Appendix of "Bi-level Ensemble Method for Unsupervised Feature Selection"

Appendix A: Proof of Theorem 1

Theorem 1. Denoting $B_{i j}=\left\|\mathbf{P} \operatorname{diag}(\mathbf{v}) \mathbf{x}_{i}-\mathbf{P} \operatorname{diag}(\mathbf{v}) \mathbf{x}_{j}\right\|_{2}^{2}$ and $C_{i j}=\left\|\mathbf{Y}_{i .}-\mathbf{Y}_{j}\right\|_{2}^{2}$, the closed-form solution of the subproblem w.r.t. \mathbf{S} is

$$
\begin{equation*}
S_{i j}=\max \left(\min \left(\frac{\sum_{k=1}^{m} \beta_{k}^{2} S_{i j}^{(k)}-\frac{B_{i j}+\rho C_{i j}}{2 W_{i j}^{2}}}{\sum_{k=1}^{m} \beta_{k}^{2}}, 1\right), 0\right) \tag{1}
\end{equation*}
$$

Proof. When fixing other variables, by taking the definition of $B_{i j}$ and $C_{i j}$ into the objective function, we reformulate it as follows:

$$
\begin{align*}
& \min _{\mathbf{S}} \sum_{i, j=1}^{n} B_{i j} S_{i j}+\sum_{k=1}^{m} \beta_{k}^{2}\left\|\mathbf{W} \odot\left(\mathbf{S}-\mathbf{S}^{(k)}\right)\right\|_{F}^{2}+\rho \sum_{i, j=1}^{n} C_{i j} S_{i j} \\
& \text { s.t. } 0 \leq S_{i j} \leq 1, \quad \mathbf{S}=\mathbf{S}^{T} \tag{2}
\end{align*}
$$

For simplicity, we first remove the constraint $\mathbf{S}=\mathbf{S}^{T}$, and at last we show the learned \mathbf{S} satisfies the symmetric constraint. When removing the symmetric constraint, we can decouple Eq. (2) into $n \times n$ independent subproblems. Consider the (i, j)-th subproblem:

$$
\begin{array}{ll}
\min _{S_{i j}} & \sum_{k=1}^{m} \beta_{k}^{2} W_{i j}^{2}\left(S_{i j}-S_{i j}^{(k)}\right)^{2}+\left(B_{i j}+\rho C_{i j}\right) S_{i j} \tag{3}\\
\text { s.t. } & 0 \leq S_{i j} \leq 1
\end{array}
$$

By setting its derivation w.r.t. $S_{i j}$ to zero, we obtain

$$
\begin{equation*}
S_{i j}=\frac{\sum_{k=1}^{m} \beta_{k}^{2} S_{i j}^{(k)}-\frac{B_{i j}+\rho C_{i j}}{2 W_{i j}^{2}}}{\sum_{k=1}^{m} \beta_{k}^{2}} \tag{4}
\end{equation*}
$$

If $\frac{\sum_{k=1}^{m} \beta_{k}^{2} S_{i j}^{(k)}-\frac{B_{i j}+\rho C_{i j}}{2 W_{i j}^{2}}}{\sum_{k=1}^{m} \beta_{k}^{2}}>1$, Eq. (3) is a monotone decreasing function in the range $[0,1]$, and thus the solution is 1 . Similarly, if $\frac{\sum_{k=1}^{m} \beta_{k}^{2} S_{i j}^{(k)}-\frac{B_{i j}+\rho C_{i j}}{2 W_{i j}^{2}}}{\sum_{k=1}^{m} \beta_{k}^{2}}<0$, the optima is

0 . Therefore, the solution of \mathbf{S} is

$$
S_{i j}=\max \left(\min \left(\frac{\sum_{k=1}^{m} \beta_{k}^{2} S_{i j}^{(k)}-\frac{B_{i j}+\rho C_{i j}}{2 W_{i j}^{2}}}{\sum_{k=1}^{m} \beta_{k}^{2}}, 1\right), 0\right)
$$

Now, we prove that it is symmetric. we use the mathematical induction. In the first iteration, we initialize $\mathbf{S}=\frac{1}{m} \sum_{k=1}^{m} \mathbf{S}^{(k)}$, which is symmetric. Then, in the following iterations, if \mathbf{S} in the last iteration is symmetric, then according to the optimization of \mathbf{W}, \mathbf{W} will be symmetric too. Moreover, it is easy to verify that \mathbf{B} and \mathbf{C} are always symmetric, and thus \mathbf{S} obtained by Eq. (1) satisfies the symmetric constraint.

