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Abstract. The medical service provider establishes a heart failure pre-
diction model with deep learning technology to provide remote users with
real-time and accurate heart failure prediction services. Remote users
provide their health data to the health care provider for heart failure pre-
diction through the network, thereby effectively avoiding the damage or
death of vital organs of the patient due to the onset of acute heart failure.
Obviously, sharing personal health data in the exposed data sharing envi-
ronment would lead to serious privacy leakage. Therefore, in this paper,
we propose a privacy-preserving heart failure prediction (PHFP) system
based on Secure Multiparty Computation (SMC) and Gated Recurrent
Unit (GRU). To meet the real-time requirements of the PHFP system, we
designed a series of data interaction protocols based on additional secret
sharing to achieve lightweight outsourcing computing. Through these
protocols, we can protect the user’s health data privacy while ensuring
the efficiency of the heart failure prediction model. At the same time, to
provide high-quality heart failure prediction services, we also use the new
mathematical fitting method to directly construct the safety activation
function, which reduces the number of calls to the security protocol and
optimizes the accuracy and efficiency of the system. Besides, we built a
security model and analyzed the security of the system. The experimen-
tal results show that PHFP takes into account the safety, accuracy, and
efficiency in the application of heart failure prediction.
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1 Introduction

Heart Failure (HF) is a complex clinical symptom cluster and a severe stage
of various heart diseases with high morbidity and mortality. According to the
European Society of Cardiology (ESC), 26 million adults worldwide are diag-
nosed with heart failure, and 3.6 million people are newly diagnosed each year.
About 20% heart failure patients die within one year after diagnosis, and about
50% decease in five years once have been diagnosed [1]. To effectively reduce
the incidence and mortality of heart failure, early accurate prediction of heart
attack episodes is indispensable. It is difficult for the traditional clinical meth-
ods to diagnose the occult acute heart failure at an early stage, so usually, the
patient diagnosed after being admitted to the emergency department. If the
essential organs of some patients not diagnosed in time, irreversible damage or
death may occur [2]. Therefore, it is essential to provide an early and accurate
heart failure prediction service. In recent years, with the development of deep
learning, medical research institutions have trained high-precision heart failure
prediction models by acquiring patient health data to provide users with high-
quality heart failure prediction services. Among them, Edward Choi et al. [3]
used a GRU neural network to establish a time series model the records related
to EMR and realized much accurate prediction at an early stage of heart fail-
ure. Moreover, the Area Under the Curve (AUC) of the model reaches 0.777,
compared to the traditional clinical diagnostic (correct rate of 0.513) has better
accuracy. Using this result, healthcare providers can establish a heart failure
pre-diagnosis model to provide real-time, accurate, and convenient heart failure
prediction services to remote users. As a result, more and more users are provid-
ing their personal health data to medical service providers via the Internet for
the purpose of obtaining real-time, accurate heart failure prediction services.

However, in the actual scenario, it is necessary to comprehensively consider
the privacy of personal health data and the security of the heart failure prediction
model provided by the medical service provider. In general, there are two ways to
predict data sharing for heart failure. One way is that the user provides personal
health data to the medical provider through the network, and then the medical
service provider performs heart failure prediction and returns the result to the
user locally. However, the medical service provider may disclose the user’s health
data during the process, which will lead to the leakage and abuse of the user’s
personal health data privacy. Another way is for the medical service provider to
send the heart failure model to the user, and heart failure prediction is made
by the user locally. Due to the high commercial value attached to this kind of
prediction, the leakage of the model will bring economic losses to the medical
service provider. Therefore, how to design a heart failure prediction system that
can protect data privacy has become a vital issue to be solved. Furthermore,
considering that the sudden onset of acute heart failure is often life-threatening
and requires urgent rescue measures, this requires us to balance the timeliness
and accuracy of the PHFP system.
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In recent years, researchers have proposed a variety of technologies to protect
medical privacy, such as anonymous technology and homomorphic encryption, in
response to data privacy breaches in telemedicine scenarios. Nevertheless, anony-
mous technology [4] only protects the privacy of users to a certain extent, which
makes it easy to lose valuable information, and then its prediction accuracy will
be affected. And, studies have shown that anonymous techniques are not suffi-
cient to resist re-identification attacks [5]. Moreover, current frameworks based
on homomorphic encryption [6] are time-consuming and memory-intensive, and
its computational overhead is enormous, which is not suitable for real-time heart
failure prediction scenarios. None of the current work takes into account the bal-
ance between efficiency and precision. Therefore, when constructing a privacy-
preventing heart failure prediction system, we must realize privacy protection in
the premise of system accuracy and efficiency.

