0.0397

0.9170±
0.0139

0.9538±
0.0119

D4 0.3967±
0.0226

0.3304±
0.0141

0.2721±
0.0349

0.5834±
0.0376

0.3429±
0.0340

0.5056±
0.0134

0.6822±
0.0260

0.6811±
0.0269

0.7375±
0.0251

0.7352±
0.0159

0.8227±
0.0311

D5 0.0903±
0.0102

0.0872±
0.0127

0.2245±
0.3357

0.6791±
0.0729

0.3086±
0.0292

0.5832±
0.0259

0.8049±
0.0415

0.8226±
0.0370

0.9176±
0.0239

0.9304±
0.0130

0.9530±
0.0110

D6 0.2193±
0.0087

0.2085±
0.0082

0.1691±
0.0188

0.7063±
0.0238

0.2551±
0.0157

0.5663±
0.0431

0.7320±
0.0142

0.7448±
0.0106

0.8432±
0.0145

0.8372±
0.0141

0.8884±
0.0253
Table 5
Detection performance on YaleB.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

LDSR
[24]

MLRA
[29]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.7881±
0.0318

0.7887±
0.0235

0.7289±
0.1150

0.0597±
0.0103

0.2967±
0.0049

0.2613±
0.0451

0.4979±
0.0264

0.5000±
0.0000

0.7924±
0.0289

0.8695±
0.0216

0.9793±
0.0049

D2 0.7513±
0.0245

0.7662±
0.0255

0.7076±
0.0797

0.0775±
0.0059

0.4797±
0.0141

0.3684±
0.0189

0.5086±
0.0277

0.5000±
0.0000

0.7106±
0.0218

0.7887±
0.0302

0.9593±
0.0236

D3 0.7570±
0.0499

0.8020±
0.0145

0.6081±
0.3000

0.1658±
0.0152

0.1062±
0.0122

0.1223±
0.0350

0.5068±
0.0253

0.5000±
0.0000

0.8799±
0.0447

0.9530±
0.0079

0.9961±
0.0036

D4 0.6995±
0.0332

0.7448±
0.0255

0.6445±
0.2018

0.1677±
0.0195

0.4721±
0.0131

0.4328±
0.1063

0.4818±
0.0429

0.5000±
0.0000

0.7541±
0.0226

0.7996±
0.0239

0.9640±
0.0109

D5 0.6583±
0.0338

0.7846±
0.0162

0.7229±
0.1957

0.2494±
0.0264

0.1037±
0.0130

0.4001±
0.1649

0.4632±
0.0211

0.5000±
0.0000

0.9262±
0.0246

0.9552±
0.0078

0.9922±
0.0098

D6 0.6494±
0.0294

0.7624±
0.0201

0.6676±
0.2069

0.2696±
0.0334

0.2686±
0.0172

0.5246±
0.1024

0.4799±
0.0321

0.5000±
0.0000

0.8127±
0.0833

0.8819±
0.0137

0.9796±
0.0086
Table 6
Detection performance on Coil20.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

LDSR
[24]

