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A Node Classification-Based Multiobjective
Evolutionary Algorithm for Community

Detection in Complex Networks
Haipeng Yang , Bin Li , Fan Cheng , Peng Zhou , Member, IEEE, Renzhi Cao ,

and Lei Zhang , Member, IEEE

Abstract— Multiobjective evolutionary algorithms (MOEAs)
have been widely used in community detection in recent years.
However, most of the existing MOEA-based ones adopted the
same search strategies for all nodes and ignored the differences
between the nodes. In fact, the nodes in a complex network
have different structural characteristics and are of different
importance during the search process of the community detection
problem. To this end, in this article, a node classification-based
search scheme is first proposed, where different kinds of nodes
are searched in different ways. To be specific, the nodes in
the network are classified into two types of nodes, candidate
central (CC) nodes and noncentral (NC) nodes, by mapping the
nodes into a structural similarity-based embedding space. The
CC nodes are likely to be the centers of communities, and the
rough structure can be searched quickly through activating the
CC nodes. Then, the NC nodes are assigned to the communities
with the activated central nodes. Based on the proposed scheme,
a node classification-based MOEA named NCMOEA is then
proposed. In NCMOEA, a mixed representation is designed to
effectively encode the two different kinds of nodes. In addition,
corresponding genetic operators are then suggested to search
the two categories of nodes in different ways. Furthermore,
an initialization strategy is also designed for initializing the pop-
ulation with high quality and good diversity. The experimental
results on 15 real-world networks and several synthetic networks
demonstrate the superiority of the proposed NCMOEA over nine
representative algorithms for community detection.

Index Terms— Community detection, complex networks, evo-
lutionary algorithm (EA), multiobjective optimization.

NOMENCLATURE

G Complex network, G = (V , E).
V Node set of the network.
E Edge set of the network.
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n Number of nodes in the network and |V | = n.
m Number of edges in the network and |E | = m.
A Adjacent matrix of the network.
C Set of communities in the network, which is a

partitioning of V .
Ci i th community in the network.
c Number of communities, |C| = c.
CC Set of candidate central nodes.
NC Set of noncentral nodes.
deg(v) Degree of node v.
�(v) Neighbor nodes of node v.
SM Similarity matrix of nodes.
pop Size of the population.
maxgen Maximum number of generations.
pc Probability of crossover.
iv Number of interval generations between the two

consecutive local searches.

I. INTRODUCTION

COMMUNITY detection has received increasing atten-
tion from a large number of researchers because of

its important applications in varied complex networks [1],
including social networks [2] and biological networks [3].
To be specific, the task of community detection is to detect
communities with dense intraconnections and sparse intercon-
nections in the network [4]. Many algorithms were proposed
for community detection by researchers, such as hierarchical
clustering algorithms [5], modularity optimization-based algo-
rithms [6], community structure enhancement algorithms [7],
spectral clustering algorithms [8], label propagation-based
algorithms [9], random walk-based algorithms [10], and evo-
lutionary algorithm (EA)-based methods [11].

Among them, EA-based algorithms achieve good perfor-
mance. Some of the EA-based methods are single-objective
optimization algorithms [12], [13], [14]. Besides these algo-
rithms, the multiobjective EA (MOEA)-based methods are
attractive because the two aspects (i.e., intraconnections should
be dense, while interconnections should be sparse) of the
community detection problem can be seen as two conflicting
objectives and MOEAs naturally meet the optimization of
the two objectives. MOEAs have been demonstrated to be
widely used for community detection in recent years [11].
There are several advantages of adopting MOEAs for com-
munity detection: 1) MOEAs can determine the number of
communities automatically; 2) MOEAs can provide a set of
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Pareto optimal solutions (i.e., a set of network divisions at
different hierarchical levels) instead of one optimal solution;
and 3) MOEAs can overcome the resolution limitation of mod-
ularity [15] through optimizing multiple conflicting objective
functions.

The first MOEA for community detection, called mul-
tiobjective genetic algorithms for networks (MOGA-Net),
was proposed by Pizzuti [16]. In MOGA-Net, the commu-
nity score and community fitness were used as the two
objective functions, which achieved better performance than
the single-objective algorithms because it could avoid the
problem of the resolution limit [15] in the modularity
optimization. MOGA-Net has shown the competitiveness of
multiobjective optimization for community detection. After
that, a variety of MOEA-based algorithms with different
frameworks were proposed, such as the MOEA with decom-
position for community detection (MOEA/D-Net) [17], the
decomposition-based multiobjective discrete particle swarm
optimization (MODPSO)algorithm [18], the multiobjective
discrete algorithm based on teaching-learning-based opti-
mization (MODTLBO/D) [19], the multiobjective back-
tracking search optimization algorithm with decomposition
(MODBSA/D) [20], the multiobjective particle swarm opti-
mization based on network embedding (NE-PSO) [21],
and a network reduction-based MOEA (RMOEA) [22].
These MOEA-based community detection algorithms have
achieved good performance. However, most of the existing
MOEA-based community detection algorithms searched the
nodes in the network equally during the searching process,
while the structural characteristics of nodes were ignored,
which could deteriorate the performance of the algorithm.

To this end, unlike these existing works, a node
classification-based MOEA is proposed in this article, where
different kinds of nodes with different structural characteristics
are fully considered and searched in different ways. To be
specific, the nodes in the network are divided into two cat-
egories, that is, candidate central (CC) nodes and noncentral
(NC) nodes. Then, different search strategies are suggested for
the two kinds of nodes. Specifically, the CC nodes are likely
to be the central nodes of the communities, some of them
will be activated in the search process, and a general structure
of communities can be determined by the activated central
nodes quickly. The NC nodes do not have obvious central node
structural characteristics. Thus, during the searching process,
the algorithm just focuses on which community these nodes
should belong to. The main contributions of this article can
be summarized as follows.

1) We propose a node classification-based search scheme,
where different kinds of nodes are searched in different
ways. Specifically, nodes in the network are classified
into CC nodes and NC nodes according to their struc-
tural characteristics. During the searching process, the
scheme optimizes which CC nodes should be activated
and which communities should the remaining NC nodes
belong to. With this scheme, the rough structure of
communities can be determined quickly by the activated
central nodes, and the algorithm can focus on the com-
munity assignment for the NC nodes.

2) We propose a node classification-based MOEA named
NCMOEA for community detection based on the
proposed search scheme. In NCMOEA, a novel mixed
representation is suggested to effectively encode com-
munity centers and structure at the same time. Based on
the mixed representation, tailored crossover and muta-
tion operators are designed for searching the different
kinds of nodes in different ways. Furthermore, a novel
initialization strategy is also designed for producing
better initial solutions.

3) To validate the effectiveness of NCMOEA, we com-
pare the results of NCMOEA with one state-of-the-art
non-EA-based baseline algorithm and eight represen-
tative EA-based baseline algorithms on 15 real-world
networks and several Lancichinetti–Fortunato–Radicchi
(LFR) synthetic networks [23]. We also implement six
variants of NCMOEA to verify the effectiveness of
the proposed node classification strategy, the mixed
representation, the crossover and mutation operators,
and the initialization strategy. According to the results
of the experiments, the proposed NCMOEA is very
competitive and superior over the baseline algorithms
on most of the networks.

