Appendix of "Partial Clustering Ensemble"

Appendix A: Proof of Theorem 1

The \mathbf{H}-subproblem is:

$$
\begin{equation*}
\min _{\mathbf{H}^{T} \mathbf{H}=\mathbf{I}} \operatorname{tr}\left(\mathbf{H}^{T} \mathbf{D} \mathbf{H}\right)-2 \operatorname{tr}\left(\mathbf{H}^{T} \mathbf{C}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{D}=\mathbf{V}^{2}+\gamma \mathbf{I}$ and $\mathbf{C}=\gamma \mathbf{Y} \mathbf{R}^{T}+\mathbf{V}^{2} \sum_{i=1}^{m} \alpha_{i} \mathbf{Y}^{(i)} \mathbf{R}^{(i)}$. Let \mathbf{H}^{t} denote the value of \mathbf{H} in the t-th iteration. Given a step size $\eta>0$, we denote $\mathbf{M}=\left[\eta\left(\mathbf{D H}^{t}-\right.\right.$ $\left.\mathbf{C}),-\eta \mathbf{H}^{t}\right]$ and $\mathbf{N}=\left[\mathbf{H}^{t}, \mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right]^{T}$. The following Theorem provides an update formula of \mathbf{H}^{t+1} :

Theorem 1. Suppose $\mathbf{H}^{t}, \mathbf{M}$ and \mathbf{N} be defined as before, if $\mathbf{H}^{t T} \mathbf{H}^{t}=\mathbf{I}$, update \mathbf{H}^{t+1} as follows:

$$
\begin{equation*}
\mathbf{H}^{t+1}=\mathbf{H}^{t}-\mathbf{M N H} \mathbf{H}^{t}-\mathbf{M}(\mathbf{I}+\mathbf{N M})^{-1}\left(\mathbf{N H}^{t}-\mathbf{N M N H}^{t}\right) . \tag{2}
\end{equation*}
$$

Then, $\mathbf{H}^{t+1}{ }^{T} \mathbf{H}^{t+1}=\mathbf{I}$, and this updating is in a descent direction of Eq.(1). Since Eq.(1) has a lower bound, the iteration method converges. Moreover, it can converge to a stable point.

Proof. According to Woodbury identity, we have

$$
\begin{align*}
\mathbf{H}^{t+1} & =\mathbf{H}^{t}-\mathbf{M N H} \tag{3}\\
& -\mathbf{M}(\mathbf{I}+\mathbf{N M})^{-1} \mathbf{N H}^{t}+\mathbf{M}(\mathbf{I}+\mathbf{N M})^{-1} \mathbf{N M N H}^{t} \\
& =\left(\mathbf{I}-\mathbf{M}(\mathbf{I}+\mathbf{N M})^{-1} \mathbf{N}\right)(\mathbf{I}-\mathbf{M N}) \mathbf{H}^{t} \\
& =(\mathbf{I}+\mathbf{M N})^{-1}(\mathbf{I}-\mathbf{M N}) \mathbf{H}^{t}
\end{align*}
$$

Let $\mathbf{Q}=\frac{1}{\eta} \mathbf{M N}$, we have

$$
\begin{equation*}
\mathbf{H}^{t+1}=(\mathbf{I}+\eta \mathbf{Q})^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t} \tag{4}
\end{equation*}
$$

We first prove that $\mathbf{H}^{t+1^{T}} \mathbf{H}^{t+1}=\mathbf{I}$. Let us take a closer look at \mathbf{Q} :

$$
\begin{equation*}
\mathbf{Q}=\frac{1}{\eta} \mathbf{M} \mathbf{N}=\mathbf{D H}^{t} \mathbf{H}^{t T}-\mathbf{C H}^{t T}-\mathbf{H}^{t}\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \tag{5}
\end{equation*}
$$

