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A B S T R A C T

Multiple Kernel Clustering (MKC) is an effective approach for revealing nonlinear cluster structures in candidate
kernels. However, existing MKC methods still face two key challenges. Firstly, the pairwise affinity in these
methods is primarily determined by kernel similarity, disregarding the correlations among highly similar
neighbors and resulting in redundant weight assignments and reduced clustering discriminability. Secondly, the
direct utilization of affinity matrices overlooks high-order connections and introduces noise due to independent
row-wise solving. To address these issues, we propose a novel local MKC method called LKRGDF. We begin
by exploring affinity using the Local Kernel Reconstruction (LKR) model, reducing redundancy and enhancing
clustering discriminability. Furthermore, we exploit the affinities with the Global heat kernel Diffusion (GD)
procedure to capture long-range connections smoothly. The GD process acts as a low pass filter, focusing
on small eigenvalues corresponding to top clusters. Finally, we integrate these smooth affinities within an
auto-weighted Multiple Graph Fusion (MGF) framework to obtain a consensus graph. By assembling LKR, GD,
and MGF in a sequential pipeline, our approach achieves the exploration and exploitation of local structures,
gradually improving clustering performance while ensuring computational efficiency without the need for
iterative steps. Extensive experiments on ten datasets demonstrate the superiority of our algorithm in terms of
effectiveness and efficiency compared to state-of-the-art methods. The code for our method is publicly available
at https://github.com/YanChenSCU/LKRGDF-2023.git.
. Introduction

Kernel methods have been extensively studied to address the chal-
enge of nonlinear data clustering. However, traditional kernel methods
ften require the selection of an appropriate kernel and its associated
arameters, which can be difficult to determine in advance. To mitigate
his issue, Multiple Kernel Clustering (MKC) has gained significant
ttention in recent years, allowing the combination of information
rom multiple base kernels for clustering purposes. While most kernel-
ased methods assume that all pairwise similarities between samples
re reliable [1], it is acknowledged that similarity characterizations
or long-range samples in high-dimensional spaces can be less reliable.
sing all pairwise similarities without careful discrimination can se-

iously degrade the performance of kernel clustering. Moreover, prior
esearch in clustering [2] and dimensionality reduction [3] has shown
hat preserving the underlying local manifold structure is more effective
han preserving global pairwise similarities in unsupervised tasks.
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E-mail addresses: duliang@sxu.edu.cn (L. Du), leiduan@scu.edu.cn (L. Duan).

To effectively explore and exploit the manifold structure inher-
ent in multiple kernels, numerous local MKC approaches have been
developed. These approaches leverage various techniques to capture
the local structure within both the individual kernel space and the
consensus kernel space. In the individual kernel space, neighbor kernels
are constructed by taking the Hadamard product of the original ker-
nel with binary neighborhood selection matrices [1,4], while affinity
graphs are generated using local structure learning models [5]. In
the consensus kernel space, researchers have proposed techniques to
automatically learn an optimal neighborhood kernel [6] or an optimal
affinity graph [7,8] to accurately characterize the manifold structure.
Moreover, in the consensus kernel space, clustering can also be per-
formed within local cliques [9–12], where a local clique is extracted
for each sample [2], instead of the entire dataset.

Despite the improved performance of local MKC methods, they still
face two critical challenges in exploring and exploiting local structures.
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Firstly, during the exploration phase, these methods tend to overlook
the correlation among similar samples within a local clique. The de-
termination of entries in the local affinity matrix heavily relies on the
corresponding values within the original kernel matrix. This weighting
scheme may assign higher weights to mutually redundant samples,
impacting the diversity of local cliques and ultimately degrading clus-
tering performance. Secondly, in the exploitation phase, these methods
neglect the higher-order relationships across different local cliques.
The sparse nature of local structure characterization within a single
clique results in noisy and non-smooth coefficients in affinity graphs.
The direct integration of these graphs may yield less discriminative
clustering outcomes.

We present a novel sequential multiple kernel graph approach that
integrates local kernel reconstruction for exploration and global heat
kernel diffusion for exploitation, effectively addressing the aforemen-
tioned challenges and enhancing clustering performance. Our method
consists of two sub-steps in the exploration of local structure. Firstly,
we determine the neighborhood using the well-established 𝑘-nearest
neighbors in the averaged kernel space. Secondly, we construct the
affinity matrix by learning optimal weight assignments through local
reconstruction in the kernel space, taking into account the correlation
among samples within a local clique. This approach mitigates redun-
dancy and enhances local discrimination by incorporating information
from correlated samples. In the exploitation of local structure, we
employ two additional sub-steps. First, we enhance candidate affinities
by conducting heat kernel diffusion on each graph separately, cap-
turing higher-order relationships among local cliques. Subsequently,
we integrate these improved affinity graphs using an auto-weighted
fusion model that incorporates adaptive cluster structure learning and
a top-𝑘 neighbors sparse strategy. This yields a consensus graph that is
more suitable for accurate clustering. It is worth noting that we adopt
a separate learning procedure for the exploration and exploitation of
local structure, in contrast to commonly used joint modeling strategies.
This offers two advantages: firstly, the effectiveness of each step can
be easily verified and validated independently; secondly, the efficiency
of the algorithm is improved as it does not require iterative processes
between exploration and exploitation.

In summary, the main contributions of our work can be summarized
as follows.

• We introduce a novel approach to explore the optimal affinity
within local cliques by using the local kernel reconstruction co-
efficient. This coefficient takes into account both the similarity
in kernel space and the correlation among neighboring samples.
This leads to improved discrimination and reduced redundancy
among highly similar samples within a local clique.

• We propose a method to exploit the affinity matrix through global
heat kernel diffusion. By aggregating these local cliques and
capturing high-order similarities, we enhance the connectivity
and reduce noise across different local cliques, resulting in a more
robust and informative representation.

• We adopt a separate and consecutive learning procedure for the
exploration and exploitation of local structure. This allows for
independent verification of the effectiveness of each step and
improves the overall efficiency of the algorithm compared to joint
learning methods.

. Related work

In this section, we present a comprehensive review of existing
KC methods and categorize them into three groups as illustrated

n Fig. 1: Consensus Kernel Learning-based Early Fusion (MKC-CKL)
ethods, which involve the extraction of a new Positive Semi-Definite

PSD) kernel matrix; None Consensus Kernel Learning involvement
arly fusion (MKC-NCKL) methods; and Late Fusion (MKC-LF) methods.

The MKC-CKL methods integrate consensus kernel learning and
raditional clustering paradigms within a unified framework. Firstly,
2

multiple kernel k-means methods integrate consensus kernel learning
and Kernel K-Means (KKM) clustering within a unified framework. Con-
sensus kernel can be obtained through different strategies, including
rigorous linear combination of pre-defined kernels [13] or relaxing to
optimal neighborhood kernel [14]. The linear weights can be deter-
mined at either the kernel level [15] or the sample level [16]. The
matrix-induced regularization [17] can be applied to encourage diverse
kernel weights. To leverage local structure, KKM can be performed
on local cliques of the consensus kernel [11], allowing for handling
incomplete kernels [10]. Secondly, multiple kernel subspace clustering
methods integrate consensus kernel learning and self-expressiveness
coefficient matrix learning of Kernel Subspace Clustering (KSC) within
a unified framework. Consensus kernel can be obtained using various
strategies, such as linear combinations of base kernels [18–21], optimal
neighborhood kernel in proximity to the linear combined kernels [7,8,
22–25], or linear combinations of neighbor kernels [1]. The consen-
sus kernel can also be required to have a low-rank property [7,22].
The self-expressiveness coefficient matrix can be learned either in the
enlarged feature space or using alternative methods [1,21]. Various
techniques can be used to enhance the self-expressiveness coefficient
matrix, including imposing block diagonal structures [8,19,20,23,24],
acquiring sparse or low-rank structure [22], and incorporating local
structure learning to improve global KSC [7,8,20]. Thirdly, pairwise
kernel alignment criterion is used to guide the MKC procedure [26]. For
example, Simple MKKM (SMKKM) [27] optimizes the kernel alignment
criterion by maximizing the clustering matrix and minimizing the
kernel coefficient through a minimization–maximization problem. The
manifold structure can be captured by the performing alignment on
local cliques [9,12] to capture the manifold structure. Additionally, the
consensus affinity graph can be estimated by maximizing the alignment
with the combined kernels [6]. In general, these MKC-CKL methods aim
to accurately capture pairwise similarities by estimating a consensus
kernel, resulting in improved performance through the utilization of
local structures within the kernels, despite the increased computational
complexity.

The MKC-NCKL approaches are characterized by the extraction of
multiple graphs from candidate kernels and their integration into a
consensus graph, eliminating the need for intermediate consensus PSD
kernel matrix learning. For example, kernel graphs can be learned
through KSC and then fused into a consensus graph using the auto-
weighted graph fusion model [28]. Consensus Affinity Graph Learning
(CAGL) [5] utilizes KSC with local structural learning to extract affin-
ity graphs and learns the consensus affinity graph with sparse and
Laplacian rank constraints. By incorporating pairwise and centroid-
based co-regularization, the extraction of candidate graphs from kernels
in a one-step learning paradigm improves the quality of the optimal
affinity graph [29]. Additionally, the exploitation of the low-rank struc-
ture of a graph tensor facilitates the mutual enhancement of multiple
graphs [30].