The rest of this article is organized as follows. In Section II,
the definition of the community detection and the existing
related work are reviewed. In Section III, the details of
the proposed node classification-based multiobjective algo-
rithm NCMOEA are presented. The experimental results of
NCMOEA compared with nine baseline algorithms and six
variants of NCMOEA are given in Section IV. The conclusions
and future work are introduced in Section V.

II. PRELIMINARIES AND RELATED WORK

In this section, we will give some preliminaries about the
community detection problem and introduce some related
works on EA-based community detection algorithms for com-
munity detection.

A. Community Detection Problem

The goal of the community detection task is to divide
nodes in the network into different groups (called commu-
nities), where the nodes in the same community have dense
connections and those in different communities have sparse
connections [4]. In this article, we just consider the nonover-
lapping community detection problem (i.e., each node belongs
to one and only one community). The problem can be formally
defined as follows: G = (V , E) is a given network, where
V = {v1, v2, . . . , vN } is the node set and E = {(i, j)|vi , v j ∈
V , i �= j} is the edge set. The network can be divided into
communities C = {C1, C2, . . . , Cc}, where Ci ⊂ V , Ci �= ∅,
∪c

i=1Ci = V , Ci ∩ C j = ∅,∀i �= j, i, j ∈ {1, 2, . . . , c}, and
c is the number of the detected communities. The notations
used in this article are summarized in the Nomenclature.

B. Related Work

In the EA-based algorithms, many single-objective opti-
mization algorithms performed well in a community detection
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task. For example, Chang et al. [13] suggested a chemical
reaction optimization-based community detection algorithm
with dual representation, which designed two operators based
on the two representations and get a good balance between
exploration and exploitation. Xiao et al. [14] proposed a sym-
biotic organisms search community detection algorithm, which
used neighborhood information of nodes to guide community
optimization and assist the global search. Since this article
focuses on MOEAs for community detection, several represen-
tative MOEA-based algorithms are reviewed in the following.

In 2009, a multiobjective genetic algorithm was proposed
by Pizzuti [24], called MOGA-Net, in which community
score and community fitness were used as objective func-
tions. MOGA could determine the number of communities
automatically and get a set of network divisions at different
hierarchical levels. In 2012, Gong et al. [17] proposed an
MOEA/D-Net, which selected two objective functions: neg-
ative ratio association (NRA) and ratio cut (RC). In the same
year, Shi et al. [25] developed a multiobjective community
detection algorithm based on PESA-II [26], called MOCD,
which set intra and inter as two objectives to optimize the two
aspects of the community quality. In 2016, Attea et al. [27]
also suggested an MOEA with a heuristic operator for commu-
nity detection. Note that these algorithms all used the locus-
based representation, which treated the nodes in the network
equally, and thus, they ignored the difference of the importance
of different nodes in the process of searching.

Gong et al. [18] suggested MODPSO in 2014, where
the kernel k-means (KKM) and RC are used as objective
functions. KKM can measure the links in the same community
and RC can measure the links between different communities.
To make the links in intracommunity dense and the links
in intercommunities sparse, the optimization algorithm min-
imizes KKM and RC. In 2016, Chen et al. [19] proposed
MODTLBO/D, where a discrete teaching-learning-based opti-
mization algorithm was adopted for community detection.
After that, an MODBSA/D was proposed by Zou et al. [20].
In MODPSO, MODTLBO/D, and MODBSA/D, the commu-
nity detection was optimized as a discrete problem and the
label-based representation was adopted. In the three algo-
rithms, the community labels were treated as discrete variables
and there was no different treatment for different nodes during
the search process.

In 2020, a network RMOEA [22] was proposed by ours for
large-scale community detection, which reduced the search
space with the proposed network reduction strategies and
performed well on large-scale networks. RMOEA just con-
sidered the local community reduction, while it did not design
different strategies for searching nodes with different structural
characteristics. Recently, Liu et al. [21] proposed a multiob-
jective NE-PSO, where an arbitrary-order proximity-preserved
embedding (AROPE) [28] was adopted to map the nodes
into a low-dimensional space. The embedding focused on the
proximity of nodes, and however, the structural difference of
different nodes was still not considered.

The related works discussed above were designed for
nonoverlapping community detection. There are also some
MOEA-based methods proposed for overlapping community

detection [29], [30], [31] and some algorithms proposed for
different kinds of networks, such as attributed networks [32]
and dynamic networks [33].

In summary, these MOEA-based community detection algo-
rithms above have shown good performance for community
detection, and however, most of the existing MOEA-based
algorithms searched the nodes in the network equally and
ignored the structural characteristics of nodes in the network
during the searching process. Unlike these works, in this
article, a node classification-based MOEA named NCMOEA
is proposed, where different kinds of nodes with different
structural characteristics are fully considered and thus can
improve the detection performance of MOEAs. Note that there
are some existing works in non-EAs, which harnessed the
importance of central nodes to design some effective strate-
gies for detecting community structure [34], [35], [36], [37].
Different from them, in this article, we focus on designing
novel MOEA by considering the nodes with different structural
characteristics in different ways in the process of optimization.

III. PROPOSED ALGORITHM NCMOEA

In this section, we will present the proposed NCMOEA
method for community detection, including the proposed node
classification-based search scheme, the mixed representation
scheme, genetic operators, the population initialization, and
the overall framework.

A. Node Classification-Based Search Scheme

1) Main Idea: The main idea of the proposed algorithm
is that the nodes are classified into different categories based
on the structural characteristics of nodes, and then, they are
optimized in different ways during the evolutionary process.
In the proposed classification method shown in Section III-B,
the nodes are classified into two categories: the first category
is CC nodes, this kind of nodes is important because they
have many neighbors with dense links, and they are likely to
be the central nodes of communities. In the process of search,
some of the CC nodes are chosen and activated. Then, the
rough structure of a community can be identified quickly. The
second category is NC nodes. These nodes are assigned to
the communities determined by the activated central nodes.
In the proposed search scheme, after the node classification,
the central nodes of communities with high-quality structure
are detected from the CC nodes; for the NC nodes, the scheme
focuses on which community they should belong to.

Fig. 1 shows the main idea of the proposed search scheme.
Fig. 1(a) shows an illustrative network and the nodes in
the network are classified into two classes, CC nodes and
NC nodes, with the proposed classification strategy shown in
Algorithm 1. In Fig. 1(b), the two kinds of nodes are marked
in the network with different shapes, where triangles denote
the CC nodes and squares denote the NC nodes. For a network
G = 	V , E
, CC ∪ NC = V and CC ∩ NC = ∅. After the
searching process, a possible community structure as shown
in Fig. 1(c) can be found. The nodes in different colors are in
different communities and three triangles in the figure denote
the community centers of the three found communities. The
three activated centers are chosen from the CC nodes.
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Fig. 1. Main idea of the proposed node classification search scheme. (a) Illus-
trative network. (b) Nodes in the network are divided into two categories:
CC nodes (triangles) and NC nodes (squares). (c) After searching, three
community centers marked with triangles are activated and the community
structure is determined, where different colors denote different communities.