To achieve the above objectives, we propose a PHFP system. Our main con-
tributions can be summarized as follows:

– We are first design a lightweight system to protect privacy data and service
provider model parameters for the medical user heart failure prediction. The
system is based on the addition of secret sharing technology in secure multi-
party computing, which transfers intricate work to the edge server, reducing
the cost of medical users. Moreover, the system avoids the interaction between
the medical user terminal and the server, with the results that the overall
efficiency of the system is improved.

– PHFP use a new mathematical method to directly construct the secure Sig-
moid function and the Tanh function, which avoids the time overhead caused
by the system calling too many security components during the running pro-
cess. At the same time, system solve the problem of low function fitting pre-
cision within a specific interval caused by the local fitting of the Taylor series.
Compared with the existing additive secret sharing scheme, our system has
significantly improved in terms of computational overhead and precision.

– We conduct a comprehensive experimental evaluation to measure the per-
formance of our program. The experimental results show that the system is
superior to the previous work in terms of computational overhead, communi-
cation overhead, and computational accuracy while protecting the privacy of
heart failure prediction data.

The remaining part of this paper is organized as follows. We formulate the
problem and present the system model and security model in Sect. 2. In Sect. 3,
the primitives about GRU and secure multiparty computation are briefly intro-
duced followed by problem analysis and model presentation. Then the building
blocks that support efficient, secure computation based on secret sharing tech-
niques are provided in Sect. 4. On the basis of that, we propose the details of
our system in Sect. 5. And Sects. 6 and 7 covers the theoretical analysis and
experimental results respectively. Finally, related conclusion is stated Sect. 8.
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2 Problem Formulation

In this section, we formalize the system model, security model and identify our
design goal.

2.1 System Model

In our system model, we focus on how users with sensitive medical data can
obtain accurate and privacy-preserving real-time heart failure prediction services
from cloud service providers. Precisely, the system consists of five parts: (1) smart
wearable device (SWD); (2) the Medical User (MU); (3) the Edge Servers (ESs);
(4) the Medical Service Provider (MSP); (5) Trusted Third Party (TTP). As
shown in Fig. 1.

Fig. 1. System model under consideration

– SWD is used to collect various health data of healthy users. The collected
data has a total of 279 feature dimensions, such as heart rate, blood pressure,
body temperature, etc. And it sends the collected health data to the medical
user.

– MU wants to know its future heart failure attack risk coefficient, and it will
preprocess its heart failure data on the phone to form the heart failure eigen-
vector, which is randomly divided into the different secret values and sent
to different ESs. Besides, MU was able to accept the feedback results from
ESs and combines the feedback results to obtain the final correct prediction
results of heart failure.
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– ESs can be a cloud service provider that assists healthcare providers in col-
lecting data related to heart failure prediction and training new data. At the
same time, ESs can return the correct heart failure prediction result to the
user, and promote the user to provide more data sets.

– MSP, such as pharmaceutical companies or hospitals, can provide real-time
heart failure risk prediction services. Individually, with the help of ESs, MSP
can obtain the latest training parameters of GRU recurrent neural network.
Considering the benefits of ESs, MSP is also willing to commission ESs to
effectively predict the risk of heart failure and return the results to MU.

