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ABSTRACT
Traditional discriminative correlation filter (DCF) has re-

ceived widespread popularity due to its high computational

efficiency. However, most of the existing DCF-based trackers

improve the learning of the target object by introducing some

simple regularization methods in the detection stage, which

may easily lose the tracking target in scenes with background

clutter, fast-moving cameras and similar targets. We propose

a feature residual filter with automatic spatio-temporal reg-

ularization, namely FRATCF, which can be strengthened the

filter learning by introducing the feature residual between two

adjacent frames in the training phase. Extensive experiments

are conducted on two challenging unmanned aerial vehicle

(UAV) benchmarks, i.e., UAV123@10fps and DTB70. Re-

sults prove that our tracker runs at ∼43 FPS on an extremely

cheap configuration, which is about twice the speed of Auto-

Track. The performance is also better than other state-of-the-

art (SOTA) trackers.

Index Terms— UAV tracking, feature residual, correla-

tion filter, automatic spatio-temporal regularization

1. INTRODUCTION

As a hot spot in the field of computer vision, visual tracking

has received widespread attention. Visual object tracking is

one of the fundamental tasks in the computer vision commu-

nity, aiming to estimate the position and scale of the target in

the subsequent frames of the image sequence only with the

information given in the first frame. In recent years, when

many researchers applied tracking algorithms to UAV plat-

forms, tracking algorithms opened up another wave of novel

applications, such as traffic monitoring [1], aerial cinematog-

raphy [2] and disaster surveillance [3]. However, UAVs still

have certain challenges in visual tracking, mainly due to three

reasons: (a) The background of UAV tracking is very compli-

cated, and the target is also prone to visual occlusion. In addi-

tion, the UAV can fly around the object to collect the moving
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Fig. 1: Presentation of the tracking results in FRATCF (red

rectangle), the other three SOTA trackers (SRECF (green rect-

angle), AutoTrack (blue rectangle), ARCF H (purple rectan-

gle)) and the baseline BACF tracker (orange rectangle) on

the sequences of Basketball and StreetBasketball1. As shown

above, when there are background clutter, similar targets and

fast camera movement in the UAV tracking scene, the other

4 SOTA trackers almost completely lose the target, but the

FRATCF (red rectangle) can accurately track the target.

image of the target. These will cause a certain deviation and

make the UAV tracking more difficult. (b) When UAV track-

ing, the onboard power capacity and computing resources are

very limited. Most UAVs only use a single CPU as the com-

puting platform, which greatly limits the processing speed.

(c) The target tracked by UAV has real-time requirements.

During the entire tracking process, we need to observe the

video stream returned by the UAV camera in real time through

the ground station. Therefore, the tracking algorithm must be

lightweight in order to process the data faster for the purpose

of real-time UAV tracking. Because of the difficulties caused

by the characteristics of UAVs, we need to get more efficient

algorithms to design a robust UAV target tracker.

In order to solve some of the difficulties in UAV tracking,

two major research branches have emerged in recent years.

One is a tracking algorithm based on discriminative correla-

tion filters [4–7], and the other is based on deep learning or

tracking algorithm with depth features [8, 9]. Among them,

the use of deep convolution features (CNN) requires the use
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of GPU. Although it improves some accuracy, it not only hin-

ders the tracking speed, but also requires a high price. It is

not practical in real-time tracking scenes. Blome et al. [10]