The MKC-LF approaches aim to extract multiple candidate partitions
from individual kernels and integrate them to obtain a consensus
cluster structure, effectively reducing the computational burden. This
process involves two main sub-steps: base partition generation and
fusion. These steps can be performed separately or jointly, depending
on the specific approach. By generating diverse base partitions and
fusing them, these approaches improve clustering performance and
achieve efficient computation. Wang et al. [31] proposed an approach
that maximizes the alignment between the unified kernel partition
and individual partitions, resulting in an optimized consensus parti-
tion. Late Fusion with Local Kernel Alignment (LFLKA) [4] enhances
base partitions by incorporating the locality enhancement kernel and
maximizing alignment with the consensus partition. Projective Multiple
Kernel Subspace Clustering (PMKSC) [32] constructs multiple graphs in
the base partition spaces and dynamically fuses them. Late Fusion with
Proxy Graph Refinement (LFPGR) [33] jointly optimizes individual

kernel representations and the consensus proxy graph to achieve a
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Fig. 1. The taxonomy of MKC methods.
unified formula. However, the presence of noise in partition matrices
compromises the desired clear block diagonal structure in clustering,
affecting overall clustering performance.

Recent advancements in MKC approaches, including both early
fusion and late fusion algorithms, have underscored the significance of
affinity graph learning and local clustering. Nevertheless, it is crucial to
recognize that the localized pairwise similarity between two samples is
predominantly shaped by their pairwise similarity in consensus or indi-
vidual kernels, which often leads to redundant similarity assignments
within local cliques. Additionally, these methods tend to overlook the
long-range and global structural information derived from high-quality
graphs.

3. The proposed formulation

Given a data set 𝐗 = [𝐱1, 𝐱2,… , 𝐱𝑛] ∈ R𝑑×𝑛, consisting of 𝑛 samples
in a 𝑑-dimensional input space  , it is often desirable to transform these
data points into a possibly infinite-dimensional reproducing kernel
Hilbert space  using a mapping function 𝜙 ∶  ↦  , aiming to facili-
tate easier separation of the data points. The inner product between two
data points in  , denoted as ⟨⋅, ⋅⟩ , is captured by the corresponding
kernel function (⋅, ⋅), where

⟨

𝜙(𝐱𝑖), 𝜙(𝐱𝑗 )
⟩

 = (𝐱𝑖, 𝐱𝑗 ) = 𝜅𝑖𝑗 . By
considering a set of candidate kernel functions {𝑟(⋅, ⋅)}𝑚𝑟=1, we can
construct positive semi-definite kernel Gram matrices {𝐊𝑟}𝑚𝑟=1, with
𝐊𝑟 ∈ R𝑛×𝑛 and 𝐊𝑟(𝑖, 𝑗) = 𝜅𝑟

𝑖𝑗 , which capture pairwise similarities across
different kernel functions. The target of MKC is to effectively combine
these multiple kernel matrices for clustering analysis.

3.1. Kernel graph extraction via local kernel reconstruction

There are two sub-steps for the exploration of local structure,
i.e., the determination of neighborhood and the construction of affinity
graph.

Since the candidate kernel matrices may not be informative for clus-
tering, it is general to compute the average kernel matrix by combining
all these kernel matrices and then robustly determining the consensus
neighborhood relationship. The average kernel matrix works under a
weaker assumption that only most of these base kernel matrices are
informative and complementary [1]. Given a set of candidate kernels
matrices {𝐊𝑟}𝑚𝑟=1,𝐊

𝑟 ∈ R𝑛×𝑛, the average kernel 𝐊avg with uniform
weight can be computed as, i.e.,

𝐊avg = 1
𝑚
∑

𝐊𝑟, (1)
3

𝑚 𝑟=1
without using additional prior knowledge. Given the average similarity
in 𝐊avg, the neighbors can be determined with fixed neighborhood
size 𝑘 or minimal similarity threshold 𝜏 [11]. Here we extract the
local clique of a sample 𝐱𝑖 with its top-𝑘 nearest neighbors 𝑖 =
{𝐱𝑗1 , 𝐱𝑗2 ,… , 𝐱𝑗𝑘} for simplicity. It can be seen that all base kernels share
the same neighborhood relationship.

It has been shown that the geometric characteristics of local neigh-
borhoods can be preserved by the local linear reconstruction weights [3,
34]. Given the neighborhood structure decided in 𝐊avg, we propose to
perform Local Kernel Reconstruction (LKR) by minimizing the approxi-
mation error between each data point and its neighbors. Then we use its
local reconstruction coefficients with neighbors in 𝐊avg to capture the
underlying manifold structure among multiple candidate kernels. Given
an arbitrary mapping function 𝜙, the optimal reconstruction weight for
a sample 𝐱𝑖 with its neighbors 𝑖 for the corresponding kernel Gram
matrix 𝐊 can be determined by,

min
𝐚𝑖

‖𝜙(𝐱𝑖) −
∑

𝐱𝑗∈𝑖

�̄�𝑖𝑗𝜙(𝐱𝑗 )‖
2 + ‖�̄�𝑖‖2 (2)

s.t.
∑

𝐱𝑗∈𝑖

�̄�𝑖𝑗 = 1, �̄�𝑖𝑗 ≥ 0,

where �̄�𝑖 = [�̄�𝑖1, �̄�
𝑖
2,… , �̄�𝑖𝑘] ∈ R𝑘×1 is the local reconstruction coefficient

of 𝐱𝑖. We introduce a vector 𝐤𝑖 = [𝜅𝑖𝑗1 , 𝜅𝑖𝑗2 ,… , 𝜅𝑖𝑗𝑘 ] ∈ R𝑘×1 to denote
the kernel function value between 𝐱𝑖 and its neighbors, and define a
matrix 𝐄𝑖 ∈ {0, 1}𝑛×𝑘 to indicate the selection of neighbors for 𝐱𝑖. The
(𝑗, 𝑗′)-entry of 𝐄𝑖 is determined as follows:

𝐄𝑖(𝑗, 𝑗′) =
{

1, if 𝐱𝑗 ∈ 𝑖, 𝑗′ is the index of 𝐱𝑗 in 𝑖,
0, otherwise. (3)

Then the induced local kernel for the 𝑖th sample can be denoted as
𝐊𝑖 = (𝐄𝑖)𝑇𝐊𝐄𝑖 ∈ R𝑘×𝑘, which is a sub-matrix of a kernel matrix
𝐊 corresponding to the neighbors of 𝐱𝑖. With these newly introduced
variables, the problem in Eq. (2) can be reformulated as follows,

min
�̄�𝑖

�̄�𝑇𝑖 𝐊
𝑖�̄�𝑖 − 2�̄�𝑇𝑖 𝐤𝑖 + �̄�𝑇𝑖 �̄�𝑖 (4)

=
𝑘
∑

𝑢=1

𝑘
∑

𝑣=1
�̄�𝑖𝑢𝜅

𝑖
𝑢𝑣�̄�

𝑖
𝑣 − 2

𝑘
∑

𝑢=1
�̄�𝑖𝑢𝜅

𝑖
𝑢 +

𝑘
∑

𝑢=1
(�̄�𝑖𝑢)

2

s.t. �̄�𝑇𝑖 𝟏𝑘 = 1, �̄�𝑖 ≥ 𝟎𝑘,

where 𝑢, 𝑣 are the index of two neighbors of 𝐱𝑗 , 𝐱𝑗′ in 𝑖, �̄�𝑖𝑢 and 𝜅𝑖
𝑢

represent the 𝑢th element in the vectors �̄�𝑖 and 𝐤𝑖, 𝜅𝑖
𝑢𝑣 is the (𝑢, 𝑣)-

entry of 𝐊𝑖. These terms offer distinct advantages within the context
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𝜂

of our framework. The first term serves to enhance the diversity of
neighbors within a local clique and reduce redundancy. Specifically,
it prevents the simultaneous assignment of higher weights to two
highly similar and correlated neighbors of a given data point, which
can lead to a more balanced weight distribution. The second term is
instrumental in preserving the local manifold structure in the kernel
space by maximizing the alignment between the coefficient and the
local kernel similarity. It ensures that higher similarity is associated
with higher weight assignments, capturing the underlying structure
effectively. Finally, the third term acts as a prior that contributes
to balancing the uniformity of neighborhood assignments, ensuring a
more equitable distribution of weights across neighbors.

Given the LKR coefficients {�̄�𝑖}𝑛𝑖=1 for all samples, we introduce a
on-negative affinity matrix 𝐀 ∈ R𝑛×𝑛, which can be fulfilled as follows,

𝑎𝑖𝑗 =

{

�̄�𝑖𝑗′ , 𝑗′ is the index of 𝐱𝑗 in 𝑖,
0, otherwise,

(5)

to capture the local manifold structure in a specific kernel space 𝐊. It
an be verified that 𝑎𝑖𝑗 ≥ 0 and ∑𝑛

𝑗=1 𝑎𝑖𝑗 = 1. Totally, we extract a set
of affinity matrices {𝐀𝑟}𝑚𝑟=1 to capture the candidate manifold structure
from kernels {𝐊𝑟}𝑚𝑟=1. The important manifold structure within local
eighborhoods can be characterized by the local reconstruction weights
𝑟, which in turn can be used to guide the multiple kernel fusion and

he final clustering result. The experimental results in Section 5.5 also
upport our analysis.