– TTP is only responsible for generating random numbers, which means that
TTP doesn’t require a lot of computing power. It can be replaced by a light
server or even a personal computer.

2.2 Security Model

In the security model, we use the standard semi-honest security model [7], which
is also perceived as passive or honest-but-curious. In this security model, each
edge server enforces the protocol as required by the contract. But out of curiosity,
they can try to get as much information as they can from the data they receive
and the data they process.

Also, we assume that the two edge servers ES1 and ES2 are independent of
each other, and there is no collusion between them. This means that the data
acquired by each of the edge servers will not be revealed. In this way, even if each
edge server has durable computing power, they can only get some split medical
or intermediate interaction data and model parameters. In other words, real raw
medical data and model parameters cannot be recovered.

It is worth noting that TTP is merely responsible for generating random
numbers, and it is honest and trustworthy. Last but not least, we also assume
that medical users and service providers are honest and a secure channel for
communication exists between the entities.

3 Preliminaries

3.1 Features of GRU

GRU neural network is a variant of Long Short Term Memory (LSTM), besides,
GRU maintains the effect of LSTM while making the structure simpler. It’s a
very popular neural network. The mathematical expression is shown below:

zt = σ(Wz · [ht−1, xt] + bz)
rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(Wh̃ · [rt � ht−1, xt] + bh̃)

ht = zt � ht−1 + (1 − zt) � h̃t

It is worth noting that in GRU, the value of hidden layer ht−1 at time step
t − 1 and the input value at time step t doesnt directly change the value of ht.
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The value of ht is determined by updating gate zt, resetting gate rt, and interme-
diate storage cell h̃t. In short, reset gates allow the hidden layer to remove any
information that is not useful for future prediction, while update gates determine
how much information from the previous hidden layer should be retained by the
current hidden layer.

3.2 Additive Secret Sharing Protocols

Secret sharing protocol is mainly used for secure multiply party computing
(SMC) and privacy protection. The encryption protocol based on secret sharing
has good performance and can be used to design an efficient privacy protection
computing model [8]. The secret sharing protocol can be thought of as consist-
ing of a large number of “components” through which we can build a larger and
equally secure system.

Lemma 1. If all the sub-protocols of a protocol are fully emulated, then the
protocol is fully emulated [9].

– Random Bit Protocol. The RanBits(·) protocol [10] can be thought of simply
as a random number generator. It doesn’t need any input to generate any
bit sequence (r0, · · · , rl). At the same time, a hex random number r can be
calculated by

r =
l∑

i=0

ri · 2i.

– Secure Addition and Subtraction Protocol. The SecAdd(·) and SecSub(·) pro-
tocol [10] can calculate f(u, v) = u ± v. Since u ± v = (u1 + u2) ± (u1 +
v2) = (u1 ± v1) + (u2 ± v2), it’s easy to see that the protocol can perform
secure additions and subtractions locally without the need for interaction
between servers. After the computation, each participating party will output
fi = ui ± vi. Obviously, we have f1 + f2 = u ± v.

– Secure Multiplication Protocol. The SecMul(·) protocol [10] is based on the
Beaver’s triplet [11]. Given an input binary group (u, v), the protocol outputs
another binary group (f1, f2) to the two participants, where f = f1 + f2 =
u · v. In this process, a trusted third party is required to generate a random
triple (x, y, z) and z = x · y. It is worth noting that the Participants will not
be informed of each other’s input.

– Secure Comparison Protocol. The SecCmp(·) protocol [10] can be achieved in
the comparison of the size of two inputs u and v, the input of both sides will
not be leaked. And, if u < v, SecCmp(·) outputs 1, otherwise outputs 0.