proposed MOSSE, which used correlation filters for visual

tracking for the first time. Henriques et al. [11] proposed

KCF filter, by applying to multiple channel features, and re-

defining the objective function of MOSSE [10] as ridge re-

gression, using the DCF framework for Fourier domain cal-

culations, greatly improving efficiency. Due to filter bound-

ary effects, appearance changes, target drift and other issues,

most well-known trackers introduce regularization terms to

improve performance. Danelljan et al. [5] proposed SRDCF,

which solves the boundary effect problem by performing spa-

tial penalty on DCF coefficients, which inevitably improves

tracking performance at the cost of increased complexity. Li

et al. [12] proposed STRCF by combining time and space

regularization at the same time. Huang et al. [6] proposed

ARCF, which used the response graph generated in the de-

tection stage to restrict target learning. In recent years, Li et

al. [13] further proposed the AutoTack filter, which maked

full use of local-global response changes to train its tracker,

and achieved an online automatic spatio-temporal regulariza-

tion performance. However, they may lost the tracking target

in scenes with background clutter, fast-moving cameras and

similar targets. As shown in Fig.1, it can be seen that when

the above scenes occur, the other SOTA trackers almost com-

pletely lose the target, but the FRATCF (red rectangle) can ac-

curately track the target. In visual tracking, residual learning

was applied to capture the difference between the base layer

output and the ground truth to reduce model degradation dur-

ing online update. Residuals can be the difference between

the target and the model output, the difference between the

input and the output, the difference between a sample and the

sample mean. Since the video is approximately time contin-

uous, residuals are usually small values and entropy, which

can be used to speed up the learning of correlation filters. The

existing filters for residual learning [14, 15] do not allow the

parameters to be updated adaptively. In this paper, a residual

is formed by subtracting the feature of the current frame from

that of the previous one, which can be used to speed up the

learning of the filter. Fig.2 is the tracking framework of the

FRATCF we proposed.

Our main contributions are summarized as follows:

• A novel feature residual method, supported by the auto-

matic spatio-temporal regularization, is proposed. The

proposed FRATCF can strengthen the filter learning by

introducing the feature residuals between two adjacent

frames in the training phase.

• In order to effectively solve FRATCF, we use ADMM

algorithm to simplify the calculation. After a series of

derivations, each sub-problem of the algorithm has a

closed solution. Our algorithm can empirically con-

verge in very few iterations.

• The proposed FRATCF tracker is exhaustively tested

on two challenging UAV benchmarks. The perfor-

mance is better than other SOTA trackers. Our tracker

runs at ∼43 FPS in an extremely cheap configuration,

which is about twice the speed of AutoTrack tracker,

and is sufficient for real-time UAV applications.

2. METHOD

2.1. Objective function of FRATCF

We select the BACF [4] tracker as our baseline. Given the ex-
tracted feature xd

t ∈ R
N×1(d = 1, 2, · · · , D) with length N

in frame t, where D denotes number of channel, and the de-
sired Gaussian-shaped response y ∈ R

N×1, the desired filter
ht =

[
h1
t , h

2
t , · · · , hD

t

] ∈ R
N×D can be optimized through

minimizing the following objective function:

G (ht, Et) =
1

2

∥∥∥∥∥y −
D∑

d=1

xd
t ∗ Chd

t

∥∥∥∥∥
2

2

+
λ

2

D∑
d=1

∥∥∥hd
t

∥∥∥2

2

+
γ

2

∥∥∥∥∥
D∑

d=1

ξt ∗ Chd
t

∥∥∥∥∥
2

2

+
1

2

D∑
d=1

∥∥∥α� hd
t

∥∥∥2

2
(1)

+
Et

2

D∑
d=1

∥∥∥hd
t − hd

t−1

∥∥∥2

2
+

1

2
‖Et − e‖22

where ξdt = xd
t − xd

t−1, Et denotes the optimized temporal

regularization parameter, C ∈ R
N×M (M � N) represents a

binary matrix to crop the mid M elements of xd
t , λ is a penalty

coefficient, γ is the sensitivity factor, which controls the fil-

ter’s sensitivity to feature-residue, ∗ denotes the correlation

operator, � denotes the Hadamard product. α and e respec-

tively denote the automatic spatial regularization parameter

and reference regularization parameter, which are calculated

by AutoTack [13].

