
Appendix of ”Bi-level Ensemble Method for
Unsupervised Feature Selection”

Appendix A: Proof of Theorem 1
Theorem 1. DenotingBij = ‖Pdiag(v)xi−Pdiag(v)xj‖22 andCij = ‖Yi.−Yj.‖22,
the closed-form solution of the subproblem w.r.t. S is
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Proof. When fixing other variables, by taking the definition of Bij and Cij into the
objective function, we reformulate it as follows:

min
S

n∑
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BijSij +

m∑
k=1

β2
k‖W � (S− S(k))‖2F + ρ

n∑
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CijSij ,

s.t.0 ≤ Sij ≤ 1, S = ST . (2)

For simplicity, we first remove the constraint S = ST , and at last we show the
learned S satisfies the symmetric constraint. When removing the symmetric constraint,
we can decouple Eq. (2) into n × n independent subproblems. Consider the (i, j)-th
subproblem:
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s.t. 0 ≤ Sij ≤ 1.

By setting its derivation w.r.t. Sij to zero, we obtain
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0. Therefore, the solution of S is
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Now, we prove that it is symmetric. we use the mathematical induction. In the first
iteration, we initialize S = 1

m

∑m
k=1 S

(k), which is symmetric. Then, in the following
iterations, if S in the last iteration is symmetric, then according to the optimization of
W, W will be symmetric too. Moreover, it is easy to verify that B and C are always
symmetric, and thus S obtained by Eq. (1) satisfies the symmetric constraint.

Appendix B: Proof of Theorem 2
Theorem 2. The following subproblem of v is strictly convex quadratic programming.

min
v

n∑
i,j=1

‖Pdiag(v)xi−Pdiag(v)xj‖22Sij+
m∑
k=1

α2
k‖v−v(k)‖22

s.t. 0 ≤ vi ≤ 1,

d∑
i=1

vi = 1. (5)

Proof. Obviously, Eq. (5) is a quadratic programming, and we just need to prove its
convexity. The constraint is a convex set. So, we focus on the objective function. We
reformulate Eq. (5) as follows:

min
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s.t. 0 ≤ vi ≤ 1,

d∑
i=1

vi = 1, (6)

where I is an Identity matrix.
To prove its convexity, we just need to prove (XLXT ) � (PTP) +

∑m
k=1 α

2
kI is

a positive semi-definite (P.S.D.) matrix. Since L is a Laplacian matrix, it is a P.S.D.
matrix, and XLXT is also P.S.D. It is easy to verify that PTP is also P.S.D. Then we
show that the Hadamard product of two P.S.D. matrix is also P.S.D.

Lemma 1. If both M and N are P.S.D. matrices, then M�N is also a P.S.D. matrix.

Proof. If N is P.S.D., we can find a matrix Q such that N = QTQ. Then, given any
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vector x, we compute xT (M�N)x as follows:

xT (M�N)x =
∑
i,j

xiMijNijxj (7)

=
∑
i,j

xiMij

∑
k

QkiQkjxj

=
∑
k

(Qk. � x)TM(Qk. � x)

≥0

The last inequality is due to that M is P.S.D. For any vector x, we have xT (M�N)x ≥
0, and thus M�N is also a P.S.D. matrix.

According to Lemma 1, we have (XLXT ) � (PTP) is a P.S.D. matrix. Since∑m
k=1 α

2
k > 0, (XLXT )�(PTP)+

∑m
k=1 α

2
kI is a positive definite matrix. Therefore,

Eq. (5) is strictly convex quadratic programming.
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