– Secure Vector Concatenation Protocol. The SecCon(·) protocol [12] is to con-
nect two short vectors into one long vector. That is (Table 1),

[u,v] = [(u0,u1,u2, ...), (v0,v1,v2, ...)]
= (u0,u1,u2, ...,v0,v1,v2, ...).
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Table 1. Variables and their description

Variables Description

zt The update gate at timestep t

rt The reset gate at timestep t

˜ht The intermediate memory unit at timestep t

ht The hidden layer at timestep t

W The weight matrix

b The bias term

� Hadamard product

σsec(.) Secure sigmoid function

tanhsec(.) Secure tanh function

Wih, Wix The split matrixes of Wi

σ The sigmoid function

δt The error vector at time

∇ The symbol of gradient

4 Secret Sharing Based Functions

4.1 Nonlinear Function Fitting Method

The GRU has at least one activation function deployed in each gate. These acti-
vation functions are nonlinear functions such as the Sigmoid function and the
Tanh function. According to Lemma 1, we can use some of the security protocols
mentioned in Sect. 3 to build a secure nonlinear function protocol. However, non-
linear functions need to include not only addition and multiplication operations,
but also complex operations, such as exponents and reciprocals. It is impossible
to construct safe nonlinear functions directly with the security protocols men-
tioned before. Therefore, we need to fit the nonlinear numbers in the GRU gates
with polynomials that only contain multiplication and addition.

Scheme I: Taylor Series [13]. At present, a useful tool for solving nonlinear
problems is the Taylor series. By using Taylor expansion multi-order approxima-

(a) (b)

Fig. 2. Taylor series and least squares approximations for Sigmoid and Tanh function
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tion, nonlinear problems can be linearised, which makes calculation and under-
standing more conveniently. The literature [12] uses the Taylor series to construct
a secure exponential function with base e and Newton iteration method to build a
secure reciprocal function. Then the security sigmoid and the secure tanh func-
tion are further built by invoking the security exponential and the reciprocal
function, but this will make the overhead of the two edge servers more massive.
Also, each invoke to the security function will result in a loss of precision, and
too many invokes to the safety function will result in more loss of accuracy. It
is not suitable for high-precision and high-efficiency scenarios like heart failure
prediction. Hence, in our scheme I, we borrowed homomorphic encryption [14]
to direct fit Sigmoid and Tanh using Taylor series directly and then build the
addition secret sharing protocol.

Scheme II: Least Square Method. Although in scheme I, direct fitting of
the sigmoid and tanh functions using Taylor series can reduce the overhead and
precision loss of the edge server, this method still has a defect. As shown in the
Fig. 2(a)–(b), the basic idea of the Taylor series is to approximate a function in
the neighborhood of a point. For points that are not included in the neighbor-
hood, the approximation error is much larger than the point contained within
the area. To avoid the problem of the local fitting function in scheme I, we addi-
tionally consider the method of fitting the function by least squares [15], which
finds the best function matching of the activation function by minimizing the
sum of the squares of the errors. Its expression is as follows,

Emin =
n∑

i=1

(p(xi) − yi)2.

Where yi is the function value of the activation function to be fitted, and
p(xi) is the function value of the polynomial to be constructed. Next, we will give
the process of fitting the Sigmoid function σ(x) by the least squares method, as
shown below.

1. Let the least squares fit the polynomial as follows,

p(x) = a0 + a1x+, · · · ,+amxm. (1)

2. The expression of the sum of squares of deviations is as follows,

E =
n∑

i=1

(a0 + a1xi+, · · · ,+amxm
i − σ(xi))2. (2)

3. To find the aj value satisfying the minimum value of E, it is necessary to
derive the partial derivative of Eq. (2) on the right side of aj .