MLRA
[29]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.6627±
0.0175

0.7978±
0.0209

0.7022±
0.1884

0.0098±
0.0019

0.3522±
0.0058

0.3891±
0.0874

0.5386±
0.0125

0.5542±
0.0067

0.8589±
0.0218

0.9486±
0.0102

0.9980±
0.0012

D2 0.6924±
0.0212

0.7746±
0.0170

0.7202±
0.1194

0.0062±
0.0031

0.5469±
0.0045

0.3874±
0.0861

0.5340±
0.0198

0.5331±
0.0089

0.7844±
0.0118

0.8858±
0.0144

0.9992±
0.0003

D3 0.5185±
0.0287

0.7758±
0.0490

0.5538±
0.2598

0.0347±
0.0063

0.1495±
0.0086

0.3274±
0.1036

0.5624±
0.0162

0.5754±
0.0056

0.9449±
0.0015

0.9735±
0.0052

0.9984±
0.0021

D4 0.5723±
0.0281

0.7319±
0.0241

0.6507±
0.1381

0.0499±
0.0090

0.5269±
0.0025

0.5205±
0.1200

0.5349±
0.0220

0.5351±
0.0097

0.7658±
0.0192

0.9015±
0.0132

0.9967±
0.0038

D5 0.3900±
0.0120

0.7330±
0.0194

0.6563±
0.2468

0.0585±
0.0154

0.1385±
0.0048

0.3496±
0.1447

0.5671±
0.0143

0.5839±
0.0048

0.9453±
0.0127

0.9712±
0.0090

0.9996±
0.0002

D6 0.4320±
0.0078

0.7237±
0.0157

0.6050±
0.1667

0.1081±
0.0124

0.3330±
0.0017

0.6409±
0.0813

0.5609±
0.0258

0.5601±
0.0052

0.8479±
0.0138

0.9383±
0.0126

0.9991±
0.0010
Table 7
Detection performance on Handwritten.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

LDSR
[24]

MLRA
[29]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.8543±
0.0110

0.9254±
0.0063

0.5623±
0.2153

0.1274±
0.0068

0.9766±
0.0075

0.4302±
0.0418

0.5591±
0.0156

0.3665±
0.0158

0.8278±
0.0063

0.9325±
0.0126

0.9832±
0.0074

D2 0.8126±
0.0097

0.8769±
0.0103

0.5800±
0.1287

0.1403±
0.0031

0.9477±
0.0131

0.4221±
0.0227

0.5441±
0.0065

0.3850±
0.0165

0.7471±
0.0072

0.8993±
0.0054

0.9720±
0.0058

D3 0.8857±
0.0103

0.9692±
0.0031

0.4337±
0.3286

0.2298±
0.0037

0.9924±
0.0055

0.4871±
0.0507

0.5867±
0.0164

0.3624±
0.0209

0.9253±
0.0046

0.9676±
0.0101

0.9932±
0.0035

D4 0.8277±
0.0079

0.8674±
0.0104

0.6914±
0.0904

0.2540±
0.0047

0.9464±
0.0102

0.4699±
0.0123

0.5617±
0.0072

0.3947±
0.0390

0.7499±
0.0151

0.8987±
0.0213

0.9732±
0.0052

D5 0.9061±
0.0098

0.9665±
0.0096

0.5342±
0.2346

0.3254±
0.0074

0.9885±
0.0049

0.5662±
0.0130

0.5940±
0.0126

0.3583±
0.0186

0.9254±
0.0071

0.9723±
0.0059

0.9924±
0.0040

D6 0.8557±
0.0185

0.9182±
0.0068

0.7773±
0.1265

0.3447±
0.0104

0.9697±
0.0083

0.5512±
0.0256

0.5830±
0.0151

0.3662±
0.0072

0.8400±
0.0122

0.9333±
0.0187

0.9833±
0.0027
8
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Table 8
Detection performance on Landuse-21.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

LDSR
[24]

MLRA
[29]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.6350±
0.0319

0.8844±
0.0092

0.7646±
0.1530

0.1722±
0.0105

0.9565±
0.0071

0.4937±
0.0158

0.7156±
0.0261

0.7283±
0.0229

0.8955±
0.0089

0.9474±
0.0030

0.9622±
0.0049

D2 0.6162±
0.0211

0.8047±
0.0146

0.7051±
0.1512

0.2010±
0.0081

0.9137±
0.0048

0.5166±
0.0238

0.6495±
0.0066

0.6645±
0.0058

0.8390±
0.0154

0.9072±
0.0075

0.9282±
0.0109

D3 0.5810±
0.0172

0.9426±
0.0128

0.6101±
0.3420

0.3453±
0.0058

0.9834±
0.0058

0.4697±
0.0195

0.8207±
0.0192

0.8340±
0.0192

0.9331±
0.0241

0.9799±
0.0083

0.9806±
0.0055

D4 0.5760±
0.0356

0.8332±
0.0093

0.7227±
0.1745

0.3837±
0.0085

0.9278±
0.0074

0.5202±
0.0279

0.6966±
0.0185

0.7104±
0.0172

0.8638±
0.0123

0.9194±
0.0082

0.9371±
0.0111

D5 0.5276±
0.0415

0.9416±
0.0075

0.9314±
0.0072

0.5382±
0.0057

0.9830±
0.0036

0.4597±
0.0236

0.8629±
0.0066

0.8755±
0.0066

0.9276±
0.0146

0.9773±
0.0026

0.9810±
0.0036

D6 0.5550±
0.0395

0.8891±
0.0036

0.8631±
0.0137

0.5617±
0.0101

0.9589±
0.0083

0.4970±
0.0253

0.7862±
0.0136

0.8009±
0.0119

0.9047±
0.0052

0.9463±
0.0057

0.9619±
0.0069
Table 9
Detection performance on Caltech101. MLRA and SRLSP cannot run a result in a reasonable time on the large data set Caltech101.

