Appendix of "Partial Clustering Ensemble"

Appendix A: Proof of Theorem 1

The H-subproblem is:

$$\min_{\mathbf{H}^{T}\mathbf{H}=\mathbf{I}} tr(\mathbf{H}^{T}\mathbf{D}\mathbf{H}) - 2tr(\mathbf{H}^{T}\mathbf{C}),$$
(1)

where $\mathbf{D} = \mathbf{V}^2 + \gamma \mathbf{I}$ and $\mathbf{C} = \gamma \mathbf{Y} \mathbf{R}^T + \mathbf{V}^2 \sum_{i=1}^m \alpha_i \mathbf{Y}^{(i)} \mathbf{R}^{(i)}$. Let \mathbf{H}^t denote the value of \mathbf{H} in the *t*-th iteration. Given a step size $\eta > 0$, we denote $\mathbf{M} = [\eta (\mathbf{D} \mathbf{H}^t - \mathbf{C}), -\eta \mathbf{H}^t]$ and $\mathbf{N} = [\mathbf{H}^t, \mathbf{D} \mathbf{H}^t - \mathbf{C}]^T$. The following Theorem provides an update formula of \mathbf{H}^{t+1} :

Theorem 1. Suppose \mathbf{H}^t , \mathbf{M} and \mathbf{N} be defined as before, if $\mathbf{H}^{tT}\mathbf{H}^t = \mathbf{I}$, update \mathbf{H}^{t+1} as follows:

$$\mathbf{H}^{t+1} = \mathbf{H}^t - \mathbf{M}\mathbf{N}\mathbf{H}^t - \mathbf{M}(\mathbf{I} + \mathbf{N}\mathbf{M})^{-1}(\mathbf{N}\mathbf{H}^t - \mathbf{N}\mathbf{M}\mathbf{N}\mathbf{H}^t).$$
 (2)

Then, $\mathbf{H}^{t+1^T}\mathbf{H}^{t+1} = \mathbf{I}$, and this updating is in a descent direction of Eq.(1). Since Eq.(1) has a lower bound, the iteration method converges. Moreover, it can converge to a stable point.

Proof. According to Woodbury identity, we have

$$\mathbf{H}^{t+1} = \mathbf{H}^{t} - \mathbf{M}\mathbf{N}\mathbf{H}^{t} - \mathbf{M}(\mathbf{I} + \mathbf{N}\mathbf{M})^{-1}\mathbf{N}\mathbf{H}^{t} + \mathbf{M}(\mathbf{I} + \mathbf{N}\mathbf{M})^{-1}\mathbf{N}\mathbf{M}\mathbf{N}\mathbf{H}^{t}$$
(3)
= (**I** - **M**(**I** + **NM**)^{-1}**N**)(**I** - **MN**)**H**^t
= (**I** + **MN**)^{-1}(**I** - **MN**)**H**^t

Let $\mathbf{Q} = \frac{1}{\eta} \mathbf{M} \mathbf{N}$, we have

$$\mathbf{H}^{t+1} = \left(\mathbf{I} + \eta \mathbf{Q}\right)^{-1} \left(\mathbf{I} - \eta \mathbf{Q}\right) \mathbf{H}^{t}$$
(4)

We first prove that $\mathbf{H}^{t+1^T}\mathbf{H}^{t+1} = \mathbf{I}$. Let us take a closer look at \mathbf{Q} :

$$\mathbf{Q} = \frac{1}{\eta} \mathbf{M} \mathbf{N} = \mathbf{D} \mathbf{H}^t \mathbf{H}^{tT} - \mathbf{C} \mathbf{H}^{tT} - \mathbf{H}^t (\mathbf{D} \mathbf{H}^t - \mathbf{C})^T$$
(5)

