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Abstract

With unstructured heterogeneous multimedia data such as

texts, images being more and more widely used on the web,

cross-media retrieval has become an increasingly important

task. One of the key techniques in cross-media retrieval is

how to compute distances or similarities among different

types of media data. In this paper, we propose a novel

heterogeneous metric learning method to compute distances

between images and texts. We extend Locally Linear

Embedding (LLE) to deal with heterogeneous data, so that

we can not only preserve homogeneous local information but

also capture heterogeneous constraints. In order to handle

the out-of-sample problem, we learn two map functions from

the embedding, and use them to transform heterogeneous

data into a homogeneous space and do the retrieval in the

new space. The experimental results on two real-world

datasets show the effectiveness of our approach.

1 Introduction

With the rapid increasing of unstructured heteroge-
neous multimedia data such as image, text, video on
the Internet, cross-media retrieval has become an im-
portant task [25, 26, 17, 8]. Given a query, cross-media
retrieval aims to find related data with different data
types. For example, when the query is a picture, the
related data could be texts, images, videos, and so on.
Different from traditional single-media retrieval used in
search engines, cross-media retrieval makes full use of
cross media relations among different modalities. Such
relations play important roles in understanding multi-
media contents.

One key problem in cross-media retrieval is how to
measure distances or similarities between heterogeneous
multimedia objects. One commonly used way to mea-
sure such distances is via metric learning, which learn-
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s a linear transformation from the source data space
into a new space; then the distance is computed over
the new space using traditional distance metric such
as the Euclidean distance. Typical approaches such as
[23, 2, 1, 6, 10, 16, 9] learn a distance metric that keeps
all the data points with the same label close, while sepa-
rating data points with different labels far apart. These
methods can only deal with homogeneous data, and are
difficult to be used in cross-media retrieval directly be-
cause heterogeneous multimedia objects are represented
in different feature spaces.

Heterogeneous metric learning is a relatively new
problem. To the best of our knowledge, the state-of-the-
art heterogeneous metric learning methods include [18,
14, 22, 25, 20]; they use some supervised heterogeneous
information as the bridge to connect different types of
data. For example, in [18, 14], they have a coupled
constraint which is a one-to-one relation between texts
and images. More specifically, each couple of image
and text expresses that the image and text are about
the same thing. In [25, 22], they use must-link and
cannot-link constraints. If the image and the text
are related, there is a must-link constraint between
them; otherwise, there is a cannot-link constraint. With
the heterogeneous constraints, they learn two linear
functions to transform all data into a homogeneous
space and measure distances in this homogeneous space.

However, it is quite often that there is no such
linear relation available between source data spaces
and target data spaces, so that the above mentioned
metric learning cannot be applied; then non-linear
embedding is introduced. Instead of learning a linear
transformation function, non-linear embedding such
as Linear Locally Embedding (LLE) [19] and Isomap
[21] directly learns the embedding results which meet
some specific properties. For example, LLE learns the
vectors in the new space to recover global non-linear
structure from locally linear fits so that it can preserve
neighborhood information. Like homogeneous metric
learning, these methods are also difficult to handle
heterogeneous data. In addition, although non-linear
methods are more general and offer greater separation
ability in theory [9], since they learn embedding results
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directly rather than a map function, such methods
are quite inefficient to deal with new data (the out-
of-sample problem). Therefore, to measure distances
between heterogeneous data by non-linear embedding,
two questions remain to be investigated: (I) How to
extend it to handle heterogeneous data? (II) How to
deal with the out-of-sample problem?

To answer the above two questions, in this paper we
propose a novel heterogeneous metric learning method
which is based on non-linear embedding so that it can
capture some non-linear relation between data. This
approach extends the well-known LLE method to het-
erogeneous data, thus is named Locally Linear Embed-
ding based Heterogeneous Metric Learning (LLEHML).
For simplicity, we consider two data types: image and
text, and it is easy to extend our method to other mul-
timedia data. We assume that images and texts come
from a unified ”original” homogeneous space and in this
space, images and texts are sampled from their respec-
tive underlying manifold. Because images and texts are
in different ”description” spaces (images consist of pix-
els and texts consist of words), we need to map them
from ”description” spaces into the unified ”original” s-
pace. As LLE is a neighborhood-preserved embedding
method and can capture manifold information well, we
use it to compute and preserve locally linear reconstruc-
tion weight of each media data so that we can recover
global non-linear structure from these local information.
Additionally, to handle heterogeneous data, we force the
embedding results to preserve the heterogeneous con-
straints. In a summary, our method can capture both
homogeneous local information and heterogeneous con-
straints. At last, LLE is an embedding method rather
than metric learning method as introduced before. Once
we get new data, we have to run the whole algorith-
m again and it is very expensive. To handle the out-
of-sample problem, we use a linear approximation to
transform the embedding method into a metric learning
method.