∂E

∂aj
=

n∑

i=1

2 · (a0, a1xi+, · · · , amxm
i − σ(xi))x

j
i . (3)
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4. By sorting out, we can get the following equations.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

na0 + (
∑n

i=1 xi)a1+, · · · ,+(
∑n

i=1 xm
i )am =

∑n
i=1 yi

(
∑n

i=1 xi)a0 + (
∑n

i=1 x2
i )a1+, · · · ,+(

∑n
i=1 xm+1

i )am

=
∑n

i=1 xiσ(xi)
· · · · · ·
(
∑n

i=1 xm
i )a0 + (

∑n
i=1 xm+1

i )a1+, · · · ,+(
∑n

i=1 x2m
i )am

=
∑n

i=1 xm
i σ(xi).

Finally, by solving the equations, we can get the values of (a1, a2, · · · , am)
and get the least squares fit polynomial p(x) of σ(x). Therefore, σ(x) ≈ p(x).

4.2 Secure Sigmoid Function.

We use the least squares method to fit the Sigmoid function, Let x denote
the input, the polynomial of the least squares fitting of the sigmoid function
is expressed as follows,

f(x) = σ(x) =
1

1 + e(−x)
≈

∞∑

i=0

Cix
i.

Where Ci represents the coefficient of the least squares polynomial and i
represents the order of the least squares polynomial.

Initialization. ES1 and ES2 respectively get random values x1 and x2, sat-
isfying x = x1 + x2. In the process of initialization, ES1 need to compute
f ′
0 ← C0 + C1x1, ES2 calculation f ′′

0 ← C1x2. According to the polynomial
exponent value, the iterative process shown below.

Iteration. In the process of iteration, we are mainly implemented by alter-
natively invoking SecAdd(·) and SecMul(·). First of all, ES1 and ES2 com-
mon computing (g′

0, g
′′
0 ) ← SecMul(C2x1, C2x2, x1, x2) and f1 ← SecAdd(f0, g0).

Subsequently, gi can be calculated iteratively by similar calculation methods.
And invoke the secure comparison function SecCmp(i, n) to determine whether
to achieve the required polynomial index. If the required polynomial order is
reached, terminate the iteration and output f ′

i and f ′′
i . Otherwise, invoke the

secure addition function to compute SecAdd(fi−1, gi−1).

4.3 Secure Tanh Function

Tanh is a hyperbolic tangent function, and the curves of the Tanh function and
the Sigmoid function are relatively similar. The only difference is the output
interval. The Tanh output interval is between (−1, 1) and the full function
center at 0. Therefore, we can also fit the Tanh function by least squares. Let x
be a function input, and the polynomial of the least squares fit of the tanhsec(x)
function is expressed as follows.
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f(x) = tanh(x) =
ex − e(−x)

ex + e(−x)
≈

∞∑

i=0

Hix
i.

Also, since the Initialization and Iteration process of tanhsec is similar to
that of σsec, these processes are not repeated.

5 Lightweight Privacy-Preserving GRU for Encrypted
HF Data

5.1 Secure Forward Propagation of GRU

Due to all the necessary security “components” have been constructed, the fol-
lowing work for the secure forward propagation of GRU is simply combining
these security “components” appropriately to design a secure interactive sub-
protocol between the two edge servers ES1 and ES2. Note that in the following
sections [[i]] stands for ‘′’ and ‘′′’.

Reset Gate. The reset gate allows the hidden layer to delete any information
that is not useful for future prediction. To achieve this, the input vector xi and
information about the previous timestep ht−1 are put into the sigmoid function
after a series of linear operations. And, the final output will be between 0 and
1. Because matrixed weight Wr and bias br for the reset gate is not publicly
known, at timestep t, ES1 and ES2 compute separately,

r
[[i]]
t ← σsec(W [[i]]

r · [h[[i]]
t−1, x

[[i]]
t ] + b[[i]]r ).

h̃
[[i]]
t ← tanh[[i]]

sec(W
[[i]]

h̃
· [r[[i]]t � h

[[i]]
t−1, x

[[i]]
t ] + b

[[i]]

h̃
).