It is easy to verify that \mathbf{Q} is a skew-symmetric matrix, i.e., $\mathbf{Q} = -\mathbf{Q}^T$. Then, we compute $\mathbf{H}^{t+1^T} \mathbf{H}^{t+1}$:

$$\mathbf{H}^{t+1}^{T}\mathbf{H}^{t+1} = \mathbf{H}^{tT} \left(\mathbf{I} - \eta \mathbf{Q}\right)^{T} \left(\left(\mathbf{I} + \eta \mathbf{Q}\right)^{T}\right)^{-1} \left(\mathbf{I} + \eta \mathbf{Q}\right)^{-1} \left(\mathbf{I} - \eta \mathbf{Q}\right) \mathbf{H}^{t}$$
$$= \mathbf{H}^{tT} \left(\mathbf{I} + \eta \mathbf{Q}\right) \left(\mathbf{I} - \eta \mathbf{Q}\right)^{-1} \left(\mathbf{I} + \eta \mathbf{Q}\right)^{-1} \left(\mathbf{I} - \eta \mathbf{Q}\right) \mathbf{H}^{t} \qquad (6)$$
$$= \mathbf{H}^{tT} \left(\mathbf{I} + \eta \mathbf{Q}\right) \left(\left(\mathbf{I} + \eta \mathbf{Q}\right) \left(\mathbf{I} - \eta \mathbf{Q}\right)\right)^{-1} \left(\mathbf{I} - \eta \mathbf{Q}\right) \mathbf{H}^{t}.$$

Furthermore, we have

$$(\mathbf{I} + \eta \mathbf{Q}) (\mathbf{I} - \eta \mathbf{Q}) = \mathbf{I} - \eta^2 \mathbf{Q} \mathbf{Q} = (\mathbf{I} - \eta \mathbf{Q}) (\mathbf{I} + \eta \mathbf{Q}).$$
(7)

Taking it back to Eq.(6), we have

$$\begin{split} \mathbf{H}^{t+1^{T}}\mathbf{H}^{t+1} = & \mathbf{H}^{tT}\left(\mathbf{I} + \eta\mathbf{Q}\right)\left(\left(\mathbf{I} - \eta\mathbf{Q}\right)\left(\mathbf{I} + \eta\mathbf{Q}\right)\right)^{-1}\left(\mathbf{I} - \eta\mathbf{Q}\right)\mathbf{H}^{t} \\ = & \mathbf{H}^{tT}\left(\mathbf{I} + \eta\mathbf{Q}\right)\left(\mathbf{I} + \eta\mathbf{Q}\right)^{-1}\left(\mathbf{I} - \eta\mathbf{Q}\right)^{-1}\left(\mathbf{I} - \eta\mathbf{Q}\right)\mathbf{H}^{t} \\ = & \mathbf{H}^{tT}\mathbf{H}^{t} \\ = & \mathbf{I}. \end{split}$$

Then we prove that updating \mathbf{H}^{t+1} by Eq.(2) is in a descent direction. To prove it, we first provide the following lemma:

Lemma 1. Given the objective function $\mathcal{J}(\mathbf{H}^{t+1}) = tr(\mathbf{H}^{t+1^T}\mathbf{D}\mathbf{H}^{t+1}) - 2tr(\mathbf{H}^{t+1^T}\mathbf{C})$ defined in Eq.(1), if we update \mathbf{H}^{t+1} by Eq.(2), we have:

$$\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta}\Big|_{\eta=0} = -2\|\mathbf{Q}\|_F^2 \le 0.$$
(8)

Proof. According to the chain rule, we have

$$\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta} = tr\left(\left(\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \mathbf{H}^{t+1}}\right)^T \frac{\partial \mathbf{H}^{t+1}}{\partial \eta}\right)$$
(9)

When $\eta = 0$, $\mathbf{H}^{t+1} = \mathbf{H}^t$, and $\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \mathbf{H}^{t+1}}\Big|_{\eta=0} = 2(\mathbf{D}\mathbf{H}^t - \mathbf{C})$, $\frac{\partial \mathbf{H}^{t+1}}{\partial \eta}\Big|_{\eta=0} = -2\mathbf{Q}\mathbf{H}^t$. On one hand, we have

$$\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta} \bigg|_{\eta=0} = -4tr \left((\mathbf{D}\mathbf{H}^t - \mathbf{C})^T \mathbf{Q}\mathbf{H}^t \right)$$
(10)
$$= -4tr \left((\mathbf{D}\mathbf{H}^t - \mathbf{C})^T (\mathbf{D}\mathbf{H}^t - \mathbf{C}) - (\mathbf{D}\mathbf{H}^t - \mathbf{C})^T \mathbf{H}^t (\mathbf{D}\mathbf{H}^t - \mathbf{C})^T \mathbf{H}^t \right)$$