2) Challenges: From the proposed search scheme given
above, it can be found that there are three main challenges that
need to be solved: 1) how to classify the nodes into different
types according to the structural characteristics; 2) how to
design a suitable representation for encoding the different
kinds of nodes; and 3) how to design genetic operators for
searching different kinds of nodes in the evolution. To solve
the first challenge, we suggest a node classification strat-
egy, which can classify the nodes into two categories (see
Section III-B). To solve the second challenge, we propose a
mixed representation scheme for encoding the two kinds of
nodes, which can represent the activate states of the central
nodes and the community assignment of the NC nodes at
the same time (see Section III-C). To solve the third chal-
lenge, the genetic operators corresponding to the proposed
mixed representation are designed, which includes a two-
phase crossover operator and a two-phase mutation operator
(see Section III-E).

B. Node Classification Strategy

In this work, we classify the nodes into different cate-
gories according to their structural characteristics. However,
the nodes’ structural characteristics are usually not significant.
Although there are many metrics for measuring some aspects
of the node structural differences, it is still difficult to choose
metrics and thresholds for classifying because a fixed setting
cannot fit various networks.

In this article, we propose a node classification strategy
based on the network embedding method, which can preserve
the similarity of local node structures in the embedding
result. To be specific, in the node classification strategy,
struc2vec [38] is adopted to get the embedding of the network,
which focuses on the structural similarity of the nodes in
the network. Two nodes, which are structurally similar, will
be close in the embedding space, independently of their
position in the network and node labels in their vicinity.
The embedding result of struc2vec is used for measuring the
structural similarity and the nodes are classified according to
the obtained embedding vectors. In this article, the nodes are
divided into two groups (i.e., the central nodes and the NC
nodes) according to the structural similarity with the struc2vec
embedding of the network.

In order to distinguish the central nodes and the NC nodes,
the centrality in [39] is adopted. The centrality is defined as
follows:

centrality(v) = deg(v)+
�

u∈�(v)

⎛
⎝deg(u)+

�
w∈�(u)

deg(w)

⎞
⎠

(1)

where �(v) is the set of neighbors of node v and deg(v) is
the degree of node v. The centrality of a node is calculated
by considering the degrees of neighborhood composed of two-
layer neighbors. A large centrality value indicates that the node
is important and it is more likely to be a central node of
community. In the node classification strategy, we just use the
maximum value of centrality to find the most representative
node of the CC nodes.

Algorithm 1 NodeClassification
Input: A: the adjacent matrix of network;
Output: CC: the set of candidate central nodes; NC: the set of non-

central nodes;
1: cen ← calculate the centrali t y for all nodes according to Eq. (1);
2: Emb← adopt struc2vec on A;
3: rnode1← arg maxi cen(i);
4: rnode2← the node with furthest distance to rnode2 in Emb;
5: k ← 2;
6: ini tial_centers ← {rnode1, rnode2};
7: categories ← kmeans(Emb, k, ini tial_centers);
// categories contains of 2 sets of nodes

8: CC ← the set containing rnode1 in categories;
9: NC ← the set containing rnode2 in categories;

Algorithm 1 shows the process of the node classification
strategy. First, the centralities of nodes in the network are
calculated (Line 1) and the embedding method struc2vec
is adopted (Line 2). Then, two representative nodes of the
two categories are chosen (Lines 3 and 4). Specifically, the
node with maximum value of centrality, denoted as rnode1,
is selected as the representative node of the central nodes.
In the struc2vec embedding space, the nodes that are struc-
turally similar will be close, so the furthest node from rnode1
is the node with the most different structural characteristics,
denoted as rnode2, and it is selected as the representative node
of NC nodes. After that, the k-means [40] algorithm is adopted
(Lines 5 and 6), where k is set to 2 and the initial centers are
fixed at rnode1 and rnode2. Finally, we can obtain the set of
CC nodes and the set of NC nodes (Lines 7 and 8).

Fig. 2 shows an example of the classification strategy. The
illustrative network in Fig. 2(a) consists of 16 nodes and
22 edges. Then, the embedding result obtained with struc2vec
is shown in Fig. 2(b). For display convenience, the embedding
dimension is set to 2. In the embedding space, close nodes
have similar structural characteristics. The centrality of all
nodes in the network has been calculated and node 7 is the
node with the highest centrality. Thus, node 7 and the node
furthest from it in the embedding, node 6, are chosen as
the two representative nodes. After that, a k-means algorithm
is adopted, where k is set to 2 and the two nodes are
used as initial points. The classification result is shown in
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Fig. 2. Example of the network node classification strategy. (a) Illustrative
network. (b) Embedding result of struc2vec and the embedding dimension is
set to 2. (c) Two respective nodes are chosen and the nodes are classified into
two categories. (d) Nodes in the network are classified into two categories of
nodes in the network.

Fig. 2(c) and (d), where the nodes with similar structural fea-
tures to node 7 are CC nodes ({1,2,7,9,10,11,13,16}) and the
nodes different from it are NC nodes ({3,4,5,6,8,12,14,15}).

C. Mixed Representation Scheme

In order to encode different categories of nodes, a mixed
representation scheme is designed. In the representation
scheme, CC nodes and NC nodes use different representations.
The CC nodes can be activated, each activated central node
corresponds to a community, and each community just has
one activated central node. In other words, there is a one-to-
one correspondence between the community and the activated
central node. Thus, the central node of the community can be
used as the label of the community. The NC nodes and the
inactivated CC nodes are assigned to the communities obtained
by the activated central nodes.

In the mixed representation scheme, the nodes are divided
into two parts: the CC nodes part and the NC nodes part. For
the CC nodes, the representation needs to be able to indicate
whether each node is activated or not and which community
each inactive node belongs to. For the NC nodes, they cannot
be activated and only need to focus on which community
they belong to. In the mixed representation scheme, the gene
positions corresponding to the CC nodes can be set to “−1,”
which means that the CC nodes are activated. The positions
corresponding to inactivated central nodes and the NC nodes
are set to the labels of communities they belong to. Formally,
the mixed representation is denoted as

I 	CC, NC
 =
�
lv �1, lv �2 , . . . , lv �N

�
(2)

where N is the number of nodes in the network, CC is the set
of CC nodes, and NC is the set of NC nodes. If node vi ∈ CC,
lvi ∈ {−1, 1, 2, . . . , N}; if node v j ∈ NC, lv j ∈ {1, 2, . . . , N}.
A CC node can be represented by “−1” or community labels,
where “−1” means activated. The NC nodes are represented by

Fig. 3. Illustrative example of the mixed representation scheme. (a) Illustra-
tive network, where the nodes with deep color are CC nodes and the others
are NC nodes. (b) Individual with mixed representation and the individual
decoded from it through replacing “−1” with the index of the activated central
nodes.

community labels. In this representation, the community label
is the index of its center, so the labels are positive integers.