Update Gate. The update gate determines how much information from the
previous time step and the current timestep needs to be transmitted. Given the
input weight matrix Wz, input bias bz and timestep t, ES1 and ES2 consociation
calculations,

z
[[i]]
t ← σsec(W [[i]]

z · [h[[i]]
t−1, x

[[i]]
t ] + b[[i]]z ).

The final output by invoking the secure multiplication function and the secure
addition function. We let ES1 and ES2 respectively compute,

h
[[i]]
t ← z

[[i]]
t � h

[[i]]
t−1 + (1 − z

[[i]]
t ) � h̃

[[i]]
t .

Both h′
t and h′′

t are then sent to MU as feedback. And MU can decrypt the
ciphertext by simply adding them together, ht = h′

t + h′′
t .

5.2 Back Propagation Based Training of GRU

It is assumed that the iterative forward propagation of the privacy protection
GRU has been completed. Let δt−1 represents the error term at time t−1. It can
be calculated by the partial derivative function of the output ht at the timestep
t. ES1 and ES2 combine calculates,
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δ
[[i]]
t−1 ← δ

[[i]]
r,t · W

[[i]]
rh + δ

[[i]]
z,t · W

[[i]]
zh +

δ
[[i]]

h̃,t
· W

[[i]]

h̃h
� r

[[i]]
t + δ

[[i]]
h,t � (1 − z

[[i]]
t ).

Respectively, δr,t, δz,t, δh̃,t and δh,t denote the derivative with respect to
ht−1. Here, we present a calculation formula based on the addition secret shar-
ing protocol. During this time, the values of rt, zt, and h̃t can be obtained by
forwarding propagation.

δ
[[i]]
r,t ←δ

[[i]]
t � z

[[i]]
t �[1 − (h̃[[i]]

t )2]� W
[[i]]

h̃h
�h

[[i]]
t−1�r

[[i]]
t �(1 − r

[[i]]
t ),

δ
[[i]]
z,t ← δ

[[i]]
t � (h̃[[i]]

t − h
[[i]]
t−1) � z

[[i]]
t � (1 − z

[[i]]
t ),

δ
[[i]]

h̃,t
← δ

[[i]]
t � z

[[i]]
t � [1 − (h̃[[i]]

t )2],

δ
[[i]]
h,t ← δ

[[i]]
t .

For the entire sample, its error is the sum of the errors at all times, and
the gradient of the weights associated with the previous moment is equal to the
amount of the gradients at all times, and the other weights do not have to be
accumulated. Let γ ∈ {r, z, h̃}. We have,

∇W
[[i]]
γ,h ←

T∑

t=1

SecMul(δ[[i]]γ,t, h
[[i]]
t−1),

∇W [[i]]
γ,x ← SecMul(δ[[i]]γ,t, x

[[i]]
t ),

∇b[[i]]γ ←
T∑

t=1

δ
[[i]]
γ,t.

Let α denote the learning rate of the gradient drop, and α is public. Then
we can use the following formula to update the weight matrix and bias.

W [[i]]
new,γ ← W

[[i]]
old,γ − α � ∇W [[i]]

γ ,

b[[i]]new,γ ← b
[[i]]
old,γ − α � ∇b[[i]]γ .

Unlike forward propagation, after the backpropagation training complete, all
updated encryption parameters are sent to the MSP instead of the MU. And
MSP can decrypt the ciphertext by simply adding them together, Wnew,γ =
W ′

new,γ + W ′′
new,γ , and .bnew,γ = b′

new,γ + b′′
new,γ .

6 Theoretical Analysis

6.1 Correctness

Before the medical user uploads the heart failure specific data, the feature data
H is divided into H = H1 + H2. Then, under our security protocol built on the
addition of secret sharing, a large number of linear and nonlinear operations are
performed on H. Strictly speaking, the final output prediction result F and the
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model parameter NP may not be equal to the value of the original unencrypted
algorithm. Here, we demonstrate through the theoretical derivation that the
value of the output of our system is highly close to the original value.