2.2. Optimization with ADMM

Using an auxiliary variable v̂t = (ID ⊗ FC)ht, where ID ∈
R

D×D is an identity matrix, F ∈ R
N×M , the Fourier form

of Eq.(1) can be written as G (ht, Et, v̂t)[13, 15]. Then, we
employ an Augmented Lagrangian Method(ALM)[4]:

Lt (ht, Et, v̂t, ε̂) = G (ht, Et, v̂t) +
μ

2
‖v̂t − (ID ⊗ FC)ht‖22

+ ε̂H (v̂t − (ID ⊗ FC)ht) (2)

where μ is the the step size regularization parameter, ε̂ =[
ε̂H1 , . . . , ε̂

H
D

]H
is the Lagrangian vector of size DN × 1 in the

frequency domain, v̂t =
[(
v̂1t
)H

, . . . ,
(
v̂Dt

)H]H
, the symbolˆ

denotes the discrete Fourier transform (DFT) of a signal, the

operator H computes the conjugate transpose on a complex

vector or matrix, ⊗ indicates the Kronecker product.
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Fig. 2: Main workflow of the proposed FRATCF. In the training phase, we subtract the features that are extracted from the t
and t− 1 frames to obtain a residual value, and update the global-local automatic spatio-temporal regularization parameters to

strengthen the training of the filter. When we get the updated value of the filter and the features extracted from the next frame,

we can locate the target position.

Eq.(2) can be solved iteratively using the ADMM

technique[4]. Fortunately, close form solutions can be found

for following three subproblems, h∗
t , v̂∗t and E∗

t .
Solution to subproblems h∗

t and v̂∗t :

h∗
t = argmin

ht

{
1

2
‖α� ht‖22 +

Et

2
‖ht − ht−1‖22

+
λ

2
‖ht‖22 +

μ

2
‖v̂t − (ID ⊗ FC)ht‖22 (3)

+ ε̂H (v̂t − (ID ⊗ FC)ht)

}
= [λ+ μN + Et + (α� α)]−1 [(μvt + ε)N + Etht−1]

where vt = (ID ⊗ CTFH)v̂t and ε =
(
ID ⊗ CTFH

)
ε̂,

which can be broken into D independent CTFH transforms

in realization.

v̂∗t = argmin
v̂t

{
1

2N

∥∥∥ŷ − X̂tv̂t

∥∥∥2

2
+

γ

2N

∥∥∥ξ̂tv̂t∥∥∥2

2
+ (4)

μ

2
‖v̂t − (ID ⊗ FC)ht‖22 + ε̂H [(v̂t − (ID ⊗ FC)ht)]

}

where X̂t =
[
diag

(
x̂1
t

)H
, · · · , diag (x̂D

t

)H]
, ξ̂t =[

diag
(
ξ̂1t

)H

, · · · , diag
(
ξ̂Dt

)H
]
.

Solving Eq.(4) directly is very difficult. Fortunately, we

find that v̂∗t can be identically expressed as N smaller, in-

dependent objectives, over n = [1, · · · , N ]. For clarity of

description, we define x̂t and ξ̂t as x̂0 and x̂1, respectively.

Then, the closed-form solution of v̂∗t (n) can be accelerated

through Sherman-Morrison fomula [4]:

v̂∗t (n) =
1

Nμ

[
ŷ(n)x̂t(n) + μNĥt(n)−Nε̂(n)

]

−
∑1

k=0 pkx̂k(n)

μδ

[
1

N
�ŷ(n)−

1∑
k=0

x̂H
k (n)ε̂(n)

+μ

1∑
k=0

x̂H
k (n)ĥt(n)

]
(5)

where p0 = 1, p1 = γ, δ = μN +
∑1

k=0 pkx̂
H
k (n)x̂k(n) and

� =
∑1

k=0 pkx̂
H
k (n)x̂t(n) .

Solution to subproblem E∗
t :

E∗
t = argmin

Et

{
Et

2
‖ht − ht−1‖22 +

1

2
‖Et − e‖22

}

= e− ‖ht − ht−1‖22
2

(6)

Update the Lagrangian parameter ε̂:

ε̂
(i+1)
t = ε̂

(i)
t + μ

(
v̂
∗(i+1)
t − ĥ

∗(i+1)
t

)
(7)

where i and i + 1 denotes the iteration index, the step size
regularization constant μ (initially equals to 1) takes the form
of μi+1 = min

(
μmax, βμ

i
)
, and β = 10, μmax = 10000.