On the other hand, we have

$$\|\mathbf{Q}\|_{F}^{2} = tr(\mathbf{Q}^{T}\mathbf{Q})$$

$$= tr\left(\left((\mathbf{D}\mathbf{H}^{t} - \mathbf{C})\mathbf{H}^{tT} - \mathbf{H}^{t}(\mathbf{D}\mathbf{H}^{t} - \mathbf{C})^{T}\right)^{T}\left((\mathbf{D}\mathbf{H}^{t} - \mathbf{C})\mathbf{H}^{tT} - \mathbf{H}^{t}(\mathbf{D}\mathbf{H}^{t} - \mathbf{C})^{T}\right)^{T}$$

$$= 2tr\left((\mathbf{D}\mathbf{H}^{t} - \mathbf{C})^{T}(\mathbf{D}\mathbf{H}^{t} - \mathbf{C}) - (\mathbf{D}\mathbf{H}^{t} - \mathbf{C})^{T}\mathbf{H}^{t}(\mathbf{D}\mathbf{H}^{t} - \mathbf{C})^{T}\mathbf{H}^{t}\right)$$

Therefore, we have $\left. \frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta} \right|_{\eta=0} = -2 \|\mathbf{Q}\|_F^2 \le 0.$

Lemma 1 shows that if **H** moves a small step $\Delta \eta > 0$ in the update direction, the objective function \mathcal{J} will have a change $-2\|\mathbf{Q}\|_F^2 \Delta \eta$ and since $-2\|\mathbf{Q}\|_F^2 \leq 0$, the objective function \mathcal{J} will decrease. Thus the update direction is a descent direction. Moreover, since \mathbf{H} is an orthogonal matrix whose elements are all bounded, the objective function Eq.(1) has a lower bound, and the algorithm will converge.

To prove that it will converge to a stable point, we introduce the following lemma which shows the first-order optimality condition of the objective function:

Lemma 2. Let $\mathcal{L} = tr(\mathbf{H}^T \mathbf{D} \mathbf{H}) - 2tr(\mathbf{H}^T \mathbf{C}) - tr(\mathbf{\Lambda}(\mathbf{H}^T \mathbf{H} - \mathbf{I}))$ be the Lagrangian function of our objective function, where Λ is the Lagrangian multiplier, then $rac{\partial \mathcal{L}}{\partial \mathbf{H}}=\mathbf{0}$ if and only if $\mathbf{Q} = \mathbf{0}$, so $\mathbf{Q} = \mathbf{0}$ is the first-order optimality condition of our objective function.

Proof. Set the partial derivative of \mathcal{L} w.r.t. **H** to zero:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{H}} = 2\left(\mathbf{D}\mathbf{H} - \mathbf{C} - \mathbf{H}\mathbf{\Lambda}\right) = \mathbf{0}.$$
 (12)

By multiplying both sides of Eq.(12) by \mathbf{H}^T and applying the constraint $\mathbf{H}^T\mathbf{H}$ = I, we can solve Λ as $\Lambda = \mathbf{H}^T (\mathbf{D}\mathbf{H} - \mathbf{C})$. Note that $\mathbf{H}^T \mathbf{H}$ is symmetric, and its corresponding Lagrangian multiplier Λ is also symmetric. So we rewrite Λ as Λ = $(\mathbf{DH} - \mathbf{C})^T \mathbf{H}$. Putting it back into Eq.(12), we obtain

$$\frac{\partial \mathcal{L}}{\partial \mathbf{H}} = 2 \left(\mathbf{D} \mathbf{H} \mathbf{H}^T - \mathbf{C} \mathbf{H}^T - \mathbf{H} (\mathbf{D} \mathbf{H} - \mathbf{C})^T \right) \mathbf{H} = 2 \mathbf{Q} \mathbf{H}.$$
 (13)