Fig. 3 shows an illustrative example for the mixed repre-
sentation scheme, where the network contains nine nodes and
13 edges. Suppose that there is an individual denoted as I =
[2,−1, 2, 2, 2, 7,−1, 7, 7]. In the figure, the dark positions
indicate that the corresponding nodes are CC nodes, and the
genotype of these positions can be “−1,” which means that the
central node is activated. The genotypes of inactive nodes and
NC nodes are community labels, where the activated center
node of the community is used as the label of the community.
Each activated central node corresponds to a community and
each community just has one activated node. It is easy and fast
to decode the individual: for each activated CC node, replace
“−1” with the label index of the node, and the community par-
tition can be obtained. For example, I (2) is set to 2 and I (7) is
set to 7; the decoded individual is [2, 2, 2, 2, 2, 7, 7, 7, 7]. Like
the label-based representation for decoding, the nodes with the
same label are in the same community, and thus, the network
is divided into two communities: C1 = {v1, v2, v3, v4, v5} and
C2 = {v6, v7, v8, v9}.

D. Population Initialization Strategy

For the mixed representation, the CC nodes part and the
NC nodes part are related to each other. The choosing of
initial central nodes could influence the community structure
of the solutions. If we only select active nodes randomly and
assign NC nodes, the quality of the initial population will be
low. Therefore, we propose a novel population initialization
strategy.

In the initialization strategy, two ways to generate popula-
tion individuals are considered: the first way is to initialize the
CC nodes first and then determine the community structure
according to the activated central nodes; the other way is
to generate a community structure with the neighborhood of
nodes and then activate central nodes for communities.

The detailed procedure of the initialization strategy is
shown in Algorithm 2. For half of the population individuals,
we generate a random number between 2 and

√
N for each

individual as the number of active central nodes, where N
is the number of nodes in the network, and then activate
central nodes randomly. The other nodes are assigned to
the communities of the active central nodes according to
the similarity matrix of nodes (SM). Each unlabeled node is
assigned to the community of the active central node with the
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Algorithm 2 Initialization
Input: A: the adjacent matrix of network; SM: the similarity matrix;

N : the number of the nodes in the network; CC: the set of
candidate central nodes; NC: the set of non-central nodes; pop:
the size of population;

Output: P: the initial population;
1: P ← ∅;
2: for i = 1 to pop/2 do
3: indi ← zeros(1, N);
4: n← A random integer between 2 to

√
N ;

5: AC ← Select n nodes from CC randomly;
6: indi(vq )←−1, vq ∈ {vl |vl ∈ AC};
7: AN ← {v|indi(v) == 0};
8: indi ← AssignNodes(AC, AN, SM);
9: P ← P ∪ indi ;

10: end for
11: for i = pop/2 + 1 to pop do
12: x ← zeros(1, N);
13: x ← Ini tili zeLocus Individual(A);
14: x ← DecodeLocus Individual(x);
15: for each community comm in x do
16: if comm ∩ CC! = ∅ then
17: ac← Randomly select a node in comm ∩ CC;
18: indi(ac)←−1;
19: indi(vq )← ac, vq ∈ {vl |vl ∈ comm};
20: end if
21: end for
22: indi(AC)←−1;
23: AN ← {v|indiv == 0};
24: indi ← AssignNodes(indi, AC, AN, SM);
25: P ← P ∪ indi ;
26: end for

highest similarity to it, and then, the node is labeled with the
index of the active central node of the community.

For the other half of the population individuals, first, we ini-
tialize a solution with locus-based representation. Generate
a temporary vector x of length N , choose a node i ran-
domly, then choose a node j in its neighbors randomly, and
set xi to j . Repeated the operator until each position of x has
been set to a node. After that, we can get a solution with
locus-based representation. Then, the decoding method [24]
of locus-based representation is adopted: the value j of xi is
seen as a link between nodes i and j , and the nodes in the same
component are in the same community. In each community,
a CC node is chosen randomly, then set the position in the
individual to “−1,” and the community label is the node index.
If there is no CC node in a community, the community will
be broken up and the nodes in community will be assigned to
other communities.

E. Genetic Operators

In the mixed representation scheme, the two kinds of nodes
(CC nodes and NC nodes) are two different parts and the
genotypes corresponding to NC nodes depend on the central
nodes because the central node of the community is used
as the label of the community and the genotype of the
NC nodes is these labels. The relationship of the two parts
causes that traditional genetic operators cannot be used for
the mixed representation because they could generate illegal
and meaningless solutions. In this article, a crossover operator

and a mutation operator are proposed and they are both two-
phase operators to deal with the two parts of the mixed
representation.

Algorithm 3 Crossover
Input: P: the parent individuals; CC: the set of candidate central

nodes; NC: the set of non-central nodes; SM: the similarity matrix
of the nodes; pc: the crossover probability; pcc: the probability
of central nodes crossover; pop: the size of population;

Output: O f f : the offspring individuals;
1: O f f ← ∅;
2: for i = 1 to pop/2 do
3: p1← P2∗i−1, p2← P2∗i ;
4: c1← p1, c2← p2;
5: ra ← a random decimal in the interval (0,1);
6: if ra < pc then

Phase 1:
7: pv ← Random 1 ∗ N decimal vector in the interval (0, 1);
8: cm ← pv < pcc; // cm is a binary mask
9: c1(vq )← p2(vq ), vq ∈ {vl |vl ∈ CC and cm(vl ) == 1};

10: c2(vq )← p1(vq ), vq ∈ {vl |vl ∈ CC and cm(vl ) == 1};
Phase 2:

11: for each changed position in child1 do
12: if the position j is changed to −1 then
13: C M ← {v|p2(v) == j and c1(v)! = −1};
14: c1(vk )← j , vk ∈ {vl |vl ∈ CC};
15: else
16: C M ← j ∪ {v|c1(v) == j};
17: c1(vk )← 0, vk ∈ {vl |vl ∈ CC};
18: end if
19: end for

// Assign the unlabeled nodes
20: AC1← {vq |c1(vq ) == −1};
21: NC1← {vq |c1(vq ) == 0};
22: c1← AssignNodes(c1, AC1, NC1, SM);
23: Do the same operations (Lines 11-22) for c2 and p1;
24: end if
25: O f f ← O f f ∪ c1 ∪ c2;
26: end for

1) Crossover: In the crossover operator, the CC nodes are
considered first as the first phase, and the NC nodes’ crossover
is the second phase. The crossover operator is shown in
Algorithm 3.

In the first phase of the crossover operator (Lines 7–10),
a crossover operator such as uniform crossover is proposed
for the CC nodes part of the individual. A binary mask cm is
generated to control whether the value of a CC node position
is exchanged (Lines 7 and 8). Each binary value controls the
crossover of each CC node, and the probability of setting the
value to 1 is defined as follows:

pcc = 0.5 ∗ (1− gen/maxgen) (3)

where gen is the current number of generations during the
evolution process and maxgen is the maximal number of the
generations of the algorithm. The greater the value of pcc,
the greater the possibility of the central nodes crossover. It is
worth noting that pcc is different from the probability of the
crossover operator (pc), which controls whether the crossover
operator performs or not, and pcc just controls the number of
the intensity of the crossover. The value of pcc is high when
gen is small because we want the activated states of more
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Fig. 4. Illustrative example of the genetic operators. (a) Using crossover
operator, the two parents p1 and p2 generate two children c1 and c2. (b) Using
mutation operator, c1 and c2 are changed to c1m and c2m , respectively.

nodes to change in the early stages of the evolution so as to
find a good rough structure quickly.