ĥ
∗(i+1)
t =

(
ID ⊗ CTFH

)
h
∗(i+1)
t , v̂

∗(i+1)
t and h

∗(i+1)
t are

the current solutions to the two subproblems at iteration i+1
within ADMM. Similar to other CF trackers [4, 6], we uti-
lize an online adaptation strategy to improve our robustness to
pose, scale and illumination changes. The appearance model
is adapted online as follows:

x̂model
t = (1− ϕ)x̂model

t−1 + ϕx̂t−1 (8)
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where x̂model
t and x̂model

t−1 denote the model in the current and

last frames, respectively. x̂t−1 is the training sample of the

current frame. ϕ represents the online learning rate. Based

on this strategy, we use x̂model
t instead of x̂t−1 in Eq.(5) to

compute v̂∗t (n) .
The trained filter is utilized to ascertain the new position

of the target in the t+ 1 frame by the following method:

φt+1 = F−1

(
1∑

d=0

(
conj

(
ẑdt+1

)
� v̂dt

))
(9)

where ẑdt+1 denotes the Fourier transform of extracted feature

in the t + 1 frame. v̂dt is the filter trained in t frame. F−1

denotes the inverse discrete Fourier transform.

Algorithm 1 FRATCF Tracker

Require: The state of object in the first frame, the following

video frames.

Ensure: The estimated state in t > 1 frame.

1: for t = 1 to end do
2: if t > 1 then
3: Extract feature maps from the searching area.

4: Generate the response map by Eq.(9).

5: Find the new location of the target.

6: if t > 2 then
7: Update the spatio-temporal regularization param-

eters

8: end if
9: end if

10: Update the target appearance model by Eq.(8)

11: Find the new location of the target.

12: Train the filter with the feature residual by

Eq.(3)(5)(7).

13: if t > 2 then
14: Update the temporal regularization parameter by

Eq.(6)

15: end if
16: end for

3. EXPERIMENT

3.1. Experiment setup

The experiments are conducted on two challenging UAV

benchmarks, i.e., UAV123@10fps[16] and DTB70[17].

We compare the proposed tracker with other 11 SOTA

handcrafted-based trackers. These trackers include KCF[11],

CSK[18], SAMF[19], DSST[20], ARCF[6], AutoTrack[13],

Staple[21], SRECF[7], SRDCF[5], STRCF[12], BACF[4].

For parameters related to the BACF[4] and AutoTrack[13]

frameworks, we set ϑ = 0.2, τ = 2× 10−5, σ = 13, the

threshold of � is 3000. We set the learning rate of ϕ is

Table 1: Comparison with other 11 SOTA trackers on

UAV123@10fps[16] benchmark. Red, green, and blue rep-

resent the top three trackers in terms of PS and AUC, respec-

tively.

Tracker Venue Prec Succ Tracker Venue Prec Succ

FRATCF ——- 0.678 0.591 Staple[21] 16CV PR 0.573 0.515

AutoTrack[13] 20CV PR 0.668 0.582 BACF[4] 17ICV V 0.572 0.506

SRECF[7] 21TMM 0.647 0.5611 DSST[20] 21TMM 0.492 0.429

STRCF[12] 18CV PR 0.627 0.544 SAMF[19] 14ECCV 0.471 0.398

ARCF H[6] 19ICCV 0.612 0.524 CSK[18] 12ECCV 0.402 0.209

SRDCF[7] 15ICV V 0.575 0.511 KCF[11] 15TPAMI 0.272 0.183

0.0199. The sensitivity factor of γ is chosen as 0.2. We use

two ADMM iterations to train the filter quickly. In this work,

DSST[20] is adopted as scale strategy for robust scale estima-

tion. One more filter is trained in the scale space after train-

ing the translation filter. Such method has comparable per-

formance and higher processing speed than the original one

of BACF[4]. The handcrafted features including color names

(CN) [22], histograms of gradient (HOG)[23], and gray-scale

are fused as feature representation and appearance model for

the detection and training phase. The experiments of track-

ing performance evaluation are conducted using MATLAB

R2017b on a PC with an i5-7500 processor(3.4GHz), 16GB

RAM.
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Fig. 3: Precision plots and success plots of the proposed