It is easy to verify that \mathbf{Q} is a skew-symmetric matrix, i.e., $\mathbf{Q}=-\mathbf{Q}^{T}$. Then, we compute $\mathbf{H}^{t+1^{T}} \mathbf{H}^{t+1}$:

$$
\begin{align*}
\mathbf{H}^{t+1^{T}} \mathbf{H}^{t+1} & =\mathbf{H}^{t T}(\mathbf{I}-\eta \mathbf{Q})^{T}\left((\mathbf{I}+\eta \mathbf{Q})^{T}\right)^{-1}(\mathbf{I}+\eta \mathbf{Q})^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t} \\
& =\mathbf{H}^{t T}(\mathbf{I}+\eta \mathbf{Q})(\mathbf{I}-\eta \mathbf{Q})^{-1}(\mathbf{I}+\eta \mathbf{Q})^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t} \tag{6}\\
& =\mathbf{H}^{t T}(\mathbf{I}+\eta \mathbf{Q})((\mathbf{I}+\eta \mathbf{Q})(\mathbf{I}-\eta \mathbf{Q}))^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t}
\end{align*}
$$

Furthermore, we have

$$
\begin{equation*}
(\mathbf{I}+\eta \mathbf{Q})(\mathbf{I}-\eta \mathbf{Q})=\mathbf{I}-\eta^{2} \mathbf{Q} \mathbf{Q}=(\mathbf{I}-\eta \mathbf{Q})(\mathbf{I}+\eta \mathbf{Q}) \tag{7}
\end{equation*}
$$

Taking it back to Eq.(6), we have

$$
\begin{aligned}
\mathbf{H}^{t+1^{T}} \mathbf{H}^{t+1} & =\mathbf{H}^{t T}(\mathbf{I}+\eta \mathbf{Q})((\mathbf{I}-\eta \mathbf{Q})(\mathbf{I}+\eta \mathbf{Q}))^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t} \\
& =\mathbf{H}^{t T}(\mathbf{I}+\eta \mathbf{Q})(\mathbf{I}+\eta \mathbf{Q})^{-1}(\mathbf{I}-\eta \mathbf{Q})^{-1}(\mathbf{I}-\eta \mathbf{Q}) \mathbf{H}^{t} \\
& =\mathbf{H}^{t T} \mathbf{H}^{t} \\
& =\mathbf{I} .
\end{aligned}
$$

Then we prove that updating \mathbf{H}^{t+1} by Eq.(2) is in a descent direction. To prove it, we first provide the following lemma:
Lemma 1. Given the objective function $\mathcal{J}\left(\mathbf{H}^{t+1}\right)=\operatorname{tr}\left(\mathbf{H}^{t+1}{ }^{T} \mathbf{D} \mathbf{H}^{t+1}\right)-2 \operatorname{tr}\left(\mathbf{H}^{t+1}{ }^{T} \mathbf{C}\right)$ defined in Eq.(1), if we update \mathbf{H}^{t+1} by Eq.(2), we have:

$$
\begin{equation*}
\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}\right|_{\eta=0}=-2\|\mathbf{Q}\|_{F}^{2} \leq 0 \tag{8}
\end{equation*}
$$

Proof. According to the chain rule, we have

$$
\begin{equation*}
\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}=\operatorname{tr}\left(\left(\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \mathbf{H}^{t+1}}\right)^{T} \frac{\partial \mathbf{H}^{t+1}}{\partial \eta}\right) \tag{9}
\end{equation*}
$$

When $\eta=0, \mathbf{H}^{t+1}=\mathbf{H}^{t}$, and $\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \mathbf{H}^{t+1}}\right|_{\eta=0}=2\left(\mathbf{D H}^{t}-\mathbf{C}\right),\left.\frac{\partial \mathbf{H}^{t+1}}{\partial \eta}\right|_{\eta=0}=-2 \mathbf{Q} \mathbf{H}^{t}$.
On one hand, we have