If the corresponding mask value is 1 and the activate states
of the CC node in two parents are different, the values on
the two positions exchange in the two offspring individuals.
If an activated central node changes to inactive, the genotype
will be changed to 0, where “0” means that the node does not
belong to any community currently and it will be assigned in
the next steps.

After the crossover of central nodes, in the second phase
(Lines 11–23), some inactive central nodes and NC nodes also
perform crossover. If a central node is activated in the offspring
individual by crossover, the NC nodes in this community will
also be put into the community in the offspring individual
(Lines 13 and 14). If an activated central node is changed into
inactive, the genotypes of nodes in its community will be set
to 0 (Lines 16–18).

Then, the nodes whose genotypes are 0 will be assigned
to communities with similarity matrix SM. Specifically, the
diffusion kernel similarity [41] is adopted to measure the
similarity between nodes, which is defined as

SM = e−β×L (4)

L = D − A (5)

where β is suggested to be 1 and L is the Laplace matrix. D is
a diagonal matrix and each element of the principal diagonal
is the degree of a corresponding node, and A is the adjacent
matrix of the network. The NC nodes and the inactive central
nodes are assigned to the community with the most similar
active central node.

As shown in Fig. 4(a), the two individuals parent1 and
parent2 are parents, and the corresponding genotypes of nodes
v3 and v7 are randomly selected for crossover. In the first
phase, the active states of the CC nodes v3 and v7 are changed.
Then, in the second phase, for the first child, v3 is a new

active central node, and the member nodes of the community
in parent2 (v1) are also labeled as 3 in child1. Node v3 in
child2 is changed to inactive, and the genotypes of v1 and
v2 are 3, so their genotypes will be set to 0; then, the nodes
are assigned; and finally, they are assigned to the community
of v4. The same things are done on the changed central node
position v7 in the two children, and the final results are child1
and child2 shown in Fig. 4(a).

Algorithm 4 Mutation
Input: A: the adjacent matrix of the network; O f f : the offspring

after crossover; N : the number of nodes in the network; CC:
the set of candidate central nodes; NC: the set of non-central
nodes; SM: the similarity matrix of the nodes; pop: the size of
population;

Output: O f f : the offspring after mutation;
1:
2: for each individual indi in O f f do

Phase 1:
3: pv ← Random 1 ∗ N decimal vector in the interval (0,1);
4: mm ← pv < 1/N ; // mm is a binary vector
5: for vcc in {v|v ∈ CC and mm(v) == 1} do
6: if indi(vcc) == −1 then
7: indi(vcc)← 0;
8: indi(vq )← 0, vq ∈ {vl |indi(vl ) == vcc};
9: else

10: indi(vcc)←−1;
11: indi(vq ) ← vcc , vq ∈ {vl |indi(vl )! = −1 and vl ∈

�(vcc)};
12: end if
13: end for

// Assign the unlabeled nodes
14: ACi ← {vq |indi(vq ) == −1};
15: NCi ← {vq |indi(vq ) == 0};
16: indi ← AssignNodes(indi, ACi, NCi, SM);

Phase 2:
17: for vnc in {v|v ∈ NC and mm(v) == 1} do
18: Randomly choose a node vi ∈ �(vnc);
19: if indi(vi ) == −1 then
20: indi(vnc)← vi ;
21: else
22: indi(vnc)← indi(vi );
23: end if
24: end for
25: end for

2) Mutation: The mutation is also divided into two phases,
where the first phase is the mutation of the CC nodes and
the second phase is the mutation of the NC nodes. Since the
length of the individual is the number of nodes in the network
(i.e., N), the probability of each node’s position is set to 1/N .

In the first phase (Lines 3–16), the CC nodes mutate. If the
central node is active, it will change to inactive. The value
of its position is set to 0 in the individual, and the positions
whose community label is the central node are also set to 0.
If the central node is inactive, it will be activated. The value of
its position is set to −1, then the NC nodes and inactive central
nodes in its direct neighbors are assigned to its community.
After that, the nodes with genotype “0” are assigned to the
changed communities.

In the second phase (Lines 17–24), the NC nodes mutate.
The nodes whose genotypes are 0 are assigned to communities
according to the similarity matrix SM (Line 14). When an
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NC node mutates, a random neighbor in different community
is chosen and the label of the mutated node will change to
the neighbors. If the neighbor is an active central node, the
label is set to the index of the neighbor node. Note that if an
individual does not have more than one active central node,
in order to avoid the illegal solution and meaningless solution,
two CC nodes will be activated randomly and the other nodes
will be assigned.

For example, in Fig. 4(b), the mutation operator is per-
formed on child1. In phase 1, the CC nodes v2 and v7 are
changed. Node v7 is a new active central node and its
neighbors’ genotypes are set to 7; node v2 is changed to
inactive and the genotypes of the nodes in the community
labeled as 2 are set to 0. Then, the nodes with genotypes
“0” are assigned to the changed communities. In phase 2,
suppose that the node v9 mutates, its genotype is changed to
the genotype of a random neighbor. After the mutation, child1
is changed to child1m and the same operator is performed on
other offspring individuals.

F. Overall Procedure of NCMOEA

In the proposed NCMOEA, the two objective functions
of [18], KKM and RC, are adopted to evaluate the individuals
during the evolutionary optimization process. They can be
calculated as follows:

minimize

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KKM = 2(n − c)−
c�

i=1

L (Ci , Ci )

|Ci |

RC =
c�

i=1

L

Ci , Ci

�
|Ci |

(6)

where c denotes the number of the detected communities,
L(Ci , Ci ) =�

i∈Ci , j∈Ci
Ai, j denotes the number of intralinks

in community Ci , and L(Ci , Ci ) =
�

i∈Ci , j∈Ci
Ai, j denotes

the number of interlinks between Ci and other communities
(A is the adjacent matrix of the network and Ai, j ∈ {0, 1} is
the number of edges between nodes i and j ).

The overall procedure of the proposed NCMOEA is pre-
sented in Algorithm 5. The inputs of the algorithm are defined
as follows: A is the adjacent matrix of the network, popsize
is the number of individuals in the population, maxgen is the
maximum number of evolutionary iterations, and interval is
the number of interval generations between local searches.
NCMOEA consists of two steps: node classification (Line 1)
and evolutionary optimization (Lines 2–15).