First, some of the protocols [10] mentioned in Sect. 3.2 have been proven,
and their output is still accurate no matter how many times they are invoked.
Secondly, the security functions we construct are all approximated by polyno-
mial. The operations used in these functions are only addition and multiplica-
tion. Therefore, in theory, as long as the edge server computing power is strong
enough, we can achieve arbitrary calculation accuracy. As long as the accuracy
reaches the precision required by GRU, it can be said that our proposed func-
tion is additive and correct as of the original function. In addition, since the
activation function is composed of a combination of polynomials containing only
addition and multiplication. This means that their output ξ satisfies ξ = ξ1 + ξ2.
Finally, we can draw some conclusions and give an arbitrary function �. We
have � = �1 + �2 if and only if � = f(ζ1, ζ2, · · · ), where ζi(i = 1, 2, · · ·) is a
random linear mapping function and xi can be any of the security functions in
this paper. Thus, based on the inference, we can ensure that F = F1 + F2 and
NP = NP1 + NP2, because both forward and backward propagation can be
considered as �.

6.2 Security

In this section, we analyse the safety of the proposed PHFP system. To prove the
security of the system in this paper, we first need to define what is semi-honest
security [9] formally.

Definition 1. We say that a protocol s secure if there exists a probabilistic
polynomial-time simulator S that can generate a view for the adversary A in
the real world and the view is computationally indistinguishable from its rear
view.

In addition to the Lemma1 mentioned in Sect. 3, also need the following lemmas.

Lemma 2 [9]. If a random element r is uniformly distributed on Zn and inde-
pendent from any variable x ∈ Zn, then r ± x is also uniformly random and
independent from x.

Lemma 3 [10,12]. The protocols SecAdd, SecMul, SecCmp and SecCon are
secure in the semi-honest model.

According to Lemma 3, we only need to verify the safety of other protocols.
The protocols σsec and tanhsec are secure in the semi-honest model.

Proof. In σsec, given the order of the polynomial n, what ES1 holds is receiver
Rec1 = (u1, G

′
1, F

′
1, α

′), where G′
1 = g′

0, g
′
1, · · · , g′

n and F ′
1 = f ′

0, f
′
1, · · · , f ′

n−1.
And g′

i and f ′
i are respectively the outputs of SecMul and SecAdd. In the mean-

time, with u1, they also compose the inputs of the next iteration. According to
Lemma 3, it is guaranteed that G′

1 and F ′
1 are sets of uniformly random values.
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So they can all be correctly simulated by simulator ES1, and are unable to dis-
tinguish by the adversary A in polynomial time. Similarly, ES2 can also hold
Rec2 which is simulatable and distinguishable. In addition, tanhsec protocols are
implemented by a similar polynomial composed of protocols and can be proved
to be secure.

7 Performance Evaluation

To implement our framework, we utilise NumPy for parallel computation of
matrixes in Python 3. All the data is encrypted on a personal computer with
an Intel(R) Core (TM) i7-6700 CPU @3.40 GHz and 8.00 GB of RAM. Then,
the ciphertexts respectively sent to two edge servers for privacy-preserving GRU
training and pre-trained heart failure prediction. Each server is equipped with
an Intel(R) Core (TM) i7-7700HQ CPU @2.80 GHz and 8.00 GB of RAM.
Also, to obtain the correct pre-diagnosis results in the above evaluation envi-
ronment, we considered a real data set from the UCI machine learning library
called Arrhythmia to evaluate the accuracy and efficiency of our solution. The
selected Arrhythmia dataset contains 452 instances, each of which includes 279
attributes (such as age, weight, gender, heart rate, QRS duration, P-R interval,
Q-T interval, T interval, P interval, etc.)