FRATCF and other 11 handcrafted feature based state-of-the-

art trackers on UAV123@10fps[16] and DTB70[17]. The

plots show the performance of these evaluated trackers un-

der different thresholds intuitively. Notably, FRATCF ranks

first in most cases in terms of PS and AUC.
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Table 2: Comparison with other 11 SOTA trackers on

DTB70[17] benchmark. Red, green, and blue represent the

top three trackers in terms of PS and AUC, respectively.

Tracker Venue Prec Succ Tracker Venue Prec Succ

FRATCF ——- 0.707 0.482 Staple[21] 16CV PR 0.512 0.363

AutoTrack[13] 20CV PR 0.715 0.479 BACF[21] 17ICCV 0.489 0.336

SRECF[7] 21TMM 0.690 0.468 DSST[20] 16TPAMI 0.467 0.331

STRCF[12] 18CV PR 0.649 0.437 SAMF[19] 14ECCV 0.488 0.329

ARCF H[6] 19ICCV 0.607 0.416 CSK[18] 12ECCV 0.415 0.272

SRDCF[7] 17ICV V 0.581 0.398 KCF[11] 15TPAMI 0.199 0.141

Table 3: Experimental results of running the source code on

our extremely cheap CPU, comparison with other 4 SOTA

trackers on two benchmarks. Red, green, and blue represent

the top three trackers in terms of FPS.

FRATCF SRECF[7] AutoTrack[13] BACF[4] STRCF[12]

UAV123@10fps[16] 41.67 47.77 24.52 40.51 20.90

DTB70[17] 43.80 44.19 23.47 35.27 20.14

Venue this work 21TMM 20CV PR 17ICV V 18CV PR

3.2. Comparison With SOTA Trackers

Quantitative Evaluation. For UAV123@10fps[16] and

DTB70[17], we evaluate the performance of all trackers based

on the one pass evaluation (OPE). Two metrics, i.e., area un-

der the curve (AUC) and precision score(PS), are employed

for ranking all trackers. Besides, frame per second (FPS) is

for measuring the tracking speed.

Overall Analysis. The proposed FRATCF is compared with

11 SOTA trackers using handcrafted features on the two

benchmarks successively. The precision plots (PP) and suc-

cess plots (SP) are exhibited in Fig.3. Meanwile, detailed re-

sults are listed in Table 1 and Table 2 for elaborate analysis.

FRATCF achieved the best AUC score on all benchmarks. In

terms of PS, we win the first and second on UAV123@10fps

and DTB70 respectively. We can get some information

from the average performance of all trackers on the two

benchmarks. Although FRATCF compares with the most

advanced trackers recently (i.e., SRECF[7], AutoTrack[13]

and ARCF[6]), it still ranks first in terms of PS and AUC.

FRATCF makes an improvement of 20.1% and 18.8% in PS

and AUC than the baseline BACF[4]. As can be seen from

Table 3, the running speed of FRATCF is ∼43 FPS, which is

comparable to the SRECF, which is about twice the speed of

AutoTrack[13].