In step 1, the node classification strategy (see Algorithm 1)
(Lines 1) divides the nodes in the network into CC nodes
and NC nodes. In step 2, the evolutionary optimization
(Lines 2–15) starts. The evolutionary framework of NCMOEA
is similar to the framework of NSGA-II [42]. TournamentSe-
lect, NonDominatedSort, and EnvironmentSelect mean binary
tournament selection, nondominated sort, and environment
selection, respectively. These are basic routines of EA and
they are also adopted from [42]. First, the algorithm calculates
the SM (Line 2). Then, the initial population is generated
with initialization strategy Initilization (see Algorithm 2)
(Line 3), CC nodes and NC nodes are different in the mixed

Algorithm 5 NCMOEA
Input: A: the adjacent matrix of the network; popsize: the size

of population; maxgen: the max number of generation of evo-
lutionary; iv: the interval between two local searches; pc: the
probability of crossover;

Output: P F : the final non-dominated solutions;
Step 1: Node Classification

1: NC, CC ← NodeClassi f ication(A);
Step 2: Evolutionary Optimization

2: SM ← Calculate the similarity as Eq. (4);
3: Pop← Ini tiali zation(A, SM, CC, NC, popsize);
4: for gen = 1 to maxgen do
5: P ← T ournament Select (Pop);
6: Calculate pcc according to Eq. (3);
7: O f f ←

Crossover (Parents, CC, NC, SM, pc, pcc, popsize);
8: O f f ← Mutation(A, O f f, N, CC, NC, SM, popsize);
9: Evaluate O f f with K K M and RC;

10: Pop← Environment Select (Pop ∪ O f f );
11: if gen%iv == 0 then
12: Pop← Local Search(Pop);
13: end if
14: end for
15: P F ← Nondominated Sort (Pop);

representation scheme, and the genetic operators, Crossover
(see Algorithm 3) and Mutation (see Algorithm 4), are used for
generating offspring individuals. KKM and RC are two objec-
tive functions [see (6)] and they are used for evaluating the
individuals (Line 9); then, environment selection selects indi-
viduals for the next-generation population (Line 10). To fur-
ther improve the quality of the solutions, we adopt the local
search suggested in [13] on the Pareto optimal solutions. After
the evolution, the nondominated solution set (Line 15) in the
final population is the obtained result.

IV. EXPERIMENTAL RESULTS

In this section, we will verify the performance of the
proposed NCMOEA through experiments on 15 real networks
and two groups of LFR synthetic networks in comparison with
nine representative baselines and six variants of NCMOEA.

A. Experimental Settings

1) Comparison Algorithms: The performance of NCMOEA
is compared with one state-of-the-art non-EA-based algorithm
(i.e., community structure enhancement (CSE)-based commu-
nity detection algorithm [7]) and six representative EA-based
community detection algorithms, namely, cooperative co-
evolutionary modularity identification (CoCoMi) [12], dual-
representation chemical reaction optimization (DCRO) [13],
elite symbiotic organism search for fuzzy community detec-
tion (SOSFCD) [43], MOGA-Net [24], MODPSO [18],
MODTLBO/D [19], network RMOEA [22], and a nondom-
inated sorting genetic algorithm for community detection
(NSGA-III-KRM) [44]. In these EA-based baseline algo-
rithms, CoCoMi, DCRO, and SOSFCD are three single-
objective EA-based algorithms and the remaining five ones
are MOEA-based algorithms.

There are also six variants of NCMOEA, namely, NCMOEA
with no classification (NCMOEA-NC), NCMOEA with
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TABLE I

CHARACTERISTICS OF 15 REAL-WORLD NETWORKS. NOTE THAT “−”
MEANS THAT THE REAL COMMUNITY STRUCTURE IS UNKNOWN

randomly initialization (NCMOEA-RI), NCMOEA used the
average value of centrality to classification (NCMOEA-avg),
NCMOEA used the median value of centrality to classifi-
cation (NCMOEA-med), NCMOEA with no labels for NC
nodes (NCMOEA-NL), and NCMOEA with normal operators
(NCMOEA-NG), are also compared to verify the effectiveness
of the proposed components in NCMOEA.

CSE is a state-of-the-art non-EA-based algorithm, and we
use the recommended parament setting in [7]. For the sake of
fairness, we set the population size to 100 and the number of
maximum generation to 100 for all EAs except for DCRO
because DCRO adopts a special optimization framework
called chemical reaction optimization and we set parameters
according to the reference. The other parameters (e.g., the
probabilities of crossover and mutation) are set as the values
recommended in their references. The MATLAB source codes
of the baseline algorithms are obtained from their authors,
with the four exceptions of DCRO, SOSFCD, MODPSO, and
NSGA-III-KRM, which are implemented with MATLAB.

In the proposed NCMOEA, the interval between two local
searches interval is set to 10 and the crossover probability pc
is set to 0.9. We use the Python source code of struc2vec
provided by the author, and the main part of NCMOEA is
written with MATLAB. In struc2vec, the embedding dimen-
sion is set to 16 and the rest of the parameters used the default
value given in the source code. The experimental results for
all comparison algorithms on all networks are obtained by
averaging over 15 independent runs. The struc2vec runs on
Python 2.7, and the rest parts of NCMOEA and all baseline
algorithms run on MATLAB R2020a. All the experiments run
on a PC with Intel Core i7-8700K 3.70-GHz CPU, 32-GB
RAM, and Windows 10 operating system.

2) Experimental Networks: In this article, 15 real-world
networks with various characteristics are adopted to evaluate
the performance of the proposed algorithm. These networks
are Zachary’s kareate club network [45], the dolphin social
network [46], the books network about U.S. politics [47],
the American college football network [47], the email net-
work [48], the netscience network [18], Hamsterster net-
work [49], fb-tvshow network [49], blogs network [31],
Erdos992 network [12], PGP network [51], and five collabora-
tion networks from [50] (Ca-GrQc, Ca-HepTh1, Ca-HepTh2,

and Ca-AstroPh). Table I presents the characteristics of
the 15 real-world networks in detail. In this table, “AD”
means the average degree of the nodes in the network,
“RC” means the number of real communities in the network
(“−” means that the real community structure is unknown),
“CC” means the average clustering coefficient, and “AC”
means the assortativity coefficient. Note that karate, dol-
phin, polbooks, and football are networks with ground-truth
community structure, while the remaining 11 network’s true
community structures are unknown.

To verify the effectiveness of the proposed NCMOEA
comprehensively, two groups of LFR networks are also used
as experimental networks. The first group of LFR networks
consists of networks whose mixing parameter μ ranges from
0.1 to 0.7 with interval 0.1, while the size of networks (i.e., the
number of nodes) n is fixed as 1000. The second group of LFR
networks consists of networks whose size ranges from 500 to
2500 with an interval of 500, while the mixing parameter μ
is fixed as 0.6. The remaining parameters are set as follows.
The exponents of the power-law distribution of node degrees
τ1 are set to 2 and the community size τ2 is set to 1. The
average degree dave is set to 20, the maximum degree dmax is
set to 50, and the range of community size is from 20 to 100.

3) Evaluation Metrics: In this article, two popular metrics
are adopted to evaluate the quality of solutions: modularity
(Q) [5] and normalized mutual information (NMI) [52]. For
the MOEAs, we calculate the metric value (Q and NMI) for
each solution in the final obtained nondominated solution set
the algorithms get and then choose one with the best value
for comparison as the result of the algorithm on this metric.
This way is also widely adopted in existing MOEA-based
community detection algorithms [18], [53].

The first metric, modularity Q, is used for measuring
the quality of communities detected without the ground-truth
community labels of the network. Specifically, Q is calculated
as

Q =
c�

s=1

�
ls

M
−

�
ds

2M

�2
�

where c is the number of communities, M is the number
of edges in the network, ls is the total number of edges
connecting nodes in community s, and ds is the sum of degrees
of nodes in community s. a larger Q value indicates a higher
quality of the communities detected.