7.1 Performance of Secure Sigmoid and Tanh Function

In the PHFP system, we tried two approaches to approximate the activation
function in the GRU neural network. To avoid the local fitting problem of Taylor
series, we finally use the least squares method to construct high-order polyno-
mials to approximate the Sigmoid and Tanh functions. Since each hidden unit
of the GRU contains two Sigmoid functions and one Tanh function, when our
PHFP system has multiple hidden units, the secure Sigmoid and Tanh func-
tions are invoked multiple times. Therefore, we evaluated the performance of
the scheme II security function under different number of calls, and we also
compared it with scheme I and OPSR scheme [12], as shown in Fig. 3(a)–(d).
From the figure, we can see that scheme II is both accurate and efficient. It is
better than the other two programs. The reasons summarise as follows: Firstly,
since scheme II uses the least squares method to fit the activation function, the
local fitting problem of the Taylor series is avoided, and the accuracy is improved
to some extent. Secondly, scheme II adopts a scheme of directly constructing a
security function, which prevents the time overhead caused by multiple invokes
of security components. To sum up, scheme II is more suitable for our heart
failure prediction system in terms of accuracy and efficiency.

7.2 Performance of PHFP

Accuracy Evaluation. To further evaluate the performance of the PHFP, we
deployed the constructed safety components to our system to assess the accu-
racy of the system’s forward propagation calculations. At the same time, we also
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(a) Caculation errors of Sigmoid function (b) Caculation errors of Tanh function

(c) Run times of Sigmoid function (d) Run times of Tanh function

Fig. 3. Performance of secure Sigmoid and Tanh function

deployed the components built by [12] into our GRU neural network and used the
same data set to evaluate the computational error of forwarding propagation. As
shown in Fig. 4(a)–(b), since the numerical range of our dataset is not entirely
concentrated on a certain point, the error of the scheme II we constructed in
forwarding propagation is significantly better than the other two schemes. This
benefit from the nature of the global fit of the least squares method. It is notewor-
thy that when medical users predict heart failure, only the process of forwarding
propagation is needed, while the calculation error of forwarding propagation is
controlled within 10−5, which can be neglected in actual heart failure prediction.

Efficiency Evaluation. In PHFP, the primary function of ESs is to calculate
the user’s data and train the model provided by the medical service provider.
Both secure forward propagation and secure backpropagation are involved in
training the model. However, the number of features of medical data, the num-
ber of medical instances and the number of GRU hidden layers have an essential
impact on the computing cost of ESs. Accordingly, we first tested the computa-
tional overhead of ESs with a different number of features and a different number
of medical cases. Here, we default the number of hidden layers of GRU to 20,
and we compare scheme I and scheme II with OPSR. As shown in Fig. 4(c)–(d),
since we adopted the idea of directly constructing sigmoid and tanh functions,
and avoiding the overhead caused by repeated calls to multiple components, our
two schemes are significantly better than the OPSR scheme in terms of compu-
tational cost. Besides, we noticed that in the scheme II adopted by the PHFP
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(a) FP calculation error of ESs (b) FP calculation error of ESs

(c) FP calculation overhead for ES (d) FP calculation overhead for ES

Fig. 4. ESs efficiency evaluation

system, although we let the ES perform the forward propagation calculation of
250 medical cases with 250 features, its calculation time is less than one second.
At the same time, we also evaluated the computational overhead of backpropa-
gation ESs.

8 Conclusion

In this paper, we proposed a privacy-preserving heart failure prediction system
based on Secure Multiparty Computation and Gated Recurrent Unit, named
PHFP. The PHFP system was adopted to protect the privacy of users’ heart
failure prediction data and the security of neural network parameters of medical
service providers with high accuracy and low computing cost. Accurately, the
program randomly split the heart failure prediction data and neural network
parameters into secret sharing, and the edge server calculated the user data in
the state of ciphertext. Therefore, the medical service provider cannot obtain the
user’s private data, and the user cannot receive any neural network parameter
information of the medical service provider. Finally, we use a large number of
experiments to prove the effectiveness of the system.
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