.2. Kernel graph smoothing via global heat kernel diffusion

It can be seen that the coefficients in Eq. (5) are obtained row-
y-row independently. As a result, the global interconnection between
hese rows are neglected. Before integrating these local affinities, we
ntroduce high-order connections through the heat kernel diffusion
rocedure to fulfill this gap. The immediate information could be
haracterized by passing messages between neighboring samples. For
implicity and clarity of representation, we will use the symbol 𝐀 to
efer to an arbitrary graph within the set {𝐀𝑟}𝑚𝑟=1, which is obtained
rom the aforementioned LKR model. Given an asymmetric affinity
raph 𝐀, we first introduce the corresponding symmetric matrix �̄� =
𝐀 + 𝐀𝑇 )∕2, the diagonal degree matrix 𝐃 where its diagonal element
(𝑖, 𝑖) =

∑𝑛
𝑗=1 �̄�𝑖𝑗 , the symmetric transition matrix 𝐙 = 𝐃− 1

2 �̄�𝐃− 1
2 , and

he normalized graph Laplacian matrix 𝐋 = 𝐈 − 𝐙. The second order
elationship can be calculated by the matrix multiplication, i.e., 𝐙2 =
𝐙𝐙. Similarly, a larger range of immediate higher-order information can
be recursively obtained with a series of matrices 𝐙3,𝐙4,… ,𝐙∞. Finally,
we get the diffusion matrix by aggregating all these matrices in the form
of,

𝐆 =
∞
∑

𝑡=0
𝑤𝑡𝐙𝑡, (6)

where 𝑤𝑡 is the immediate weighting coefficient, and 𝐙0 is the uninfor-
mative identity matrix.

In this paper, we adopt the heat kernel diffusion procedure [35] to
determine the weight of aggregation, i.e.,

𝑤𝑡 = 𝑒−𝜂
𝜂𝑡

𝑡!
, (7)

where 𝜂 is a non-negative value of temperature to control the decay
speed. It can be verified that ∑∞

𝑡=0 𝑤𝑡 = 1, 𝑤𝑡 ∈ [0, 1]. The heat kernel
diffusion satisfies the heat equation and can be viewed as describing
the flow of heat across the edge of a graph with time, where the rate
of flow is determined by the Laplacian of the graph [36]. By merging
Eqs. (6) and (7), we get the Global heat kernel Diffusion (GD) matrix
as,

𝐆 = 𝑒−𝜂
∞
∑ 𝜂𝑡 𝐙𝑡 =

∞
∑ (−𝜂)𝑡 𝐋𝑡 = exp−𝜂𝐋, (8)
4

𝑡=0 𝑡! 𝑡=0 𝑡!
where the last two equations hold according to the definition of the
matrix exponential. Based on the above aggregation, we have the
following observations. On the one hand, the heat kernel is dominated
by the local connectivity structure encoded in graph Laplacian 𝐋 when
𝑡 is small. On the other hand, the heat kernel is governed by the global
structure of the graph when 𝑡 increases [37].

From the perspective of spectral graph theory, the smoothness of a
graph can be captured by the following quadratic function [38] over
nodes,

𝑛
∑

𝑖,𝑗=1
�̄�𝑖𝑗 (

𝐮𝑖
√

𝐃(𝑖, 𝑖)
−

𝐮𝑗
√

𝐃(𝑗, 𝑗)
)2

=tr
(

𝐔𝑇 (𝐈 − 𝐃− 1
2 �̄�𝐃− 1

2 )𝐔
)

= tr
(

𝐔𝑇 (𝐈 − 𝐙)𝐔
)

=
𝑛
∑

𝑖=1
𝐮𝑇𝑖 𝐋𝐮𝑖 =

𝑛
∑

𝑖=1
𝜆𝑖, (9)

where 𝐋 = 𝐔𝜦𝐔𝑇 is the eigen decomposition of the Laplacian 𝐋, 𝐔 is the
eigenvector matrix, 𝜦 = diag(𝜆1, 𝜆2,… , 𝜆𝑛) is the diagonal eigenvalue
matrix with eigenvalues sorted in ascending order 0 = 𝜆1 ≤ 𝜆2 ≤ 𝜆𝑛.
Therefore the smoothness of the graph is determined by the summation
of eigenvalues of the corresponding graph Laplacian and dominated by
the higher ones. Given an eigenvector and eigenvalue pair (𝐮𝑖, 𝜆𝑖) of 𝐋,
it can be verified that 𝐮𝑖 is also an eigenvector of 𝐆 with new eigenvalue
exp−𝜂𝜆𝑖 . The eigen decomposition of 𝐆 can be further written as,

𝐆 = 𝐔
( ∞
∑

𝑡=0

(−𝜂)𝑡

𝑡!
𝜦𝑡

)

𝐔𝑇 = 𝐔�̄�𝐔𝑇 , (10)

where �̄� = diag(exp−𝜂𝜆1 , exp−𝜂𝜆2 ,… , exp−𝜂𝜆𝑛 ). It indicates that the heat
kernel diffusion matrix 𝐆 has the same eigenvectors of 𝐋 with expo-
nential decay of its eigenvalues.

From the perspective of the graph signal process, a graph filter (𝐋)
is defined as (𝐋) =

∑𝑡
𝑡=0 ℎ𝑡𝐋

𝑡, where 𝑡 is the order of graph filter.
iven a graph signal �̂� ∈ R𝑛×1, the response on graph 𝐆 can be written
s a linear combination of the input signal, i.e., �̂� = (𝐋)�̂� = 𝐆�̂�.
heir frequency domain representation can be computed by the Graph
ourier Transform (GFT) in the form of �̃� = 𝐔𝑇 �̂� = [𝐮𝑇1 �̂�,𝐮

𝑇
2 �̂�,… ,𝐮𝑇𝑛 �̂�]

nd �̃� = 𝐔𝑇 �̂� = [𝐮𝑇1 �̂�,𝐮
𝑇
2 �̂�,… ,𝐮𝑇𝑛 �̂�]. A graph filter in the frequency

omain can be defined as �̃� = [ℎ̃1, ℎ̃2,… , ℎ̃𝑛], where ℎ̃𝑖 =
∑𝑡

𝑡=0 ℎ𝑡𝜆
𝑡
𝑖 is the

enerating function of the graph filter. The component of �̃� in frequency
domain can be written as �̃�𝑖 = ℎ̃(𝜆𝑖)�̃�𝑖 =

∑𝑡
𝑡=0 ℎ𝑡𝜆

𝑡
𝑖�̃�𝑖 =

∑∞
𝑡=0

(−𝜂)𝑡
𝑡! 𝜆𝑡𝑖�̃�𝑖 =

exp−𝜂𝜆𝑖 �̃�𝑖. To further demonstrate the property of 𝐆, we present the
efinition of the low-pass graph filter as follows [39],

efinition 1. Given a generating function ℎ̃𝑖 =
∑𝑡

𝑡=0 ℎ𝑡𝜆
𝑡
𝑖, a graph filter

(𝐋) is a (𝑖, 𝜂) low-pass graph filter [40] if the low pass ratio 𝜂 satisfies

=
max{ℎ̃(𝜆𝑖+1), ℎ̃(𝜆𝑖+2),… , ℎ̃(𝜆𝑛)}
min{ℎ̃(𝜆1), ℎ̃(𝜆2),… , ℎ̃(𝜆𝑖)}

∈ [0, 1). (11)

Since the eigenvalues 𝜆𝑖 and the generating function ℎ̃𝑖 are mono-
tonic, the 𝑖th pass ratio of 𝐆 can be computed by,

𝜂𝑖 =
𝑒−𝜂𝜆𝑖+1
𝑒−𝜂𝜆𝑖

= 𝑒−𝜂(𝜆𝑖+1−𝜆𝑖) ∈ [0, 1). (12)

It indicates that the heat kernel diffusion matrix 𝐆 can be seen as a
low-pass graph filter.

Instead of integrating these local affinity matrices {𝐀𝑟}𝑚𝑟=1 directly,
we first exploit them with GD as demonstrated in Eq. (10) and generate
a set of enhanced graphs {𝐆𝑟}𝑚𝑟=1. The heat kernel diffusion smooths
out the neighborhood by bridging the local and global structure via
the aggregation of intermediate higher-order information. The heat
kernel diffusion filters out the larger eigenvalues corresponding to noisy
fine details via exponential decay transformation while amplifying the
smaller eigenvalues corresponding to the top clusters in the graph.
Consequently, the heat kernel diffusion-induced graph smoothing is
helpful in reducing undesirable distortions and noise while preserving
crucial manifold structure. Thus, the clustering performance can be
further improved by the newly introduced diffusion procedure.
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3.3. Multiple graph fusion

By leveraging the intrinsic and discriminant structure captured
within the multiple candidate graphs, the original problem of MKC is
transformed into the task of clustering with multiple graphs. With the
set of well-diffused and connected candidate graphs {𝐆𝑟}𝑚𝑟=1 obtained
through the previous steps, our objective is to derive the final consensus
clustering result within the framework of multiple graph clustering.
In this paper, we propose a straightforward yet effective method for
learning the consensus graph by seeking the optimal graph in the
vicinity of each individual graph, while minimizing the approximation
errors,

min
𝐒,𝐩

𝑚
∑

𝑟=1

1
𝑝𝑟

‖𝐒 −𝐆𝑟
‖

2 (13)

s.t. 𝐒𝟏𝑛 = 𝟏𝑛,𝐒 ≥ 0,
𝑚
∑

𝑟=1
𝑝𝑟 = 1,𝐩 ≥ 𝟎𝑚,

where 𝐒 ∈ R𝑛×𝑛 is the consensus graph and 𝐩 ∈ R𝑚×1 is the weights of
raphs.