Data APOD
[27]

CRMOD
[28]

DMOD
[25]

HOAD
[26]

MUVAD-
FSR [30]

MUVAD-
QPR [30]

NCMOD
[23]

SRLSP
[31]

OURS

D1 0.5146±
0.0108

0.8693±
0.0108

0.5397±
0.2960

0.2362±
0.0056

0.5013±
0.0077

0.5017±
0.0006

0.8800±
0.0058

0.8212±
0.0067

0.9041±
0.0072

D2 0.5201±
0.0119

0.8125±
0.0109

0.7905±
0.0071

0.2662±
0.0046

0.4980±
0.0077

0.5009±
0.0004

0.8093±
0.0056

0.7466±
0.0087

0.8485±
0.0073

D3 0.4209±
0.0172

0.9314±
0.0148

0.8080±
0.2697

0.3660±
0.0023

0.5042±
0.0079

0.5023±
0.0006

0.9422±
0.0019

0.9170±
0.0053

0.9586±
0.0018

D4 0.3899±
0.0090

0.8172±
0.0135

0.7903±
0.0060

0.4117±
0.0075

0.5023±
0.0078

0.5009±
0.0011

0.8165±
0.0050

0.7458±
0.0070

0.8418±
0.0091

D5 0.3007±
0.0039

0.9291±
0.0210

0.7782±
0.3286

0.5302±
0.0045

0.4982±
0.0075

0.5031±
0.0010

0.9518±
0.0057

0.9246±
0.0035

0.9611±
0.0027

D6 0.2696±
0.0079

0.8788±
0.0116

0.8606±
0.0079

0.5591±
0.0064

0.4962±
0.0068

0.5025±
0.0007

0.8908±
0.0069

0.8448±
0.0058

0.8977±
0.0014
Fig. 4. Convergence curves of our method.
demonstrates the effectiveness and superiority of our method.
The reason may be that our method can fully utilize the relation
between data and explicitly characterize the structure of outliers
when learning the consensus to detect class outliers.

• For pair-wise constraint based methods HOAD, APOD, DMOD,
and MLRA, they often perform worse than other non pair-wise
9

constraint based methods on most data sets, which illustrates the
limitation of the pair-wise constraint. Since our method learns the
consensus graph across all views, it has better performance than
these methods on all data sets.

• Consider SRLSP, LDSR, and CRMOD, which obtain consensus
information via a simple linear combination of all views. Our
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Fig. 5. Running time (in Sec.) of all methods. Notice that MLRA and LDSR cannot run a result in a reasonable time on Caltech101.
method also outperforms them. It well demonstrates that the en-
semble method used in ours can capture the intrinsic structure of
class outliers when learning the consensus graph more effectively.

.5. Efficiency results

Fig. 4 shows the convergence curves of our method on all data sets.
t can be seen that our method converges very fast (i.e., often converges
ithin 10 iterations).

Fig. 5 shows the running time of all methods on all data sets. Due
o the significant difference in the running time of some methods, for
etter comparison, we report the logarithm of the time in Fig. 5. Notice
hat LDSR and MLRA cannot run a result in a reasonable time in large
10
data set Caltech101. It can be seen that the running time of our method
is comparable with other state-of-the-art methods and it is even faster
than some methods, such as APOD, LDSR, MLRA, and NCMOD.

4.6. Ablation study

To show the effectiveness of our method, we compare our method
with the following three degenerated versions on 20newsgroups and
Handwritten:

∙ 𝐬𝑛. It only uses the neighborhood score to detect outliers.
∙ 𝐬𝑐 . Only the consistency score is regarded as the final score.
∙ 𝐬𝑛+ 𝐬𝑐𝑖𝑛𝑖. It uses the initial 𝐄𝑣 to obtain the consistency score, then

combine the neighborhood score to get the final score.
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Fig. 6. AUC with respect to 𝛽 and 𝜆.
∙ 𝐬𝑛 + 𝐬𝑐 . It is the complete model of our method with all parts.