Experiments on two real-world datasets show that
our proposed approach outperforms the current state-
of-the-art methods.

2 Related Work

Heterogeneous metric learning, which is most relevant
to our work, enables us to measure distances from dif-
ferent types of data. Existing methods of heterogeneous
metric learning focus on learning linear transformations
from heterogeneous data spaces to a homogeneous s-
pace. For example, [18] applied Canonical Correlation
Analysis (CCA) to cross-media retrieval. CCA [11] is
a data analysis and dimensionality reduction method
similar to Principal Component Analysis (PCA) [12] .

While PCA deals with only one data space, CCA is a
technique for joint dimensionality reduction across two
(or more) spaces. It attempts to maximize the corre-
lation between same labeled objects in the transformed
space. Based on the learning results of CCA, [18] fur-
ther learned a high-level semantic metric by logistic re-
gression. This method considers not only correlation
analysis but also semantic abstraction for different data
types.

Li et al. [14] used Cross-modal Factor Analysis
(CFA) to find the optimal transformations that can best
represent (or identify) the coupled patterns between
features of two different subsets. Unlike CCA, CFA
adopts a criterion of minimizing the Frobenius norm
between same labeled objects in the transformed space.

Both CCA and CFA consider only pairs of the
same labeled objects. They do not explicitly separate
different labeled objects. To overcome this problem,
[22] applied Partial Least Square (PLS) to learn two
orthogonal transformation matrices by minimizing the
distances between same labeled objects and maximizing
the distances between different labeled objects.

Some researches show that hash function can be
used to map different types of data into a new Hamming
space [20, 3, 13]. [20] is one of the current state-of-the-
art cross-media hash methods. It proposed an inter-
media hashing mode to explore the correlation among
multiple media types from different data sources and
tackle the scalability issue. It learned two linear hash
function to map data into a common Hamming space,
in which fast search can be easily implemented by XOR
and bit-count operations.

Zhai et al. [25] proposed a new approach which
integrates joint graph regularization into the objective
function to preserve the similarity constraints in both
modalities. It used must-link and cannot-link con-
straints and made objects in embedding space closer if
they had a must-link and further if they had a cannot-
link. Then a manifold ranking based algorithm was used
to get a high level semantic metric.

3 Heterogeneous Metric Learning

In this section, we elaborate the details of the proposed
heterogeneous metric learning method. First, we briefly
introduce the whole framework. Then we depict three
steps of our method in detail.

3.1 Framework Overview In this subsection, we
introduce the framework of our heterogeneous metric
learning. Let D

x = {x1, . . . , xp, xp+1, . . . , xn} be an
image dataset, where xi ∈ X denotes image data,
and D

y = {y1, . . . , yp, yp+1, . . . , ym} be a text dataset,
where yi ∈ Y denotes text data. To bridge these
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Figure 1: The overview of our heterogeneous metric learning framework.

Table 1: Notations and descriptions used in this section
Notation Description

n number of images
m number of texts

d
dimension of new representations

of image and text
dx dimension of original image’s feature
dy dimension of original text’s feature

X , Y,Z
image data space, text data space,

and embedding space
α, β, γ1, γ2 balancing parameter

k number of nearest neighbour

X
dx × n matrix,

each column represents an image data

Y
dy × n matrix,

each column represents an text data
xi, yi the i-th column of X or Y

Zx d× n matrix, each column
represents an image in new space

Zy d× n matrix, each column
represents an text in new space

zxi , z
y
i i-th column of Zx or Zy

wx
i , w

y
i the reconstruction weight vectors

wx
ij , w

y
ij the j-th element in vector wx

i or wy
i

Vx, Vy linear map matrix
S must-link constraint set
D cannot-link constraint set

image and text data for heterogeneous matching, we
carefully investigate and utilize additional supervised
context information; these information can be collected
in various ways such as tags and category information.
Thus, {x1, . . . , xp} and {y1, . . . , yp} are used to denote
data with these heterogeneous connections while other
data points are not directly related. This context
information can be used in different ways, for example,
in CCA, they use coupled constraints to ensure that xi

and yi are two descriptions of one same object for any
1 � i � p. In our work, we use must-link and cannot-
link constraints as [22, 25] did. It means that for any
1 � i, j � p if xi and yj is similar, there is a must-
link constraint between them and otherwise there is a
cannot-link constraint. We use must-link and cannot-
link constraints because they are more informative than
coupled constraints and are not difficult to get. We will
introduce in detail how to get the constraints in Section
4, because it depends on datasets.