In order to improve the suitability of the estimated consensus sim-
larity matrix 𝐒 for clustering purposes, we incorporate a commonly
sed block diagonal constraint on 𝐒. Specifically, we enforce the con-

straint Rank(𝐋𝐒) = 𝑛−𝑐, where 𝐋𝐒 denotes the Laplacian matrix derived
from 𝐒. This constraint encourages an ideal cluster assignment within
𝐒 [41]. Furthermore, we impose sparsity on the consensus graph to
enhance its locality and reduce noise in the connections. Specifically,
we retain only the top 𝑘 neighbors for each row of the consensus graph.
This sparsity constraint helps to focus on the most relevant and infor-
mative connections within the graph. In summary, the final formulation
of our Multiple Graph Fusion (MGF) model can be expressed as follows,
taking into account both the block diagonal constraint and the sparsity
constraint:

min
𝐒,𝐩

𝑚
∑

𝑟=1

1
𝑝𝑟

‖𝐒 −𝐆𝑟
‖

2 (14)

s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0,Rank(𝐋𝐒) = 𝑛 − 𝑐,
𝑚
∑

𝑟=1
𝑝𝑟 = 1,𝐩 ≥ 𝟎𝑚, |�̂�𝑖|0 = 𝑘,∀𝑖,

here �̂�𝑖 represents the 𝑖th row of matrix 𝐒. In the above formulation,
he objective is to find the consensus graph 𝐒 that minimizes the
pproximation errors with respect to the individual graphs, while sat-
sfying the block diagonal and sparsity constraints. Once the consensus
raph 𝐒 is obtained, we can derive the final clustering results using
raph cut algorithms, such as spectral clustering.

We now summarize the details of the proposed method. In the stage
f kernel structure exploration, we propose to construct local affinity
atrices using the coefficients of the local kernel reconstruction model.

t conducts reconstruction on the local clique of each sample within
he kernel space, thereby reducing the redundancy of similar neighbors
nd enhancing the discriminatory power for clustering. During the
ernel structure exploitation stage, we propose to establish long-range
onnections through global heat kernel diffusion. This process leverages
he low-pass filter property to smooth out large eigenvalues, thereby
ocusing on smaller eigenvalues that correspond to the top clusters.

e then integrate these smoothed affinities within an auto-weighted
ultiple graph fusion framework. Additionally, the exploration and

xploitation of kernel structure are assembled into a pipeline that
nfolds through three consecutive steps. In order to better understand
he proposed method, the block diagram is illustrated in Fig. 2.

. Optimization and analysis

In this section, we present an efficient algorithm associated with the
bove three steps problem.
5

4.1. Obtaining {𝐀𝑟}𝑚𝑟=1

For the 𝑟th single kernel 𝐊𝑟, each row of the LKR coefficient
matrix 𝐀𝑟 can be derived by solving the quadratic problem with a
simplex constraint, as described in Eq. (4), involving only 𝑘 variables.
We can obtain the optimal solution for Eq. (4) using off-the-shelf
quadratic problem solvers. Subsequently, we can assemble the entire
LKR coefficient matrix 𝐀𝑟 according to Eq. (5).

4.2. Obtaining {𝐆𝑟}𝑚𝑟=1

Given the LKR coefficient matrices {𝐀𝑟}𝑚𝑟=1, the immediate high-
rder information can be captured through the diffusion process as
hown in Eq. (6). The close form solution can be computed from
q. (8). Furthermore, a rapid approximation of the diffused graph
an be achieved by truncating the top 𝑡 diffusion steps recursively,

wherein the sparse matrix multiplication can be performed solely on
the non-zero entries.

4.3. Obtaining 𝐒

Given multiple diffused graphs {𝐆𝑟}𝑚𝑟=1, we first relax the exact rank
constraint in Eq. (14) according to the Ky Fan’s Theorem [41] and get
the equivalent problem as follows

min
𝐒,𝐩,𝐅

𝑚
∑

𝑟=1

1
𝑝𝑟

‖𝐒 −𝐆𝑟
‖

2 + 𝜆tr(𝐅𝑇𝐋𝐒𝐅) (15)

s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0, |�̂�𝑖|0 = 𝑘,∀𝑖,
𝑚
∑

𝑟=1
𝑝𝑟 = 1,𝐩 ≥ 𝟎𝑚,𝐅𝑇𝐅 = 𝐈,

where 𝜆 is a regularization parameter. The above problem has three
variables, i.e., 𝐅,𝐩 and 𝐒. The optimal solution can be obtained by the
following iterative coordinate descend procedure with three sub-steps.

Optimizing 𝐅 given 𝐩 and 𝐒. The optimization problem w.r.t. 𝐅 can
be written as,

min
𝐅

tr(𝐅𝑇𝐋𝐒𝐅), s.t. 𝐅𝑇𝐅 = 𝐈. (16)

The optimal solution of 𝐅 is the top 𝑐 eigenvectors of 𝐋𝐒 corresponding
to the top 𝑐 smallest eigenvalues.

Optimizing 𝐩 given 𝐅 and 𝐒. By introducing 𝐞 ∈ R𝑚×1 with 𝑒𝑟 =
‖𝐒 −𝐆𝑟

‖

2, the problem w.r.t. 𝐩 becomes,

min
𝐩

𝑚
∑

𝑟=1

𝑒𝑟
𝑝𝑟

, s.t.
𝑚
∑

𝑟=1
𝑝𝑟 = 1,𝐩 ≥ 𝟎𝑚. (17)

ccording to the Cauchy–Schwarz inequality, we have
𝑚
∑

𝑟=1

𝑒𝑟
𝑝𝑟

=

( 𝑚
∑

𝑟=1

𝑒𝑟
𝑝𝑟

)( 𝑚
∑

𝑟=1
𝑝𝑟

)

≥

( 𝑚
∑

𝑟=1

√

𝑒𝑟

)2

. (18)

The equality in Eq. (18) holds when 𝑝𝑟 ∝
√

𝑒𝑟. The close form solu-
tion [42] of 𝐩 can be written as,

𝑝𝑟 =

√

𝑒𝑟
∑𝑚

𝑗=1
√

𝑒𝑗
. (19)

Optimizing 𝐒 given 𝐅 and 𝐩. The rest problem w.r.t. 𝐒 can be
written as,

min
𝐒

𝑚
∑

𝑟=1

1
𝑝𝑟

‖𝐒 −𝐆𝑟
‖

2 + 𝜆
2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
‖𝐟𝑖 − 𝐟𝑗‖2𝑠𝑖𝑗

s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0, |�̂�𝑖|0 = 𝑘,∀𝑖. (20)

The above problem can be decomposed into 𝑛 independent sub-
problems w.r.t. each row of 𝐒 (i.e., �̂�𝑖) in the form of,

min
𝑚
∑ 1

‖�̂�𝑖 − �̂�𝑟𝑖‖
2 + 𝜆 �̂�𝑖�̂�𝑇𝑖 (21)
�̂�𝑖 𝑟=1 𝑝𝑟 2
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Fig. 2. The framework of the proposed LKRGDF method.
s.t. �̂�𝑇𝑖 𝟏𝑛 = 1, �̂�𝑖 ≥ 0, |�̂�𝑖|0 = 𝑘,

where �̂�𝑖 ∈ R1×𝑛 and the 𝑗th element is given by 𝑞𝑖𝑗 = ‖𝐟𝑖 − 𝐟𝑗‖2, �̂�𝑟𝑖 is
the 𝑖-row of 𝐆𝑟. Eq. (21) can be simplified as,

min
�̂�𝑖

‖�̂�𝑖 − �̂�𝑖‖2 (22)

s.t. �̂�𝑖𝟏𝑛 = 1, �̂�𝑖 ≥ 0, |�̂�𝑖|0 = 𝑘,

where �̂�𝑖 = (
∑𝑚

𝑟=1
1
𝑝𝑟
�̂�𝑟𝑖 − 𝜆

4 �̂�𝑖)∕(
∑𝑚

𝑗=1
1
𝑝𝑗
). The above problem is the

euclidean projection on a simplex with cardinality constraint. Without
loss of generality, suppose �̂�𝑖 = [𝑏𝑖1, 𝑏𝑖2,… , 𝑏𝑖𝑛] are sorted in descending
order. If there are only 𝑘 non-zero elements in 𝐬𝑖 as required, we have
[𝑠𝑖1, 𝑠𝑖2,… , 𝑠𝑖𝑘] ≥ 0 and 𝑠𝑖𝑗 = 0 if 𝑗 > 𝑘 according to the induced
KKT condition of Eq. (22). Then the above problem w.r.t 𝑛 variables
can be further reduced to a small scale problem with only 𝑘 variables,
which can be solved by off-the-shelf algorithm efficiently [43]. To
control the rank of 𝐋𝐒 in Eq. (15), we initialize 𝜆 = 1 and adjust it
automatically during iterations, i.e., double it if Rank(𝐋𝐒) > 𝑛 − 𝑐 or
half it if Rank(𝐋𝐒) < 𝑛 − 𝑐.

The proposed three-step optimization procedure is outlined in Al-
gorithm 1. 𝑘 is the neighborhood size and 𝜂 is the diffusion parameter.
Besides, the cluster number 𝑐 should also be specified in advance.