The second metric, NMI, is used for measuring the simi-
larity between the detected communities and the ground-truth
community labels. NMI is calculated as

NMI(A, B) = −2
�CA

i=1

�CB
j=1 Ci, j log


Ci, j ṅ/Ci.C. j

�
�CA

i=1 Ci. log (Ci./n)+�CB
j=1 C. j log


C. j /n

�
where CA (CB ) is the number of communities in the partition
A (B), C is the confusion matrix, and Ci, j denotes the
number of shared nodes in the community i of partition A
and community j of partition B . Ci. is the sum of elements
of C in row i , C j. is the sum of elements of C in column j ,
and n is the number of nodes in the network. A larger NMI
value indicates that the detected community partition is more
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TABLE II

COMPARISON RESULTS OF Q ON THE 15 REAL-WORLD NETWORKS, WHERE SYMBOLS “+,” “−,” AND “≈” INDICATE THAT THE PERFORMANCE IS
SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY SIMILAR TO THAT OF NCMOEA, RESPECTIVELY. NOTE THAT “/” MEANS

THAT Q VALUES ARE NOT PROVIDED HERE SINCE THESE RESULTS CANNOT BE OBTAINED WITHIN 10 h FOR ONE RUN

similar to real community partition and the algorithm performs
better.

B. Comparison Results Between NCMOEA and Baselines

1) Experimental Results in Terms of Modularity Q: Table II
lists the modularity Q of the proposed algorithm NCMOEA
and the seven baselines for community detection averaging
over 15 runs on the 15 real-world networks. The Wilcoxon
rank sum test is adopted to evaluate the statistical difference
of the performance of comparison, with a significance level
of 0.05. In Table II, the symbols “+,” “−,” and “=” indicate
that the result of baseline algorithm is significantly better,

significantly worse, and statistically similar to the result of
NCMOEA. From this table, it can be found that on most
of the real networks and the proposed NCMOEA achieves
the best performance; on some networks (e.g., polbooks and
football), NCMOEA achieves the second best, but the result
is statistically similar to the best result. The symbol “/” in
the table means that the algorithm takes more than 10 h
for one run so that the results are not provided. Note that
CoCoMi takes more than 10 h for one run on the Ca-GrQc
network but uses less time on the Erdos992 network, and it
is because Ca-GrQc has more edges and a higher average
degree.
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From Table II, the modularity of the non-EA algorithm
CSE is much worse than that of most EA-based algorithms
because it does not optimize the modularity directly. Com-
pared with the three single-objective optimization algorithms
CoCoMi, DCRO, and SOSFCD, it can be found that the
three algorithms achieve good performance on four small
networks (karate, dolphin, polbooks, and football) because
these single-objective algorithms focus on the optimization
of modularity and use search strategies to get solutions with
better modularity. However, the search strategies in CoCoMi,
DCRO, and SOSFCD take much time and they focus on the
local structure adjusting too much. It can be proved by the
results that on the networks with a larger size, the three single-
objective algorithms are time-consuming so that they cannot
get results on larger networks within 10 h (e.g., Ca-AstroPh).
In addition, we can find that MOEAs get better results than
the three single-objective algorithms on some large networks
(e.g., email, blogs, and Erdos992).

Among the MOEA-based algorithms, NCMOEA can
achieve the best results on most of networks. This is because
of the proposed node classification scheme and the proposed
strategies. When the scale of the network becomes greater,
the structural characteristics of the nodes get more important.
Classifying the nodes and using different strategies on nodes
of different categories can get better performance on these
networks (e.g., blogs and larger networks). The mixed repre-
sentation can represent the activated community centers and
the community structure. If the algorithm can find the com-
munity centers correctly, a good rough community structure
can be obtained. Then, the algorithm adjusts the other nodes
and finds communities with high quality. However, NCMOEA
does not perform well on few networks (e.g., dolhpin and
net-science). The reason is due to the fact that when the
communities with high quality cannot be defined with the
central nodes found by the strategy, it is difficult for NCMOEA
to find good community partition because of the limit of
the representation (specifically the one-to-one correspondence
between the activated central nodes and the communities).

In terms of running time, it can be found that CSE is
efficient on most of the networks because it is not EA-based
algorithm and does not need to evaluate solutions. The three
single-objective algorithms, CoCoMi, DCRO, and SOSFCD,
cannot obtain the results on large networks within 10 h for
one run because the local search of them takes a lot of time.
The teaching and learning strategies used in MODTLBO/D
also take much time. Although the node classification strategy
takes time, the proposed NCMOEA still gets the comparable
running time compared to MOGA-Net, MODPSO, RMOEA,
and NSGA-III-KRM.

To further analyze the good performance of NCMOEA,
a concrete example is given. Fig. 5 shows an example on
a karate network, and the solution with the best Q value
(Q = 0.4198) found by NCMOEA. The four communities
can be seen as smaller communities divided from the two
real communities. NCMOEA can find the optimal community
structure of the network in all the 15 independent runs.
One of the reasons is that NCMOEA finds good community
centers (e.g., nodes 1 and 34), and then, the rough community

Fig. 5. Solution found by NCMOEA on Zachary’s karate club social network.
The different colors of the nodes represent the communities detected by
NCMOEA and the shapes of nodes represent the real partition of the network.
Note that the nodes with the rhombus mark are the central nodes NCMOEA
found. In the real community partition of karate network, nodes 1 and 6 belong
to the circle community and nodes 32 and 34 belong to the square community.

structure can be found quickly. According to the analysis
in [45], these central nodes usually mean key individuals in the
social relationships. After finding good community centers, the
proposed NCMOEA can obtain a community structure with
high quality through searching the community assignment of
the remaining nodes.

2) Experimental Results in Terms of NMI: Table III shows
the NMI value of the nine comparison algorithms and the
proposed NCMOEA over 15 runs on the four real-world
networks with ground-truth labels. From this table, we can see
that CSE and MOEAs perform better than the three single-
objective algorithms, and it is because the single-objective
algorithms optimize the modularity only; however, the solution
with the best modularity often does not correspond to the true
partition of a real-world network [24]. CSE performs better
than CoCoMi and DCRO because the algorithm can enhance
the ambiguous community structure, make it clearer, and then
find some communities that are closer to the ground truth.
The MOEAs perform better in the comparison because they
can provide a set of solutions with a tradeoff on different com-
munity partitions. In addition, we can observe that NCMOEA,
MODTLBO/D, RMOEA, and NSGA-III-KMR perform better
than CoCoMi, DCRO, MOGA-Net, and MODPSO on most
of the networks. NCMOEA can achieve the best result on the
karate network and similar results on the remaining networks
compared with MODTLBO/D and RMOEA. However, Q
of MODTLBO/D and RMOEA is much worse than that of
NCMOEA.

Furthermore, Fig. 6 presents the NMI values of all com-
parison algorithms on the two groups of LFR networks:
1) μ ranges from 0.1 to 0.7 at the step of 0.1 (n = 1000) and
2) n ranges from 500 to 2500 at the step of 500 (μ = 0.6).
From Fig. 6(a), it can be found that CoCoMi, MODPSO, and
NCMOEA can achieve comparable good performance when μ
increases from 0.1 to 0.6. When μ reaches 0.7, all comparison
algorithms degrade greatly and MODPSO achieves the best
performance due to the label propagation-based initialization
used in the algorithm. CoCoMi performs well because of its
adapted KL moving scheme, and however, it is very time-
consuming. From Fig. 6(b), it can also be observed that
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TABLE III

COMPARISON RESULTS OF NMI ON THE FOUR REAL-WORLD NETWORKS, WHERE SYMBOLS “+,” “−,” AND “≈” INDICATE THAT THE PERFORMANCE
IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY SIMILAR TO THAT OF NCMOEA, RESPECTIVELY

Fig. 6. NMI values of all comparison algorithms averaging over 15 runs on
the two groups of LFR networks. (a) Different μ, n = 1000. (b) Different n,
μ = 0.6.