Attribute-based Analysis. First, Fig.4 provides the success

plots under different attributes (background clutter, similar

objects around and fast camera motion) from two bench-

marks. We can intuitively see that FRATCF far exceeds other

algorithms. Then, Table 4 shows the scores of the twelve

attributes of the two benchmarks in terms of PS. Accord-

ing to Fig.4 and Table 4, by comparing with AutoTrack[13],

we can summarize some information: In UAV123@10fps
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Fig. 4: Success plots of FRATCF and other handcrafted-

based trackers on other attributes. FRATCF ranks first on

these attributes and performs considerable improvement com-

pared with the AutoTrack[13] and the baseline BACF[4],

which proves the effectiveness and generality of the proposed

method.

benchmark, FRATCF makes an improvement of 1.48% and

3.99% in PS and AUC in attributes of similar objects around.

FRATCF outperforms AutoTrack[13] by 2.78% in PS in

attributes of background clutter. In DTB70 benchmark,

FRATCF performances on PS and AUC are elevated by 24%

and 26.39% in attributes of background clutter. In the at-

tributes of fast camera motion, FRATCF has a superiority of

8.89% and 10% in PS and AUC. FRATCF makes an improve-

ment of 4% and 8.09% in PS and AUC in attributes of similar

objects around. In general, it can be seen that FRATCF im-

proves the performance in attributes of background clutter,

similar objects around and fast camera motion.

3.3. Qualitative Evaluation

We visualize the results of our tracker FRATCF (red rect-

angle), the other three SOTA trackers (SRECF, AutoTrack,

ARCF H) and the baseline BACF tracker on the sequences

of Car2 and ChasingDrones. As shown in Fig.5, In the Car2

sequence, the fast camera motion became the main factor for

tracking failure. Among indirect factors, the appearance of

similar objects also increases the difficulty. Because the fast

camera motion will cause the low resolution of the image

and the appearance of the surrounding object to change. In

the ChasingDrones sequence, background clutter and the fast

camera motion cause tracking drift or even failure. However,

only FRATCF (red rectangle) has overcome these challenging

interferences and successfully tracked the target.
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Table 4: Attribute based comparison of the 12 evaluated

trackers on two benchmarks. Only PS is used for analysis.

Moreover, red, green, and blue represent the first, second and

third place respectively.

Tracker
UAV123@10fps[16] DTB70[17]

ARC LR BC POC SOB CM OC FCM OV BC SOA MB

Autotrack[13] 0.584 0.523 0.503 0.584 0.677 0.641 0.624 0.731 0.623 0.600 0.725 0.685

SRECF[7] 0.570 0.472 0.460 0.573 0.675 0.606 0.575 0.722 0.694 0.616 0.706 0.664

STRCF[12] 0.524 0.509 0.477 0.559 0.630 0.602 0.617 0.713 0.652 0.611 0.677 0.689

ARCF H[6] 0.522 0.483 0.428 0.531 0.657 0.551 0.546 0.654 0.671 0.555 0.679 0.590

SRDCF[5] 0.472 0.431 0.389 0.504 0.585 0.527 0.478 0.554 0.552 0.393 0.569 0.664

Staple[21] 0.459 0.408 0.409 0.507 0.612 0.499 0.528 0.494 0.420 0.393 0.529 0.332

BACF[4] 0.478 0.431 0.425 0.467 0.605 0.532 0.515 0.622 0.567 0.499 0.624 0.617

DSST[20] 0.386 0.364 0.341 0.424 0.517 0.411 0.472 0.482 0.493 0.287 0.542 0.346

SAMF[19] 0400 03.44 0.278 0.421 0.508 0.389 0.500 0.499 0.531 0.352 0.500 0.345

CSK[18] 0.294 0.309 0.227 0.329 0.432 0.306 0.397 0.443 0.471 0.283 0.433 0.333

KCF[11] 0.229 0.210 0.098 0.212 0.315 0.180 0.219 0.164 0.173 0.070 0.222 0.121

FRATCF 0.606 0.548 0.517 0.578 0.687 0.637 0.663 0.796 0.703 0.744 0.754 0.790

#2 #74#29

#1 #212#117

FRATCF SRECF BACFAutoTrack ARCF_H

Fig. 5: Qualitative evaluation of the proposed FRATCF, top

three trackers on average performance and the baseline BACF.