Algorithm 1 Algorithm of the proposed method
Input: Multiple kernels {𝐊𝑟}𝑚𝑟=1, the neighborhood size 𝑘, the diffusion

parameter 𝜂, the cluster number 𝑐.
Compute multiple local kernel reconstruction coefficient matrices
{𝐀𝑟}𝑚𝑟=1 according to Eq. (4) and Eq. (5);
Compute multiple graph diffusion matrices {𝐆𝑟}𝑚𝑟=1 according to
Eq. (8);
Initialize 𝐒 = 1

𝑚
∑𝑚

𝑟=1 𝐆
𝑟, 𝐩 = 1

𝑚 𝟏𝑚, 𝜆 = 1;
repeat

Update 𝐅 according to Eq. (16);
Update 𝐩 according to Eq. (19);
Update each row �̂�𝑖 according to Eq. (22);
Update 𝜆 automatically;

until Converges
Output: Perform spectral clustering on consensus affinity matrix 𝐒+𝐒𝑇

2 .
6

Table 1
Computational complexity of the proposed method.

Neighborhood determination LKR GD MGF Total

(𝑚𝑛2 + 𝑛2 log 𝑘) (𝑚𝑛𝑘3) (𝑚𝑡𝑛2𝑘) (𝑛2𝑐 + 𝑚𝑛2 + 𝑛𝑘3)𝑡 (𝑛2)

4.4. Complexity analysis

Now, we analyze the time complexity of the proposed method. The
cost of computing the averaged kernel matrix 𝐊avg in Eq. (1) is (𝑚𝑛2).
The finding of top 𝑘-nearest neighbors for each sample costs (𝑛 log 𝑘),
and the total cost for all samples is (𝑛2 log 𝑘). The cost of computing
the reconstruction weight for each sample is (𝑘3), and the total cost
for all samples in a single kernel is (𝑛𝑘3). Thus, the total computa-
tional complexity of computing these reconstruction matrices {𝐀𝑟}𝑚𝑟=1 is
(𝑚𝑛2+𝑛2 log 𝑘+𝑚𝑛𝑘3). The general cost of matrix exponential for graph
diffusion is (𝑛3). However, the polynomial heat kernel diffusion can be
efficiently approximated by the aggregated matrix products as in Eq. (6)
with sparse 𝐙, having only 𝑘 nonzero elements in each row. Therefore
the time complexity of computing these graph diffusion can be further
reduced to (𝑚𝑡𝑛2𝑘), where 𝑡 is the order of diffusion and 𝑡 ≪ 𝑛. The
cost of solving problem in Eq. (16) is (𝑛2𝑐) when partial SVD is used.
The computing of Eqs. (19) and (22) is (𝑚𝑛2 + 𝑛𝑘3). The total cost
for solving Eq. (14) is ((𝑛2𝑐 + 𝑚𝑛2 + 𝑛𝑘3)𝑡), where 𝑡 is the number
of iterations. Therefore, the total cost of the three-step optimization
procedure can be summarized as (𝑛2+𝑚𝑛𝑘3+𝑚𝑡𝑛2𝑘+(𝑛2𝑐+𝑚𝑛2+𝑛𝑘3)𝑡).
Since 𝑚, 𝑘, 𝑐 ≪ 𝑛, 𝑡, and 𝑡 are usually small (often within 10 iterations),
the total complexity can be denoted as (𝑛2) in general. Compared with
many early fusion MKC methods [6,11,19,32] with (𝑛3), our method
is computationally efficient, as demonstrated in Table 1 and Table 4.

4.5. Connection to previous methods

In this subsection, we carefully investigate several recent MKC
approaches from the perspective of single kernel graph structure ex-
ploration.

• KSC. A variety of MKC methods [1,7,23,32,33,44] extend the
Subspace Clustering (SC) model [45] into the kernel space. This
adaptation, referred to Kernel Subspace Clustering (KSC), aims to
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extract the global reconstruction affinity by solving the following
problem,

min
𝐒

‖𝜙(𝐗) − 𝜙(𝐗)𝐒‖2 + 𝛽‖𝐒‖2

=tr(𝐒𝑇𝐊𝐒) − 2tr(𝐊𝐒) + 𝛽tr(𝐒𝑇 𝐒)
s.t. diag(𝐒) = 𝟎,𝐒 ≥ 0.

(23)

• NK-𝑘. Zhou et al. [1] proposes to identify the top-𝑘 neighbors in
the average kernel matrix 𝐊avg. We denote the neighbor indicator
matrix for a sample 𝑖 as �̄�𝑖 ∈ {0, 1}𝑛×𝑛. Here, �̄�𝑖(𝑗, 𝑗′) = 1 if 𝐱𝑗 and
𝐱𝑗′ are both neighbors of sample 𝐱𝑖, and �̄�𝑖(𝑗, 𝑗′) = 0 otherwise.
The Neighbor Kernel determined by 𝑘 (NK-𝑘) can be obtained by
�̄� =

∑𝑛
𝑖=1 �̄�

𝑖 ⊙𝐊, where ⊙ is the Hadamard product.
• NK-𝜏. Liu et al. [11] proposes to determine the neighborhood

using a threshold 𝜏 in 𝐊avg. We denote the neighbors for a sample
𝑖 as 𝛺𝑖 = {𝑗|𝜅𝑖𝑗 ≥ 𝜏} and the corresponding selection matrix as
�̃�𝑖 ∈ {0, 1}𝑛×𝜇𝑖 , where 𝜇𝑖 is the size of 𝛺𝑖. Here, �̃�𝑖(𝑗, 𝑗′) = 1
if 𝐱𝑗 and 𝐱𝑗′ are both neighbors of sample 𝐱𝑖, and �̃�𝑖(𝑗, 𝑗′) = 0
otherwise. The induced local kernel for the 𝑖th sample can be
formulated as �̃�𝑖 = �̃�𝑖𝑇𝐊�̃�𝑖 ∈ R𝜇𝑖×𝜇𝑖 . The KKM on Neighbor
Kernel determined by 𝜏 (NK-𝜏) can be obtained by solving the
following optimization problem [9].

min
𝐇

𝑛
∑

𝑖=1
�̃�𝑖𝑇𝐊�̃�𝑖(𝐈𝜇𝑖 −𝐇𝑖𝐇𝑖𝑇 ), s.t. 𝐇𝑇𝐇 = 𝐈,𝐇𝑖 = 𝐄𝑖𝑇𝐇. (24)

• KLSL. LSWMKC [6] utilizes the Kernel Local Structure Learning
(KLSL) model, which does not involve adaptive structure learning.
The KLSL model can be formulated as follows:

min
𝐒

−tr(𝐊𝐒) + 𝛽tr(𝐒𝑇 𝐒), s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0. (25)

• KALSL. The Adaptive Local Structure Learning (ALSL) method has
been widely utilized in clustering [41]. SPMKC [8] extends ALSL
into the kernel space and obtains KALSL in the form of,

min
𝐒

− tr(𝐊𝐒) + 𝛽tr(𝐒𝑇 𝐒), (26)

s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0, rank(𝐋𝐒) = 𝑛 − 𝑐. (27)

• LKSC. CAGL [5] integrates the above KSC and KALSL models
to capture both the global and local structure, resulting in the
localized KSC model denoted as LKSC. The formulation of LKSC
is as follows:

min
𝐒

tr(𝐒𝑇𝐊𝐒) − 𝛼tr(𝐊𝐒) + 𝛽‖𝐒‖2, s.t. 𝐒𝟏 = 𝟏,𝐒 ≥ 0. (28)

CAGL also emphasizes the importance of manually adjusting the
weight of the second term of Eq. (28) for improved clustering
analysis.

• LNWKR. The Nadaraya–Watson kernel estimator is a popular non-
parametric regression technique for nonlinear regression [46].
Given neighbors 𝑖 of sample 𝐱𝑖, the target label 𝑦𝑖 can be
computed by 𝑦𝑖 = (

∑

𝐱𝑗∈𝑖
𝜅𝑖𝑗𝑦𝑗 )∕(

∑

𝐱𝑗′∈𝑖
𝜅𝑖𝑗′ ), and a local affinity

matrix 𝐒 can be filled by the Localized Nadaraya–Watson Kernel
Regression (LNWKR) coefficient as

𝑠𝑖𝑗 =

{ 𝜅𝑖𝑗
∑

𝐱𝑗′ ∈𝑖 𝜅𝑖𝑗′
, if 𝐱𝑗 ∈ 𝑖,

0, if 𝐱𝑗 ∉ 𝑖.
(29)

From the perspective of single kernel structure exploration, we high-
light the differences between these MKC methods and the proposed LKR
model in terms of localized reconstruction, optimal neighbor weight
assignment, and enhanced local weight determination.

In contrast to performing global reconstruction with all remaining
samples, as done by KSC and LKSC, the LKR model confines its re-
construction efforts to the local clique. This approach presents two
key advantages. Firstly, it significantly enhances the ability of LKR
7

model to explore the local manifold structure, particularly beneficial S
Table 2
Description of the data sets.

Name #Instances #Features #Classes

D1 Trachea 1013 13 741 7
D2 BA 1404 320 36
D3 COIL 1440 1024 20
D4 MFEAT 2000 240 10
D5 HiTech 2301 22 498 6
D6 K1B 2340 21 839 6
D7 LI 3362 16 418 15
D8 Fat 3618 15 492 9
D9 MNIST 4000 784 10
D10 MACOSKO 6418 8608 39

for nonlinear clustering. Secondly, it results in a notable improvement
in computational efficiency, as the neighborhood size 𝑘 is much smaller
than the total number of samples 𝑛.