On one hand, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{H}} = 2\mathbf{Q}\mathbf{H}$, so if $\mathbf{Q} = \mathbf{0}$, then $\frac{\partial \mathcal{L}}{\partial \mathbf{H}} = \mathbf{0}$. On the other hand, if $\frac{\partial \mathcal{L}}{\partial \mathbf{H}} = \mathbf{0}$, i.e., $(\mathbf{D}\mathbf{H}\mathbf{H}^T - \mathbf{C}\mathbf{H}^T - \mathbf{H}(\mathbf{D}\mathbf{H} - \mathbf{C})^T)\mathbf{H} = \mathbf{0}$. Let $\mathbf{Z} = \mathbf{D}\mathbf{H} - \mathbf{C}$, then we have $\mathbf{Z} = \mathbf{H}\mathbf{Z}^T\mathbf{H}$ due to $\mathbf{H}^T\mathbf{H} = \mathbf{I}$. Thus,

$$\mathbf{Z} = \mathbf{H}\mathbf{Z}^T\mathbf{H} = \mathbf{H}(\mathbf{H}\mathbf{Z}^T\mathbf{H})^T\mathbf{H} = \mathbf{H}\mathbf{H}^T\mathbf{Z}$$
(14)

Taking the transposition of both sides, we have $\mathbf{Z}^T = \mathbf{Z}^T \mathbf{H} \mathbf{H}^T$. Then we obtain

$$\mathbf{H}\mathbf{Z}^T = \mathbf{H}\mathbf{Z}^T\mathbf{H}\mathbf{H}^T = \mathbf{Z}\mathbf{H}^T$$
(15)

which means $\mathbf{Z}\mathbf{H}^T - \mathbf{H}\mathbf{Z}^T = \mathbf{0}$. Note that $\mathbf{Q} = \mathbf{Z}\mathbf{H}^T - \mathbf{H}\mathbf{Z}^T$, so $\mathbf{Q} = \mathbf{0}$. In summary, $\mathbf{Q} = \mathbf{0}$ is the first-order optimality condition.

Now, get back to Theorem 1. The algorithm converges when $\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta}\Big|_{\eta=0} = 0$, which means **H** cannot move a small step in the descent direction to make the objective function decreases. Since $\frac{\partial \mathcal{J}(\mathbf{H}^{t+1})}{\partial \eta}\Big|_{\eta=0} = -2\|\mathbf{Q}\|_F^2$, $\|\mathbf{Q}\|_F^2 = 0$, i.e., $\mathbf{Q} = \mathbf{0}$. Due to Lemma 2, it satisfies the first-order optimality condition, so the algorithm converges to a stable point.

Appendix B: Proof of Theorem 2

The α -subproblem is:

$$\min_{\boldsymbol{\alpha}} \quad \boldsymbol{\alpha}^{T} \mathbf{G} \boldsymbol{\alpha} - 2 \mathbf{f}^{T} \boldsymbol{\alpha}, \tag{16}$$
$$s.t. \quad 0 \le \alpha_{i} \le 1, \quad \sum_{i=1}^{m} \alpha_{i} = 1.$$

where the (i, j)-th element of **G** is $G_{ij} = tr(\mathbf{R}^{(i)T}\mathbf{Y}^{(i)T}\mathbf{V}^2\mathbf{Y}^{(j)}\mathbf{R}^{(j)})$ and the *i*th element of vector **f** is $f_i = tr(\mathbf{R}^{(i)T}\mathbf{Y}^{(i)T}\mathbf{V}^2\mathbf{H})$. Then, we have the following Theorem about its convexity:

Theorem 2. Eq.(16) is a convex quadratic programming.