$$
\begin{aligned}
\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}\right|_{\eta=0} & =-4 \operatorname{tr}\left(\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \mathbf{Q} \mathbf{H}^{t}\right) \\
& =-4 \operatorname{tr}\left(\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T}\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)-\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \mathbf{H}^{t}\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \mathbf{H}^{t}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\|\mathbf{Q}\|_{F}^{2} & =\operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{Q}\right) \\
& =\operatorname{tr}\left(\left(\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right) \mathbf{H}^{t T}-\mathbf{H}^{t}\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T}\right)^{T}\left(\left(\mathbf{D H}^{t}-\mathbf{C}\right) \mathbf{H}^{t T}-\mathbf{H}^{t}\left(\mathbf{D H}^{t}-\mathbf{C}\right)^{T}\right)\right) \\
& =2 \operatorname{tr}\left(\left(\mathbf{D H}^{t}-\mathbf{C}\right)^{T}\left(\mathbf{D H}^{t}-\mathbf{C}\right)-\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \mathbf{H}^{t}\left(\mathbf{D} \mathbf{H}^{t}-\mathbf{C}\right)^{T} \mathbf{H}^{t}\right)
\end{aligned}
$$

Therefore, we have $\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}\right|_{\eta=0}=-2\|\mathbf{Q}\|_{F}^{2} \leq 0$.

Lemma 1 shows that if \mathbf{H} moves a small step $\Delta \eta>0$ in the update direction, the objective function \mathcal{J} will have a change $-2\|\mathbf{Q}\|_{F}^{2} \Delta \eta$ and since $-2\|\mathbf{Q}\|_{F}^{2} \leq 0$, the objective function \mathcal{J} will decrease. Thus the update direction is a descent direction. Moreover, since \mathbf{H} is an orthogonal matrix whose elements are all bounded, the objective function Eq.(1) has a lower bound, and the algorithm will converge.

To prove that it will converge to a stable point, we introduce the following lemma which shows the first-order optimality condition of the objective function:
Lemma 2. Let $\mathcal{L}=\operatorname{tr}\left(\mathbf{H}^{T} \mathbf{D H}\right)-2 \operatorname{tr}\left(\mathbf{H}^{T} \mathbf{C}\right)-\operatorname{tr}\left(\boldsymbol{\Lambda}\left(\mathbf{H}^{T} \mathbf{H}-\mathbf{I}\right)\right)$ be the Lagrangian function of our objective function, where $\boldsymbol{\Lambda}$ is the Lagrangian multiplier, then $\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=\mathbf{0}$ if and only if $\mathbf{Q}=\mathbf{0}$, so $\mathbf{Q}=\mathbf{0}$ is the first-order optimality condition of our objective function.

Proof. Set the partial derivative of \mathcal{L} w.r.t. \mathbf{H} to zero:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=2(\mathbf{D H}-\mathbf{C}-\mathbf{H} \boldsymbol{\Lambda})=\mathbf{0} \tag{12}
\end{equation*}
$$

By multiplying both sides of Eq.(12) by \mathbf{H}^{T} and applying the constraint $\mathbf{H}^{T} \mathbf{H}=$ \mathbf{I}, we can solve $\boldsymbol{\Lambda}$ as $\boldsymbol{\Lambda}=\mathbf{H}^{T}(\mathbf{D H}-\mathbf{C})$. Note that $\mathbf{H}^{T} \mathbf{H}$ is symmetric, and its corresponding Lagrangian multiplier $\boldsymbol{\Lambda}$ is also symmetric. So we rewrite $\boldsymbol{\Lambda}$ as $\boldsymbol{\Lambda}=$ $(\mathbf{D H}-\mathbf{C})^{T} \mathbf{H}$. Putting it back into Eq.(12), we obtain

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=2\left(\mathbf{D} \mathbf{H} \mathbf{H}^{T}-\mathbf{C H}^{T}-\mathbf{H}(\mathbf{D H}-\mathbf{C})^{T}\right) \mathbf{H}=2 \mathbf{Q H} \tag{13}
\end{equation*}
$$