While KLSL and KALSL primarily focus on maximizing pairwise
alignment and the entropy of uniform weight to explore the local
structure, the proposed LKR model takes a step further. Derived from
the local reconstruction criteria in Eq (4), the LKR model minimizes an
additional term: ∑𝑘

𝑢=1
∑𝑘

𝑣=1 �̄�
𝑖
𝑢𝜅

𝑖
𝑢𝑣�̄�

𝑖
𝑣. This innovative addition reduces

redundancy and enriches the diversity of neighbor coefficients. As a
result, the superior performance of LKR model, as demonstrated in the
ablation study in Section 5.5, can be attributed to this unique part.
Notably, this concept of optimal neighbor weight assignment represents
a previously unexplored facet within existing MKC methods.

In contrast to methods such as NK-𝑘, NK-𝜏, and LNWKR, where local
weight determination is primarily influenced by the similarity in the
original kernel, i.e., 𝜅𝑖𝑗 , the LKR model takes a more comprehensive
approach. It considers not only the original similarity but also the
relationships among neighbors within the same clique. This approach
results in a more nuanced determination of local weights.

5. Experiments

In this section, we perform comprehensive experiments on bench-
mark datasets to evaluate the proposed algorithm in terms of clustering
performance and running time, comparing it with recently developed
methods for MKC. Additionally, we conduct meticulous ablation studies
that focus on two aspects: the exploration of local structure using a
single kernel and the exploitation of candidate graph enhancement and
integration. Furthermore, we provide a parameter sensitivity analysis to
assess the robustness of the proposed algorithm.

5.1. Data sets and evaluation metric

We employed a diverse range of datasets from multiple domains,
exhibiting significant variations in sample sizes, dimensionalities, class
balances, and sparsity. We simply introduce these datasets as follows.
The BA dataset1 contains images of letters and digits with pixel features.
The COIL dataset2 comprises images of objects described by pixel
features. The MFEAT dataset3 includes multiple features used to de-
scribe images of letters and digits. The MNIST dataset4 is a well-known
collection of handwritten digit images. The HiTech and K1B datasets
are text corpora for text clustering in CLUTO [47]. The Trachea, Large
Intestine (LI), and Fat datasets are three single-cell RNA-seq datasets
sourced from the Tabula Muris project,5 aiming to create a compre-
hensive single-cell transcriptomic atlas of major organs and tissues in

1 https://cs.nyu.edu/~roweis/data/binaryalphadigs.mat
2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3 https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4 http://www.cad.zju.edu.cn/home/dengcai/Data/MNIST/2k2k.mat
5 https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_
mart-seq2_sequencing_of_FACS_sorted_cells/5715040

https://cs.nyu.edu/~roweis/data/binaryalphadigs.mat
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cad.zju.edu.cn/home/dengcai/Data/MNIST/2k2k.mat
https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040
https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040
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laboratory mice. The Macosko6 dataset refers to the single-cell RNA
equencing data obtained through the Drop-seq method [48], providing
ighly parallel genome-wide expression profiling of individual cells
sing nanoliter droplets. The statistical characteristics of the datasets
re summarized in Table 2. To ensure reproducible experiments, we
ave made all these datasets available on GitHub.7

Four clustering evaluation measures, including Accuracy (ACC),
ormalized Mutual Information (NMI), Rand Index (RI), and F1 score,
re adopted to assess the quality of clustering results compared to
he ground truth. ACC measures the percentage of correctly assigned
ata points, NMI quantifies the similarity between the clustering result
nd the ground truth, and RI measures the agreement between two
artitions. The F1 score combines precision and recall to provide a
alanced evaluation of clustering accuracy. These four metrics yield
alues ranging from 0 to 1, where higher values indicate a stronger
greement between the clustering result and the ground truth.

.2. Comparison methods

To assess the effectiveness of our proposed algorithm, we compared
t with ten state-of-the-art MKC algorithms. These algorithms include
ix MKC-CKL methods, i.e., ONALK [11], MKCSS [1], SPMKC [8],
SWMKC [6], SMKKM [27], and LSMKKM [12], one MKC-NCKL method
.e., CAGL [5], and three MKC-LF methods, i.e., PMKSC [32], LF-
GR [33], and LFLKA [4]. Similar to CAGL, our method can be
ategorized into the type of MKC-NCKL. It is worthwhile to mention
hat all these compared methods, except for SMKKM, also consider the
ocal structure.

.3. Experiment setup

In line with the strategies employed in previous studies such as [5,
3,23], we extract 12 base kernels using various configurations of
ernel functions and parameters to investigate the clustering perfor-
ance of MKC approaches. Specifically, we consider seven Gaussian

ernels with different bandwidths, denoted as 𝜅𝑖𝑗 = exp
(

− ‖𝐱𝑖−𝐱𝑗‖2

2𝜌𝛿2

)

,
here 𝜌 takes values in the range of [0.01, 0.05, 0.1, 1, 10, 50, 100], and
corresponds to the maximum distance between any two samples.

dditionally, we include four polynomial kernels, represented as 𝜅𝑖𝑗 =
𝑎 + 𝐱𝑇𝑖 𝐱𝑗 )

𝑏, where 𝑎 varies in the range of [0, 1], and 𝑏 takes values
n [2, 4]. Lastly, we include one linear kernel, denoted as 𝜅𝑖𝑗 = 𝐱𝑇𝑖 𝐱𝑗 .
o ensure consistency, all candidate kernels undergo centralization and
ormalization to achieve a unit trace.

We set the number of clusters for all these methods to the true
umber of classes. As most MKC methods involve parameter tuning,
e employ the commonly used grid search strategy [5] to ensure a

air comparison. For each clustering algorithm, we run it with the
arameters suggested in their original papers and report the best re-
ults obtained. The two parameters involved in LKRGDF are tuned by
estricting 𝑘 ∈ [5, 10, 15, 20] and 𝜂 ∈ [3, 5, 7, 9]. To obtain reliable results,
e compute the low-dimensional embeddings from all the compared
ethods and report the averaged results of ten independent runs of the

-means algorithm. Within each run, we repeat the k-means process
00 times and record the clustering result with the minimal objective
alue. The running time of each algorithm is also reported. All exper-
ments are conducted on a workstation equipped with an Intel Core
7 8700K CPU (3.7 GHz), 64-GB RAM, and MATLAB 2020b (64-bit).
o ensure reproducibility, we utilize the original code provided by the
uthors for all the baselines. Additionally, we have made the code for
ur proposed method available at https://github.com/YanChenSCU/
KRGDF-2023.git.
8

.4. Clustering result analysis

Visualizing Clustering Results. To provide a more intuitive visu-
lization of the performance of the compared algorithms, we utilize
-distributed Stochastic Neighbor Embedding (t-SNE) [49] to visualize
he obtained cluster structures on the MNIST dataset. The perplexity for
-SNE in all these methods is set to the default value of 30. As depicted
n Fig. 3, it is evident that LKGRDF shows clear cluster structures,
hereby validating its superior performance compared to the other
lgorithms. This visual confirmation further strengthens the evidence
f the enhanced clustering capability of our method.
Quantitative Clustering Results. We present a detailed analysis

f the clustering results, including four evaluation measures for the
1 MKC methods across ten benchmark datasets. The results are sum-
arized in Table 3, and our analysis reveals two key observations.

irst, the early fusion methods consistently outperform their late fu-
ion counterparts. This trend can be attributed to the fact that late
usion approaches heavily rely on the top eigenvectors of candidate
ernels, which may not effectively capture local structures compared
o methods that explore the local characteristics of the kernel. This
ighlights the importance of leveraging high-quality inputs with clear
luster structures through diverse exploration techniques. Second, our
roposed method consistently demonstrates top-tier performance, ei-
her securing the best or second-best results across various datasets.
or instance, on the D9 dataset, the clustering accuracy of the second-
est algorithm (CAGL) is 66.75% in terms of ACC, while our method
chieves a significantly higher accuracy of 74.50%. When considering
he average results across all ten datasets, our method attains an ACC
f 77.16%, surpassing LSWMKC (the best among MKC-CKL methods)
ith an improvement of 6.49%, CAGL (the best among MKC-NCKL
ethods) with an improvement of 10.75%, and LSMKKM (the best

esult among MKC-LF methods) with an improvement of 12.38%. These
onsistent enhancements in various evaluation metrics underscore the
ffectiveness of our proposed approach compared to existing methods.
Computation Time Comparison. In addition to evaluating the

lustering performance, we also recorded the CPU time of the algo-
ithms, as shown in Table 4. The values in each cell, labeled D1 to
10, represent the total tuning time of the method across all hyper-
arameters. The average tuning time is also provided below. The grid
ow corresponds to the number of hyperparameter combinations, while
he last row displays the average running time obtained by dividing the
verage tuning time by the number of grids.

Based on these results in Tables 3 and 4, we have three aspects of ob-
ervations. First, in comparison to methods that involve local structure
earning, such as MKCSS, SPMKC, CAGL, ONALK, PMKSC, LSMKKM,
nd LSWMKC, our method demonstrates superior performance with
ewer parameters to tune and shorter overall time consumption. The
verage tuning time for our method is 1470 s, which is less than 1/5
f the time consumed by the second-best method, LSWMKC. Second,
n contrast to late fusion methods, our approach demands more time
n benchmark datasets. This increase in computational cost can be at-
ributed to the meticulous exploration and utilization of local manifold
tructures within the kernel space. However, this moderate increase
n computational cost is justified by the substantial enhancement in
lustering performance. Third, when considering a comparison with
he second-best algorithm, LSWMKC, our method achieves a 6.49%
mprovement in clustering accuracy while requiring less than 1/5 of
he time consumption, as demonstrated in Tables 3 and 4. These results
learly demonstrate the superiority of our method in terms of both
ffectiveness and efficiency. Therefore, our method is highly suitable
or the task of MKC.