4. CONCLUSION

In this article, we propose a feature residual filter with auto-

matic spatio-temporal regularization. The aim is to further

strengthen the training of the filter by learning the feature

residuals between two adjacent frames in the training phase,

obtain better accuracy and improve the performance in back-

ground clutter, similar objects around and fast-moving cam-

era scenes. Experimental results on two challenging bench-

marks show that the proposed tracker FRATCF has certain

advantages in terms of accuracy and running speed, which is

sufficient for real-time UAV applications.

References
[1] M. Elloumi, R. Dhaou, B. Escrig, H. Idoudi, and L. A. Saidane,

“Monitoring road traffic with a uav-based system,” in WCNC,
pp. 1–6, IEEE, 2018.

[2] R. Bonatti, C. Ho, W. Wang, S. Choudhury, and S. Scherer,
“Towards a robust aerial cinematography platform: Localizing
and tracking moving targets in unstructured environments,” in
IROS, pp. 229–236, IEEE, 2019.

[3] C. Yuan, Z. Liu, and Y. Zhang, “Uav-based forest fire detec-

tion and tracking using image processing techniques,” in Inter-
national Conference on Unmanned Aircraft Systems (ICUAS),
pp. 639–643, IEEE, 2015.

[4] H. Kiani Galoogahi, A. Fagg, and S. Lucey, “Learning
background-aware correlation filters for visual tracking,” in
ICCV, pp. 1135–1143, 2017.

[5] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg,
“Learning spatially regularized correlation filters for visual
tracking,” in CVPR, pp. 4310–4318, 2015.

[6] Z. Huang, C. Fu, Y. Li, F. Lin, and P. Lu, “Learning aber-
rance repressed correlation filters for real-time uav tracking,”
in ICCV, pp. 2891–2900, 2019.

[7] C. Fu, J. Jin, F. Ding, Y. Li, and G. Lu, “Spatial reliability
enhanced correlation filter: An efficient approach for real-time
uav tracking,” IEEE Trans. Multimedia, 2021.

[8] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, “Visual tracking
via adaptive spatially-regularized correlation filters,” in CVPR,
pp. 4670–4679, 2019.

[9] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan,
“Siamrpn++: Evolution of siamese visual tracking with very
deep networks,” in CVPR, pp. 4282–4291, 2019.

[10] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui,
“Visual object tracking using adaptive correlation filters,” in
CVPR, pp. 2544–2550, IEEE, 2010.

[11] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-
speed tracking with kernelized correlation filters,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583–596, 2014.

[12] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning
spatial-temporal regularized correlation filters for visual track-
ing,” in CVPR, pp. 4904–4913, 2018.

[13] Y. Li, C. Fu, F. Ding, Z. Huang, and G. Lu, “Autotrack: To-
wards high-performance visual tracking for uav with automatic
spatio-temporal regularization,” in CVPR, pp. 11923–11932,
2020.

[14] F. Zhang, S. Ma, Y. Zhang, and Z. Qiu, “Perceiving temporal
environment for correlation filters in real-time uav tracking,”
IEEE Signal Process. Lett., 2021.

[15] S. Li, Y. Liu, Q. Zhao, and Z. Feng, “Learning residue-aware
correlation filters and refining scale estimates with the grabcut
for real-time uav tracking,” arXiv preprint arXiv:2104.03114,
2021.

[16] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and
simulator for uav tracking,” in ECCV, pp. 445–461, Springer,
2016.

[17] S. Li and D.-Y. Yeung, “Visual object tracking for unmanned
aerial vehicles: A benchmark and new motion models,” in
AAAI, 2017.

[18] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Ex-
ploiting the circulant structure of tracking-by-detection with
kernels,” in ECCV, pp. 702–715, Springer, 2012.

[19] Y. Li and J. Zhu, “A scale adaptive kernel correlation fil-
ter tracker with feature integration,” in ECCV, pp. 254–265,
Springer, 2014.
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