The goal of heterogeneous metric learning is to
learn two linear functions to transform the dataset D

x

and D
y into a new dataset Z = {z1, . . . , zn+m}, where

zi ∈ Z is in a homogeneous space Z. To achieve
a good performance for heterogeneous metric learning
method, on the one hand, it should well characterize
the intrinsic homogeneous data structure (geometrical
or discriminative) for each description separately; on the
other hand, the heterogeneous relation should be well
preserved. Thus, our proposed method considers not
only constraints between texts and images but also local
information in each data type. It has three steps: firstly,
we learn locally linear reconstruction weights in each
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data space; secondly, we use the reconstruction weights
and heterogeneous constraints to learn the embedding
of the data; finally, we learn two linear approximation
functions which transform the embedding to metric
learning. After getting the linear functions, we use these
functions to map images and texts into new space, and
measure their Euclidean distances in the new space.
Figure 1 shows the whole framework of our method.
Table 1 shows the notations and descriptions used in
this section.

3.2 Locally Linear Reconstruction In this stage,
we deal with homogeneous information and have the
same assumptions of LLE [19]. We suppose that the
text and image data are sampled from their underlying
manifold respectively. We expect each data point
(image and text) and its neighbors to lie on or close to
a locally linear patch of the manifold and characterize
the local geometry of these patches by linear coefficients
that reconstruct each data point from its neighbors.
Therefore, we learn the locally linear reconstruction
weights of images and texts respectively.

Take images as example, to learn locally linear re-
construction weights, we first compute k nearest neigh-
bors of each image. We use Euclidean distance to find
k nearest neighbor. Here we follow the assumption: for
neighboring points, Euclidean distance provides a good
approximation to real distance. Therefore, finding k n-
earest neighbor by Euclidean distance is feasible.

After getting k nearest neighbor, we minimize the
following cost function for each image xi to learn the
reconstruction weight of xi

(3.1) J1
i(wx

i ) = ‖xi −

k∑
j=1

wx
ijx

i
N(j)‖

2 +
α

2
‖wx

i ‖
2

where xi
N(j) is the j-th nearest neighbor of xi, wx

i

is a k-dimension vector which contains wx
ij as its j-

th element, and wx
ij means the weight of j-th nearest

neighbor of image xi. The first term is to minimize
the reconstruction error and the second term is to avoid
over-fitting as [7] did. For each xi, the weights wx

ij sum
up to 1. Then the above equation is equal to:

J1
i(wx

i ) = ‖

k∑
j=1

wx
ij(xi − xi

N(j))‖
2 +

α

2
‖wx

i ‖
2

=
k∑

j=1

k∑
l=1

wx
ijw

x
ilQ

i
jl +

α

2
‖wx

i ‖
2

(3.2)

where Qi
jl is the (j, l)-th element of a k × k matrix Qi:

(3.3) Qi
jl = (xi − xi

N(j))
T (xi − xi

N(l))

Now we need to solve the equality constrained mini-
mization problem:

min
wx

i

k∑
j=1

k∑
l=1

wx
ijw

x
ilQ

i
jl +

α

2
‖wx

i ‖
2 s.t.

k∑
j=1

wx
ij = 1

By introducing a Lagrange multiplier λ, we reformulate
it to an unconstrained minimization:

(3.4) Li =

k∑
j=1

k∑
l=1

wx
ijw

x
ilQ

i
jl+

α

2
‖wx

i ‖
2+λ(

k∑
j=1

wx
ij−1)

Setting the partial derivative with respect to wx
i to zero

and considering
∑k

j=1 w
x
ij = 1 in addition, we can get:

(3.5) wx
ij =

∑k

l=1 R
i
jl∑k

p=1

∑k

q=1 R
i
pq

where Ri = (Qi+αI)−1 and Ri
jl is the (j, l)-th element

in Ri. Empirically set α = 0.001× tr(Qi).
For all images, we use Eq.(3.5) to compute their

reconstruction weights. Then we get reconstruction
weight matrix Ux of all images:

Ux
il =

⎧⎨
⎩

wx
ij , If the l-th image is the j-th

nearest neighbor of the i-th image

0, Otherwise

where Ux
il is the (i, l)-th element of Ux.