6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63473
7 https://github.com/YanChenSCU/LKRGDF-2023.git

https://github.com/YanChenSCU/LKRGDF-2023.git
https://github.com/YanChenSCU/LKRGDF-2023.git
https://github.com/YanChenSCU/LKRGDF-2023.git
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63473
https://github.com/YanChenSCU/LKRGDF-2023.git
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Table 3
Clustering Results in terms of ACC, NMI, RI, and F1 of 11 compared methods on ten benchmark data sets. The best results are in bold, and
the second-best results are underlined.

MKCSS SPMKC CAGL ONALK PMKSC LFPGR LFLKA LSMKKM LSWMKC SMKKM LKRGDF

ACC(%)

D1 82.03 83.81 83.61 72.66 61.05 58.36 62.87 63.53 80.55 54.31 89.83
D2 52.14 45.08 46.30 48.02 47.64 42.94 46.66 45.95 51.74 42.59 55.32
D3 78.26 84.58 88.12 70.04 77.07 67.22 68.63 65.67 98.75 61.28 99.10
D4 96.80 80.60 96.40 85.35 75.10 74.93 76.89 80.82 96.90 76.92 96.85
D5 46.06 41.50 43.02 45.98 38.82 38.67 44.68 45.24 45.98 38.61 49.39
D6 85.94 82.91 92.52 82.99 87.09 84.19 85.09 80.90 90.00 81.36 91.58
D7 43.25 44.69 44.08 40.80 41.53 43.31 40.51 42.15 43.35 38.78 51.79
D8 79.10 74.52 79.24 57.64 59.04 55.53 55.93 53.37 81.72 51.59 84.15
D9 65.30 60.32 66.75 56.95 55.97 54.61 56.53 55.99 64.30 54.66 74.50
D10 63.56 65.21 56.65 63.47 66.09 62.44 65.44 61.93 71.32 62.91 79.15

Avg 69.24 66.32 69.67 62.39 60.94 58.22 60.32 59.56 72.46 56.30 77.16

NMI(%)

D1 76.64 78.77 79.67 60.70 59.33 58.17 58.97 58.11 76.86 53.04 81.17
D2 65.38 61.49 60.66 61.12 61.14 58.05 60.55 59.78 65.73 57.60 66.75
D3 88.44 92.32 94.50 78.40 85.49 77.62 77.28 76.04 98.73 74.11 98.97
D4 92.96 83.35 92.35 76.63 72.55 67.95 71.59 73.26 93.22 70.65 92.68
D5 28.00 23.02 19.81 25.95 19.96 23.57 24.17 23.67 26.44 18.19 27.90
D6 74.73 56.87 81.10 58.82 71.04 66.09 69.77 59.44 77.43 51.34 81.25
D7 52.20 55.05 50.56 48.64 49.66 49.71 48.51 48.58 52.30 48.55 56.17
D8 70.74 78.70 77.77 54.09 54.31 52.03 50.46 52.44 77.33 48.87 78.01
D9 68.95 63.08 70.48 50.76 50.38 48.84 51.61 51.47 66.51 49.94 72.72
D10 72.27 77.02 62.24 75.27 75.98 72.82 75.81 73.91 76.54 74.70 79.67

Avg 69.03 66.97 68.91 59.04 59.98 57.48 58.87 57.67 71.11 54.70 73.53

RI(%)

D1 71.19 73.30 75.13 57.71 46.73 42.79 41.88 49.52 70.65 35.20 76.95
D2 37.27 32.71 29.58 32.66 33.45 28.54 31.36 30.23 37.38 27.73 39.52
D3 75.81 80.74 84.60 62.90 72.29 61.28 60.19 57.94 97.54 53.84 98.20
D4 93.06 75.37 92.13 71.55 64.14 59.22 62.41 65.75 93.18 62.14 93.12
D5 21.51 14.66 15.39 18.99 11.71 17.56 17.63 18.84 21.12 11.10 22.12
D6 77.85 60.07 90.17 65.07 74.21 68.17 72.83 62.03 83.14 58.24 89.57
D7 31.51 34.57 36.12 28.05 27.99 28.22 25.93 29.13 31.91 26.67 38.64
D8 69.10 69.05 76.80 44.63 46.44 39.95 38.71 38.26 74.21 34.27 75.80
D9 57.31 49.73 57.00 38.68 37.94 37.38 38.32 37.82 55.00 36.27 64.13
D10 61.49 67.33 39.31 51.65 56.24 49.68 56.79 54.13 62.35 53.61 71.99

Avg 59.61 55.75 59.62 47.19 47.11 43.28 44.61 44.36 62.65 39.91 67.00

F1(%)

D1 76.45 78.17 79.62 64.89 55.25 52.19 51.48 57.62 76.03 46.33 81.10
D2 39.06 34.86 32.05 34.57 35.37 30.53 33.30 32.28 39.19 29.81 41.25
D3 77.08 81.75 85.46 64.76 73.74 63.22 62.20 60.10 97.66 56.25 98.29
D4 93.75 78.01 92.92 74.42 67.76 63.31 66.22 69.21 93.86 65.98 93.81
D5 38.46 38.81 40.92 39.17 34.79 34.48 36.74 39.20 37.83 35.72 41.16
D6 86.24 79.09 94.13 79.63 83.63 79.13 83.43 77.65 89.76 77.41 93.70
D7 38.03 41.33 44.37 34.05 34.29 34.48 31.89 35.24 38.90 33.32 43.99
D8 73.45 74.27 80.97 52.48 53.70 48.03 47.04 46.46 78.10 43.19 79.40
D9 62.03 55.43 62.14 45.03 44.41 43.80 44.77 44.36 59.94 43.05 67.96
D10 63.32 69.02 44.31 53.49 58.09 51.64 58.64 56.18 64.33 55.61 73.65

Avg 64.79 63.07 65.69 54.25 54.10 50.08 51.57 51.83 67.56 48.67 71.43
Table 4
Execution time of compared algorithms.

MKCSS SPMKC CAGL ONALK PMKSC LFPGR LFLKA LSMKKM LSWMKC SMKKM LKRGDF

D1 384 383 2667 6815 18 773 20 69 56 158 13 60
D2 1139 3041 7183 10 987 54 510 229 215 257 403 128 131
D3 1310 1450 5479 17 805 34 392 220 206 150 454 25 185
D4 3033 4098 13 256 35 432 87 615 121 433 730 1317 138 378
D5 4490 7488 72 845 39 638 92 578 718 673 1412 2229 108 468
D6 6316 8678 90 666 47 080 98 449 1653 699 888 2264 154 480
D7 15 923 28 611 70 298 205 597 365 425 398 2540 1514 6690 158 1751
D8 21 575 41 102 90 856 239 166 317 001 439 2870 2032 8362 194 1921
D9 20 175 35 358 108 735 254 367 306 472 782 3435 3458 11 804 580 1980
D10 93 518 211 276 460 714 848 244 731 046 11 498 15 880 20 800 46 406 2920 7346

Avg Tune 16 786 34 148 92 270 170 513 210 626 1608 2702 3130 8009 442 1470

Grids 16 36 162 341 216 25 247 19 11 1 16

Avg Run 1049 949 570 500 975 64 11 165 728 442 92
9
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Fig. 3. Visualization of the revealed cluster structure of the compared algorithms with t-SNE [49] on MNIST.
Fig. 4. Visualization of original kernel 𝐊, LKR graph 𝐀 and LKRGD graph 𝐆, with their result in terms of ACC(%).
5.5. Ablation study

Comparing LKR with Existing Strategies. In the subsequent, we
conduct an ablation study to highlight the improvements achieved
through various kernel structure exploration strategies. Our compre-
hensive comparison encompasses nine methods, including the baseline
method KKM, as well as seven existing local clustering strategies:
KSC, NK-𝑘, NK-𝜏, KLSL, KALSL, LKSC, and LNWKR, as discussed in
Section 4.5. Additionally, we incorporate our proposed LKR model,
detailed in Section 3.1. Each of these methods is independently applied
to 12 distinct kernels. For the local methods, we extract an affinity
graph from each kernel and employ spectral clustering to derive a single
result. The results of this analysis are presented in Table 5, offering a
summary of the average performance across the 12 kernels, utilizing
four evaluation measures across ten benchmark datasets.

The results lead to three key observations. Firstly, all eight strate-
gies consistently outperform the standard KKM, demonstrating their
effectiveness in identifying more meaningful cluster structures and
emphasizing the importance of improved single kernel structure ex-
traction. Secondly, the average results of the single kernel methods
(Table 5) are competitive with those of the MKC methods (Table 3).
This challenges the conventional belief that MKC methods should sig-
nificantly outperform their single kernel counterparts, highlighting the
need for a robust single kernel structure extraction strategy. Lastly, the
average results of LKR on 12 kernels surpass not only other single-
kernel cluster extraction strategies but also most of the compared
MKC methods. The substantial improvements achieved by LKR can
be primarily attributed to the introduction of a new term that mini-
mizes redundancy among local neighbors. These findings underscore
the importance of carefully designing a strong single kernel structure
extraction strategy for the successful application of MKC methods. The
10
effectiveness of LKR highlights its advantages in capturing meaningful
cluster structures.

Visualizing Affinity Graphs in LKR and LKRGD. In this illus-
tration, using a polynomial kernel from the D2 dataset, we visually
distinguish between the original kernel 𝐊, the affinity graph 𝐀 gen-
erated by the LKR model, and the enhanced affinity graph 𝐆 achieved
through the graph diffusion procedure, denoted as the LKRGD model.
The accompanying figures and their associated clustering accuracy are
presented in Fig. 4.