NCMOEA still performs better than most of the baseline
algorithms on the networks with different sizes and get the
comparably good performance as CoCoMi and MODPSO.

According to the experimental results on Q and NMI, it can
be found that NCMOEA achieves the best modularity Q on
most of the real networks and its performance on NMI is also
comparable. The better performance of NCMOEA is attributed
to the proposed node classification scheme and the proposed
strategies. In Section IV-C, we demonstrate the effectiveness
of these proposed strategies in NCMOEA.

C. Comparison Results Between NCMOEA and Its Variants

To verify the effectiveness of the proposed node classifi-
cation strategy, the mixed representation, the crossover and
mutation operators, and the initialization strategy, we design
six variants of NCMOEA: the first variant NCMOEA-NC
does not classify the nodes and all the nodes are regarded
as the CC nodes. We do not set all the nodes as NC nodes
because the mixed representation of NCMOEA cannot find
any communities without central nodes. The second variant
NCMOEA-RI changes the initialization strategy of NCMOEA
with a totally random initialization. Specifically, we activate
CC nodes randomly and assign the other nodes into the
communities of the activated central nodes according to the
similarity. The third variant NCMOEA-avg classifies the nodes
whose centrality value is higher than the average value into CC
nodes. The fourth variant NCMOEA-med classifies the nodes
whose centrality value is higher than the median value into
CC nodes. The fifth variant NCMOEA-NL is a variant whose
representation is simplified. Specifically, the community labels

of NC nodes are not in the representation and they are
determined by these of their neighboring central nodes. The
sixth variant NCMOEA-NG is a variant in which the genetic
operators are replaced with one-way crossover and a neighbor-
based mutation (i.e., change the label of the mutated node to
the label of its neighbor). Note that, due to the particularity
of the mixed representation, most of the existing tailored
genetic operators for community detection could generate
illegal individuals. In NCMOEA-NG, the one-way crossover
and a neighbor-based mutation are adopted, and the illegal
solutions they generated are repaired.

The results of the six variants of the proposed NCMOEA
are listed in Table IV. From the table, it can be found that the
performance of NCMOEA is better than the variants on most
of the networks. On the four small-scale networks, there is
no significant difference between NCMOEA, NCMOEA-NC,
and NCMOEA-RI. When the scale of the network grows,
NCMOEA-NC is not good as NCMOEA on most of the larger
networks. It is because the node classification strategy can
select CC nodes and reduce the search space of central nodes,
which helps the algorithm find good central nodes and deter-
mine the rough structure of communities quickly. The perfor-
mance of NCMOEA-RI is worse significantly than NCMOEA
because the random initialization cannot find good initial
active central nodes. Then, the NCMOEA-RI cannot find good
solutions based on the initial structure with low quality.

To further verify the effectiveness of the classification
strategy proposed in NCMOEA, two variants NCMOEA-avg
and NCMOEA-med are also compared. NCMOEA-avg uses
the average value of the centralities of all nodes to divide
the nodes into CC nodes and NC nodes. Specifically, the
nodes whose centralities are greater than the average value
are considered as CC nodes. Otherwise, the remaining nodes
are considered as NC nodes. Similarly, NCMOEA-med uses
the median value of the centralities of all nodes to divide the
nodes into the two kinds. It can be found from Table IV
that the proposed NCMOEA is better than the two variants
in general. The better performance of NCMOEA is due to
the fact that the adopted network embedding used in the
proposed classification strategy can better capture the structure
characteristics of nodes on different networks. For example,
the performance of NCMOEA-avg and NCMOEA-med on the
networks Karate and Dolphin is worse than that of NCMOEA
since both of them classify some real central nodes incorrectly
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TABLE IV

Q VALUES OF NCMOEA AND ITS VARIANTS ON THE 15 REAL-WORLD NETWORKS, WHERE SYMBOLS “+,” “−,” AND “≈” INDICATE THAT THE
PERFORMANCE IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE, AND STATISTICALLY SIMILAR TO THAT OF NCMOEA, RESPECTIVELY

and these centers cannot be found in the following evolution-
ary optimization process.

NCMOEA-NL and NCMOEA-NG are designed for ver-
ifying the effectiveness of the proposed representation and
genetic operators. From Table IV, it can be found that
NCMOEA performs better than NCMOEA-NL on all net-
works. The better performance is due to the fact that the
labels of the NC nodes in the mixed representation used
in NCMOEA make it possible for the algorithm to finely
adjust the community structure. However, in NCMOEA-NL,
the simplification of the representation ignores the influence
of the NC nodes, so it cannot perform well. NCMOEA-NG’s
performance is also worse than NCMOEA, and it is because
the adopted existing operators just consider the community
assignment of nodes and the neighborhood information but
ignore the structural difference between the two kinds of nodes
(i.e., central nodes and NC nodes).

V. CONCLUSION AND FUTURE WORK

In this article, we have proposed a node classification-based
MOEA named NCMOEA for community detection, where
different kinds of nodes with different structural characteristics

are searched in different ways. In order to consider the
structural differences between the nodes, a node classification
strategy was proposed to classify the nodes into two categories
(i.e., CC nodes and NC nodes). For the CC nodes, the
algorithm focus on the active states of them and the rough
community structure can be determined by the active nodes.
For the NC nodes, they cannot be selected as centers of com-
munities and the algorithm just considers which community
they should belong to. Then, in the evolutionary process, the
algorithm chose some of the CC nodes to activate and then
assigned the NC nodes into the communities. In addition,
a mixed representation, genetic operators, and initialization
strategy were proposed in the algorithm to better search the
two kinds of nodes in different ways. The experimental results
on 15 real-world networks and several synthetic networks
have demonstrated that the proposed NCMOEA exhibits better
performance than nine baseline algorithms on most situations.
Six variants of the algorithm have also been implemented for
comparison and the results have verified that the effective-
ness of the proposed node classification strategy, the mixed
representation, the crossover and mutation operators, and the
initialization strategy.
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There are still some works related to the node classifica-
tion search scheme, which deserves to be further explored.
In this article, we have adopted an embedding method called
struc2vec and proposed the classification strategy to classify
the nodes according to the structural characteristics of the
nodes. Other node classification strategy, which can fit more
complex networks and find good CC node sets, effectively
needs to be developed in the future. In addition, designing
a much more efficient algorithm by using some index and
similarity-based techniques for finding CC nodes and NC
nodes will be one of the future works. Another direction
worth considering is to use the proposed search scheme for
overlapping community detection problems or on other kinds
of networks (e.g., signed networks and dynamic networks).
Furthermore, the search scheme considering the structural
characteristics of the nodes can also be extended for some
other tasks, such as influence maximization [54] and control
of networks [55].
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