Proof. Obviously, Eq.(16) is a quadratic programming, and the constraint is a convex set. To prove it is a convex quadratic programming, we just need to prove that G is a positive semi-definite matrix. Given any non-zero vector $\mathbf{x} \in \mathbb{R}^m$, we compute:

$$\mathbf{x}^{T}\mathbf{G}\mathbf{x} = \sum_{i,j=1}^{m} x_{i}G_{ij}x_{j}$$
(17)
$$= \sum_{i,j=1}^{m} x_{i}x_{j}tr(\mathbf{R}^{(i)T}\mathbf{Y}^{(i)T}\mathbf{V}^{2}\mathbf{Y}^{(j)}\mathbf{R}^{(j)})$$
$$= tr\left(\sum_{i=1}^{m} x_{i}\mathbf{R}^{(i)T}\mathbf{Y}^{(i)T}\mathbf{V}^{2}\sum_{j=1}^{m} x_{j}\mathbf{Y}^{(j)}\mathbf{R}^{(j)}\right)$$
$$= tr\left(\left(\sum_{i=1}^{m} x_{i}\mathbf{Y}^{(i)}\mathbf{R}^{(i)}\right)\left(\sum_{i=1}^{m} x_{i}\mathbf{Y}^{(i)}\mathbf{R}^{(i)}\right)^{T}\mathbf{V}^{2}\right)$$

Denoting $\mathbf{A} = \sum_{i=1}^{m} x_i \mathbf{Y}^{(i)} \mathbf{R}^{(i)}$, we have

$$\mathbf{x}^T \mathbf{G} \mathbf{x} = tr(\mathbf{A} \mathbf{A}^T diag(\mathbf{v})^2) = \sum_{p=1}^m v_p^2 \|\mathbf{A}_{p.}\|_2^2 \ge 0.$$
(18)

Therefore, G is a positive semi-definite matrix, and thus Eq.(16) is convex quadratic programming.

Appendix C: Proof of Theorem 3

The $\mathbf{R}^{(i)}$ -subproblem is:

$$\min_{\mathbf{R}^{(i)T}\mathbf{R}^{(i)}=\mathbf{I}} tr(\mathbf{K}\mathbf{R}^{(i)}),$$
(19)

where $\mathbf{K} = \sum_{j:j \neq i} \alpha_j \mathbf{R}^{(j)T} \mathbf{Y}^{(j)T} \mathbf{V}^2 \mathbf{Y}^{(i)} - \mathbf{H}^T \mathbf{V}^2 \mathbf{Y}^{(i)}$. The following Theorem provides its global optima:

Theorem 3. Supposing the singular value decomposition (SVD) of $-\mathbf{K}^T$ is $-\mathbf{K}^T = \mathbf{U}\boldsymbol{\Sigma}\mathbf{S}^T$, then the global optima of Eq.(19) is $\mathbf{R}^{(i)} = \mathbf{U}\mathbf{S}^T$.

Proof. Denote $\mathbf{W} = -\mathbf{K}^T$ and we have its SVD is $\mathbf{W} = \mathbf{U} \Sigma \mathbf{S}^T$. Notice that to minimize $tr(\mathbf{K}\mathbf{R}^{(i)})$ is equivalent to maximize $tr(\mathbf{W}^T\mathbf{R}^{(i)})$. Since $\mathbf{R}^{(i)}$ is an orthogonal matrix, its SVD is $\mathbf{R}^{(i)} = \mathbf{R}^{(i)} * \mathbf{I} * \mathbf{I}$.

According to Von Neumanns trace inequality, we have

$$tr(\mathbf{W}^{T}\mathbf{R}^{(i)}) \leq tr(\mathbf{\Sigma}\mathbf{I})$$
(20)
$$=tr(\mathbf{\Sigma}\mathbf{U}^{T}\mathbf{U}\mathbf{S}^{T}\mathbf{S})$$
$$=tr(\mathbf{S}\mathbf{\Sigma}\mathbf{U}^{T}\mathbf{U}\mathbf{S}^{T})$$
$$=tr(\mathbf{W}^{T}\mathbf{U}\mathbf{S}^{T})$$

Obviously, the equality holds when $\mathbf{R}^{(i)} = \mathbf{US}^T$. Therefore, the global optima of Eq.(19) is $\mathbf{R}^{(i)} = \mathbf{US}^T$.