Evidently, the clustering accuracy exhibits a gradual improvement,
transitioning from the original kernel (ACC: 39.82%) to the LKR graph
(ACC: 51.75%) and finally to the LKGRD graph (ACC: 52.79%). Our ob-
servations highlight the impact of the density of original kernel, which
leads to less satisfactory clustering performance. The LKR method effec-
tively captures the local affinity structure, leading to an enhancement
in the clustering results. Finally, the LKRGD model aggregates graphs of
different orders, harnessing both first-order and long-range connections
to further refine the clustering analysis. This qualitative evaluation,
particularly in terms of ACC, reinforces our observations, emphasizing
the incremental improvement in clustering performance throughout
this process.

Comparing LKR, LKRGD, and LKRGDF. In the subsequent analy-
sis, we conduct a comprehensive exploration of the synergistic effects
of three critical components of our method: LKR in Section 3.1, GD in
Section 3.2, and MGF in Section 3.3. We offer a detailed analysis of the
results obtained from these three consecutive stages, with each stage
building upon the previous one. To be specific, we investigate the LKR
model applied to affinity graphs {𝐀𝑟}𝑚𝑟=1 as a strong baseline, followed
by the LKR model enhanced by GD, using affinity graphs {𝐆𝑟}𝑚𝑟=1, and
culminating in the comprehensive LKR with Graph Diffusion and Fusion
(LKRGDF) on the consensus affinity matrix 𝐒. The results from these

three key steps are presented in the last three columns of Table 5.
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Fig. 5. Parameter sensitivity study of neighborhood size 𝑘 and decay parameter 𝜂 on D2 and D4.
Table 5
ACC, NMI, RI, and F1 results of different single kernel cluster structure extraction
method on the benchmark datasets.

KKM KSC NK-𝑘 NK-𝜏 KLSL KALSL LKSC LNWKR LKR LKRGD LKRGDF

D1

ACC 57.11 73.28 78.13 64.48 75.61 74.23 82.21 68.81 81.28 84.05 89.83
NMI 53.80 70.86 73.72 56.43 73.30 66.76 77.23 57.90 77.99 78.72 81.17
RI 41.77 64.30 69.05 46.10 64.21 58.39 72.12 49.09 72.61 72.51 76.95
F1 51.19 70.72 74.80 57.86 70.76 66.93 77.12 60.43 77.53 77.54 81.10

D2

ACC 40.20 45.84 51.76 46.67 49.39 44.95 45.11 47.03 53.21 53.15 53.32
NMI 55.43 59.72 64.56 60.38 63.95 55.63 60.52 59.48 66.77 65.42 66.75
RI 25.39 30.30 36.99 31.08 35.60 18.59 32.03 26.20 39.67 38.17 39.52
F1 27.46 32.23 38.82 32.99 37.47 21.90 34.10 28.61 41.39 39.89 41.25

D3

ACC 63.57 67.98 82.83 67.39 75.67 84.36 84.30 82.81 90.84 84.96 99.10
NMI 75.36 77.65 89.05 77.30 89.46 92.33 93.57 90.70 96.01 94.09 98.97
RI 56.45 60.83 78.28 60.50 75.12 79.31 82.91 77.09 89.12 82.91 98.20
F1 58.67 62.84 79.39 62.50 76.53 80.50 83.85 78.38 89.69 83.85 98.29

D4

ACC 71.49 75.07 95.21 81.58 83.96 93.96 75.72 85.52 96.02 97.40 96.85
NMI 67.11 71.18 91.25 81.79 85.44 90.91 82.38 88.04 91.14 93.93 92.68
RI 58.15 62.56 90.81 75.96 79.92 89.74 73.83 82.77 91.36 94.29 93.12
F1 62.38 66.36 91.74 78.52 82.14 90.80 76.67 84.62 92.22 94.86 93.81

D5

ACC 38.24 41.22 40.40 42.02 48.67 36.49 39.72 42.14 43.46 48.78 49.39
NMI 21.63 24.06 22.39 25.65 27.53 11.50 22.39 20.35 25.33 27.94 27.90
RI 14.48 17.87 17.06 18.52 23.52 7.56 15.93 18.41 19.57 23.67 22.12
F1 31.94 35.43 35.18 34.70 39.19 36.62 34.60 41.93 37.94 39.32 41.16

D6

ACC 64.31 79.30 73.73 80.99 89.68 84.61 77.75 83.08 90.38 91.62 91.58
NMI 48.56 65.83 56.23 65.63 74.02 56.24 57.54 66.71 79.72 83.18 81.25
RI 37.77 65.95 52.73 64.31 81.91 62.83 56.05 70.44 84.31 91.76 89.57
F1 56.87 77.82 70.15 77.43 89.53 81.16 74.77 83.45 90.79 95.12 93.70

D7

ACC 40.45 42.95 42.52 38.17 44.34 33.87 44.18 32.06 45.26 44.20 51.79
NMI 48.33 51.20 51.90 45.79 52.78 37.97 54.76 34.93 53.36 53.87 56.17
RI 26.35 32.00 30.53 23.67 32.33 19.61 34.91 18.63 33.20 32.98 38.64
F1 32.77 38.85 37.01 30.88 38.50 30.68 41.52 29.11 39.70 39.45 43.99

D8

ACC 56.05 69.52 75.87 55.73 75.91 70.26 72.31 56.82 80.54 85.81 84.15
NMI 51.39 65.52 72.89 50.73 71.94 64.64 76.71 52.87 74.78 78.03 78.01
RI 40.01 55.73 69.42 32.30 66.54 58.38 67.46 40.47 71.34 78.19 75.80
F1 48.16 62.35 73.88 43.08 71.64 66.16 72.89 52.86 75.64 81.47 79.40

D9

ACC 53.64 55.13 69.24 65.57 63.47 63.54 58.89 71.71 65.23 71.68 74.50
NMI 46.82 52.90 68.69 61.99 65.15 67.14 61.49 69.34 66.83 70.74 72.72
RI 34.41 40.20 57.23 50.84 53.22 55.18 47.70 59.30 54.14 60.70 64.13
F1 41.10 46.53 61.88 56.22 58.41 60.58 53.58 63.79 59.27 64.91 67.96

D10

ACC 61.28 61.41 56.72 48.65 57.08 65.24 63.93 55.96 63.86 69.77 79.15
NMI 74.39 74.33 67.89 63.87 68.34 64.04 75.42 67.14 72.01 75.72 79.67
RI 50.17 50.32 48.34 42.30 46.15 39.99 54.92 40.17 53.10 60.62 71.99
F1 52.06 52.24 50.57 44.50 48.63 44.95 56.84 43.18 55.30 62.67 73.65

Avg

ACC 54.63 61.17 66.64 59.12 66.38 65.15 64.41 62.59 71.01 73.14 77.16
NMI 54.28 61.33 65.86 58.96 67.19 60.72 66.20 60.75 70.39 72.16 73.53
RI 38.49 48.01 55.05 44.56 55.85 48.96 53.79 48.26 60.84 63.58 67.00
F1 46.26 54.54 61.34 51.87 61.28 58.03 60.60 56.64 65.95 67.91 71.43

Upon thorough analysis of these results, two key observations
emerge. Firstly, it becomes evident that the global diffusion process
augments the performance of individual kernels. This enhancement
underscores the critical role of global diffusion in accurately identifying
long-range connections within the data. Secondly, the effectiveness of
our MKC method, LKRGDF, becomes manifest when comparing the
11
LKRGD results obtained from individual kernels. The noticeable im-
provement achieved through the MGF procedure provides compelling
evidence for the efficacy of our proposed approach. These combined
findings from our quantitative and qualitative studies serve as robust
validation of the effectiveness of the essential procedural steps in the
MKC task: LKR, GD, and MGF.

5.6. Parameters sensitivity study

Our method involves tuning two parameters: 𝑘 and 𝜂. The parameter
𝑘 is used to control the neighbor sparsity during the LKR stage and
fusion process, while the parameter 𝜂 determines the rate of eigen-
value exponential decay in the diffusion step. The two parameters are
searched by restricting 𝑘 ∈ [5, 10, 15, 20] and 𝜂 ∈ [3, 5, 7, 9]. Fig. 5
showcases the sensitivity of clustering performance to variations in 𝑘
and 𝜂 on two different datasets. The results depicted in the figure high-
light the robustness of our method across diverse datasets, indicating
its stability under a wide range of parameter combinations.

6. Conclusion

This paper unveils LKRGDF, a novel approach to MKC. Moving away
from traditional local MKC methods that predominantly depend on
pairwise similarity for affinity, our method utilizes LKR coefficients
to effectively capture local affinity. This approach mitigates redun-
dancy and enhances the discrimination of highly similar neighborhood
samples. Furthermore, we seamlessly incorporate these affinities using
graph heat kernel diffusion. Leveraging the low-pass filter property
of global diffusion, we can smooth high-order connections and focus
on the most salient clusters. Rather than applying a unified learning
framework, we implement a sequential pipeline comprising three piv-
otal steps: LKR, GD, and MGF. This structure enables us to proficiently
explore and exploit local structures within kernels. Experimental out-
comes derived from ten benchmark datasets unequivocally showcase
the superior performance and computational efficiency of our method
when compared to ten recently developed alternatives. In the future,
we will consider how to perform LKR and consensus graph learning
jointly efficiently.
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