On one hand, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=2 \mathbf{Q H}$, so if $\mathbf{Q}=\mathbf{0}$, then $\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=\mathbf{0}$.
On the other hand, if $\frac{\partial \mathcal{L}}{\partial \mathbf{H}}=\mathbf{0}$, i.e., $\left(\mathbf{D H} \mathbf{H}^{T}-\mathbf{C H}^{T}-\mathbf{H}(\mathbf{D H}-\mathbf{C})^{T}\right) \mathbf{H}=\mathbf{0}$. Let $\mathbf{Z}=\mathbf{D H}-\mathbf{C}$, then we have $\mathbf{Z}=\mathbf{H} \mathbf{Z}^{T} \mathbf{H}$ due to $\mathbf{H}^{T} \mathbf{H}=\mathbf{I}$. Thus,

$$
\begin{equation*}
\mathbf{Z}=\mathbf{H Z}^{T} \mathbf{H}=\mathbf{H}\left(\mathbf{H} \mathbf{Z}^{T} \mathbf{H}\right)^{T} \mathbf{H}=\mathbf{H} \mathbf{H}^{T} \mathbf{Z} \tag{14}
\end{equation*}
$$

Taking the transposition of both sides, we have $\mathbf{Z}^{T}=\mathbf{Z}^{T} \mathbf{H} \mathbf{H}^{T}$. Then we obtain

$$
\begin{equation*}
\mathbf{H} \mathbf{Z}^{T}=\mathbf{H Z}^{T} \mathbf{H} \mathbf{H}^{T}=\mathbf{Z} \mathbf{H}^{T} \tag{15}
\end{equation*}
$$

which means $\mathbf{Z} \mathbf{H}^{T}-\mathbf{H} \mathbf{Z}^{T}=\mathbf{0}$. Note that $\mathbf{Q}=\mathbf{Z} \mathbf{H}^{T}-\mathbf{H Z} \mathbf{Z}^{T}$, so $\mathbf{Q}=\mathbf{0}$. In summary, $\mathbf{Q}=\mathbf{0}$ is the first-order optimality condition.

Now, get back to Theorem 1. The algorithm converges when $\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}\right|_{\eta=0}=0$, which means \mathbf{H} cannot move a small step in the descent direction to make the objective function decreases. Since $\left.\frac{\partial \mathcal{J}\left(\mathbf{H}^{t+1}\right)}{\partial \eta}\right|_{\eta=0}=-2\|\mathbf{Q}\|_{F}^{2},\|\mathbf{Q}\|_{F}^{2}=0$, i.e., $\mathbf{Q}=\mathbf{0}$. Due to Lemma 2, it satisfies the first-order optimality condition, so the algorithm converges to a stable point.

Appendix B: Proof of Theorem 2

The $\boldsymbol{\alpha}$-subproblem is:

$$
\begin{array}{ll}
\min _{\boldsymbol{\alpha}} & \boldsymbol{\alpha}^{T} \mathbf{G} \boldsymbol{\alpha}-2 \mathbf{f}^{T} \boldsymbol{\alpha} \tag{16}\\
\text { s.t. } & 0 \leq \alpha_{i} \leq 1, \quad \sum_{i=1}^{m} \alpha_{i}=1
\end{array}
$$

where the (i, j)-th element of \mathbf{G} is $G_{i j}=\operatorname{tr}\left(\mathbf{R}^{(i) T} \mathbf{Y}^{(i) T} \mathbf{V}^{2} \mathbf{Y}^{(j)} \mathbf{R}^{(j)}\right)$ and the i th element of vector \mathbf{f} is $f_{i}=\operatorname{tr}\left(\mathbf{R}^{(i) T} \mathbf{Y}^{(i) T} \mathbf{V}^{2} \mathbf{H}\right)$. Then, we have the following Theorem about its convexity:

Theorem 2. Eq.(16) is a convex quadratic programming.
Proof. Obviously, Eq.(16) is a quadratic programming, and the constraint is a convex set. To prove it is a convex quadratic programming, we just need to prove that \mathbf{G} is a positive semi-definite matrix. Given any non-zero vector $\mathbf{x} \in \mathbb{R}^{m}$, we compute:

$$
\begin{align*}
\mathbf{x}^{T} \mathbf{G} \mathbf{x} & =\sum_{i, j=1}^{m} x_{i} G_{i j} x_{j} \tag{17}\\
& =\sum_{i, j=1}^{m} x_{i} x_{j} \operatorname{tr}\left(\mathbf{R}^{(i) T} \mathbf{Y}^{(i) T} \mathbf{V}^{2} \mathbf{Y}^{(j)} \mathbf{R}^{(j)}\right) \\
& =\operatorname{tr}\left(\sum_{i=1}^{m} x_{i} \mathbf{R}^{(i) T} \mathbf{Y}^{(i) T} \mathbf{V}^{2} \sum_{j=1}^{m} x_{j} \mathbf{Y}^{(j)} \mathbf{R}^{(j)}\right) \\
& =\operatorname{tr}\left(\left(\sum_{i=1}^{m} x_{i} \mathbf{Y}^{(i)} \mathbf{R}^{(i)}\right)\left(\sum_{i=1}^{m} x_{i} \mathbf{Y}^{(i)} \mathbf{R}^{(i)}\right)^{T} \mathbf{V}^{2}\right)
\end{align*}
$$

Denoting $\mathbf{A}=\sum_{i=1}^{m} x_{i} \mathbf{Y}^{(i)} \mathbf{R}^{(i)}$, we have

$$
\begin{equation*}
\mathbf{x}^{T} \mathbf{G} \mathbf{x}=\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{T} \operatorname{diag}(\mathbf{v})^{2}\right)=\sum_{p=1}^{m} v_{p}^{2}\left\|\mathbf{A}_{p .}\right\|_{2}^{2} \geq 0 \tag{18}
\end{equation*}
$$

Therefore, \mathbf{G} is a positive semi-definite matrix, and thus Eq.(16) is convex quadratic programming.

Appendix C: Proof of Theorem 3

The $\mathbf{R}^{(i)}$-subproblem is:

$$
\begin{equation*}
\min _{\mathbf{R}^{(i) T} \mathbf{R}^{(i)}=\mathbf{I}} \operatorname{tr}\left(\mathbf{K} \mathbf{R}^{(i)}\right) \tag{19}
\end{equation*}
$$

where $\mathbf{K}=\sum_{j: j \neq i} \alpha_{j} \mathbf{R}^{(j) T} \mathbf{Y}^{(j) T} \mathbf{V}^{2} \mathbf{Y}^{(i)}-\mathbf{H}^{T} \mathbf{V}^{2} \mathbf{Y}^{(i)}$.
The following Theorem provides its global optima:

Theorem 3. Supposing the singular value decomposition (SVD) of $-\mathbf{K}^{T}$ is $-\mathbf{K}^{T}=$ $\mathbf{U} \boldsymbol{\Sigma} \mathbf{S}^{T}$, then the global optima of Eq.(19) is $\mathbf{R}^{(i)}=\mathbf{U} \mathbf{S}^{T}$.

Proof. Denote $\mathbf{W}=-\mathbf{K}^{T}$ and we have its SVD is $\mathbf{W}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{S}^{T}$. Notice that to minimize $\operatorname{tr}\left(\mathbf{K} \mathbf{R}^{(i)}\right)$ is equivalent to maximize $\operatorname{tr}\left(\mathbf{W}^{T} \mathbf{R}^{(i)}\right)$. Since $\mathbf{R}^{(i)}$ is an orthogonal matrix, its SVD is $\mathbf{R}^{(i)}=\mathbf{R}^{(i)} * \mathbf{I} * \mathbf{I}$.

According to Von Neumanns trace inequality, we have

$$
\begin{align*}
\operatorname{tr}\left(\mathbf{W}^{T} \mathbf{R}^{(i)}\right) & \leq \operatorname{tr}(\mathbf{\Sigma} \mathbf{I}) \tag{20}\\
& =\operatorname{tr}\left(\mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{S}^{T} \mathbf{S}\right) \\
& =\operatorname{tr}\left(\mathbf{S} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U S}^{T}\right) \\
& =\operatorname{tr}\left(\mathbf{W}^{T} \mathbf{U} \mathbf{S}^{T}\right)
\end{align*}
$$

Obviously, the equality holds when $\mathbf{R}^{(i)}=\mathbf{U S}{ }^{T}$. Therefore, the global optima of Eq.(19) is $\mathbf{R}^{(i)}=\mathbf{U} \mathbf{S}^{T}$.