Tables 10, 11 show the results of the ablation study. The results
on other data sets are similar. From these Tables, we find that using
one of the two scores as the final score cannot effectively detect all
types of outliers. In more detail, 𝐬𝑛 can only effectively detect attribute
outliers and 𝐬𝑐 can only detect the class-attribute outliers. When the
ratio of these two types of outliers is high (i.e., D3, D5), it can obtain a
high value of AUC. Similarly, 𝐬𝑐 has good performance when the ratio
of class outliers is high (i.e., D2, D4). When we combine these two
11
scores, it achieves better performance than using either of them alone.
Our method outperforms 𝐬𝑛 + 𝐬𝑐𝑖𝑛𝑖, which illustrates the effectiveness of
characterizing the structure of class outliers.

4.7. Parameter study

Our method contains two hyper-parameters 𝛽 and 𝜆. In our exper-
iments, we fix 𝜆 to 0.1 and do not tune it. Despite this, to compre-
hensively show the effects of these two hyper-parameters, we show the
results w.r.t. 𝛽 in 0.1, 0.2,… , 0.9 and 𝜆 in {0.01, 0.1, 1, 10, 100} in Fig. 6.
{ }
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Table 10
Compared with degenerated versions on 20newsgroups.

D1 D2 D3 D4 D5 D6

𝐬𝑐 0.1960±
0.0311

0.3314±
0.0228

0.0904±
0.0262

0.3007±
0.0359

0.0826±
0.0143

0.1656±
0.0283

𝐬𝑛 0.8388±
0.0204

0.7219±
0.0228

0.9361±
0.0152

0.7439±
0.0367

0.9355±
0.0175

0.8617±
0.0234

𝐬𝑛 + 𝐬𝑐𝑖𝑛𝑖
0.8508±
0.0142

0.7444±
0.0184

0.9372±
0.0112

0.7651±
0.0342

0.9385±
0.0185

0.8627±
0.0192

𝐬𝑛 + 𝐬𝑐 0.8947±
0.0063

0.8419±
0.0086

0.9538±
0.0119

0.8227±
0.0311

0.9530±
0.0110

0.8884±
0.0253

Table 11
Compared with degenerated versions on Handwritten.

D1 D2 D3 D4 D5 D6

𝐬𝑐 0.7474±
0.0252

0.7919±
0.0051

0.5640±
0.0242

0.6215±
0.0120

0.3852±
0.0211

0.4223±
0.0145

𝐬𝑛 0.8336±
0.0049

0.7383±
0.0112

0.9312±
0.0046

0.7253±
0.0183

0.9310±
0.0061

0.8372±
0.0164

𝐬𝑛 + 𝐬𝑐𝑖𝑛𝑖
0.9334±
0.0088

0.8872±
0.0097

0.9714±
0.0046

0.8805±
0.0124

0.9677±
0.0054

0.9277±
0.0117

𝐬𝑛 + 𝐬𝑐 0.9832±
0.0074

0.9720±
0.0058

0.9932±
0.0035

0.9732±
0.0052

0.9924±
0.0040

0.9833±
0.0027

It can be seen that our method is stable in a wide range. Specifically,
we can select 𝛽 from [0.2, 0.7], which often obtains a relatively good
erformance.

. Conclusion

In this paper, we proposed a novel unsupervised multi-view outlier
etection method. To avoid making the assumption of clustering, we
onstructed multiple graphs to represent the structure of multi-view
ata. We detected the attribute outliers directly on the multiple graphs.
hen, we learned a consensus graph to detect class outliers. When

earning the consensus graph, we explicitly extracted the structured
lass outliers on graphs and recovered the multiple clean graphs for the
nsemble. At last, we designed an outlier measurement criterion score
y combining the attribute outlier score and class outlier score, which
an detect all three types of outliers on multi-view data. Extensive
xperiments shew that the proposed method outperformed the state-
f-the-art unsupervised multi-view outlier detection methods, which
emonstrated the superiority and effectiveness of this method.

Although the proposed method performs well when detecting out-
iers, it has high time complexity because it needs to handle multiple
raphs. In the future, we will try to reduce the time complexity further
nd apply it to some large-scale data sets.
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