Appendix B: Proof of Theorem 2

Theorem 2. The following subproblem of \mathbf{v} is strictly convex quadratic programming.

$$
\begin{array}{ll}
\min _{\mathbf{v}} & \sum_{i, j=1}^{n}\left\|\mathbf{P} \operatorname{diag}(\mathbf{v}) \mathbf{x}_{i}-\mathbf{P} \operatorname{diag}(\mathbf{v}) \mathbf{x}_{j}\right\|_{2}^{2} S_{i j}+\sum_{k=1}^{m} \alpha_{k}^{2}\left\|\mathbf{v}-\mathbf{v}^{(k)}\right\|_{2}^{2} \\
\text { s.t. } & 0 \leq v_{i} \leq 1, \quad \sum_{i=1}^{d} v_{i}=1 \tag{5}
\end{array}
$$

Proof. Obviously, Eq. (5) is a quadratic programming, and we just need to prove its convexity. The constraint is a convex set. So, we focus on the objective function. We reformulate Eq. (5) as follows:

$$
\begin{align*}
& \min _{\mathbf{v}} \mathbf{v}^{T}\left(\left(\mathbf{X L X} \mathbf{X}^{T}\right) \odot\left(\mathbf{P}^{T} \mathbf{P}\right)+\sum_{k=1}^{m} \alpha_{k}^{2} \mathbf{I}\right) \mathbf{v}-\mathbf{v}^{T} \sum_{k=1}^{m} \alpha_{k}^{2} \mathbf{v}^{(k)}, \\
& \text { s.t. } \quad 0 \leq v_{i} \leq 1, \quad \sum_{i=1}^{d} v_{i}=1, \tag{6}
\end{align*}
$$

where \mathbf{I} is an Identity matrix.
To prove its convexity, we just need to prove $\left(\mathbf{X L X}^{T}\right) \odot\left(\mathbf{P}^{T} \mathbf{P}\right)+\sum_{k=1}^{m} \alpha_{k}^{2} \mathbf{I}$ is a positive semi-definite (P.S.D.) matrix. Since \mathbf{L} is a Laplacian matrix, it is a P.S.D. matrix, and $\mathbf{X L X}{ }^{T}$ is also P.S.D. It is easy to verify that $\mathbf{P}^{T} \mathbf{P}$ is also P.S.D. Then we show that the Hadamard product of two P.S.D. matrix is also P.S.D.

Lemma 1. If both \mathbf{M} and \mathbf{N} are P.S.D. matrices, then $\mathbf{M} \odot \mathbf{N}$ is also a P.S.D. matrix.
Proof. If \mathbf{N} is P.S.D., we can find a matrix \mathbf{Q} such that $\mathbf{N}=\mathbf{Q}^{T} \mathbf{Q}$. Then, given any
vector \mathbf{x}, we compute $\mathbf{x}^{T}(\mathbf{M} \odot \mathbf{N}) \mathbf{x}$ as follows:

$$
\begin{align*}
\mathbf{x}^{T}(\mathbf{M} \odot \mathbf{N}) \mathbf{x} & =\sum_{i, j} x_{i} M_{i j} N_{i j} x_{j} \tag{7}\\
& =\sum_{i, j} x_{i} M_{i j} \sum_{k} Q_{k i} Q_{k j} x_{j} \\
& =\sum_{k}\left(\mathbf{Q}_{k .} \odot \mathbf{x}\right)^{T} \mathbf{M}\left(\mathbf{Q}_{k .} \odot \mathbf{x}\right) \\
& \geq 0
\end{align*}
$$

The last inequality is due to that \mathbf{M} is P.S.D. For any vector \mathbf{x}, we have $\mathbf{x}^{T}(\mathbf{M} \odot \mathbf{N}) \mathbf{x} \geq$ 0 , and thus $\mathbf{M} \odot \mathbf{N}$ is also a P.S.D. matrix.

According to Lemma 1, we have $\left(\mathbf{X L X}^{T}\right) \odot\left(\mathbf{P}^{T} \mathbf{P}\right)$ is a P.S.D. matrix. Since $\sum_{k=1}^{m} \alpha_{k}^{2}>0,\left(\mathbf{X L X}{ }^{T}\right) \odot\left(\mathbf{P}^{T} \mathbf{P}\right)+\sum_{k=1}^{m} \alpha_{k}^{2} \mathbf{I}$ is a positive definite matrix. Therefore, Eq. (5) is strictly convex quadratic programming.