We deal with the texts in the same way as images
and get Uy similarly.

Rewrite Ux and Uy together to get reconstruction
weight matrix Ũ of all data (images and texts):

Ũ =

(
Ux 0

0 Uy

)

3.3 Heterogeneous Embedding After getting re-
construction weights of data, we expect to learn new
d-dimension vectors zxi , z

y
j ∈ Z to preserve the recon-

struction information in embedding space. Additionally,
this embedding vectors should also capture the hetero-
geneous constraints.

To minimize the image reconstruction error in the
embedding space, we minimize the loss function:

(3.6) J2 (Z
x) =

n∑
i=1

‖zxi −

k∑
j=1

wx
ijz

x
i,N(j)‖

2

where zxi is new representation of xi in the embedding
space Z, Z contains zxi as the i-th column, and zx

i,N(j) is
the new representation of j-th nearest neighbor of image
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xi. wx
ij is locally linear reconstruction weights learned

in previous subsection.
Similarly, we minimize the loss function of text

reconstruction error:

(3.7) J3 (Z
y) =

n∑
i=1

‖zyi −

k∑
j=1

w
y
ijz

y

i,N(j)‖
2

where z
y
i , Z

y, and z
y

i,N(j) are defined similar to zxi , Z
x,

and zx
i,N(j).

To make the similar image and text compact while
dissimilar image and text diverse in the embedding
space, we define the loss function as follows:
(3.8)

J4 (Z
x,Zy) =

∑
(xi,yj)∈S

‖zxi − z
y
j ‖

2 −
∑

(xi,yj)∈D

‖zxi − z
y
j ‖

2

To simplify Eq.(3.8), we define the heterogeneous
constraints. Here we use must-link and cannot-link
constraints cij of the i-th image and the j-th text
defined as follows:

(3.9) cij =

⎧⎨
⎩

1, (xi, yj) ∈ S
−1, (xi, yj) ∈ D
0, otherwise

The cij ’s can be stored in an n × m matrix C, where
cij is the (i,j)-th element of C. Matrix C is just
about heterogeneous data, and we can construct an
(m+ n)× (m+ n) matrix E with C:

E =

(
0 C

CT 0

)

By introducing must-link and cannot-link constraints
C, we rewrite Eq.(3.8) as follows:

(3.10) J4 (Z
x,Zy) =

n∑
i=1

m∑
j=1

cij‖z
x
i − z

y
j ‖

2

By integrating J2 , J3 and J4 to a unified formula-
tion, we get the final loss function:

J5 (Z
x,Zy) =

n∑
i=1

‖zxi −

k∑
j=1

wx
ijz

x
i,N(j)‖

2

+

m∑
i=1

‖zyi −

k∑
j=1

w
y
ijz

y

i,N(j)‖
2 + β

n∑
i=1

m∑
j=1

cij‖z
x
i − z

y
j ‖

2

(3.11)

where β is a balancing parameter.
To minimize the loss function Eq.(3.11), we rewrite

it first. The first term can be written as follows:

n∑
i=1

‖zxi −

k∑
j=1

wx
ijz

x
i,N(j)‖

2 = tr(Zx(I−Ux)T (I−Ux)ZxT )

The second term of Eq.(3.11) can be rewritten similarly:

m∑
i=1

‖zyi −

k∑
j=1

w
y
ijz

y

i,N(j)‖
2 = tr(Zy(I−Uy)T (I−Uy)ZyT )

Note that zxi and z
y
j are in the same space, we can

write Zx and Zy together as Z = [Zx,Zy]. Let eij be
the (i, j)-th element of E and zij be the (i, j)-th element
of Z. Let D be a diagonal matrix with its (i,i)-element
Dii equals to the sum of i-th row of E. We rewrite the
third term of Eq.(3.11) as follows:

n∑
i=1

m∑
j=1

cij‖z
x
i − z

y
j ‖

2 = tr(Z(D−E)ZT )

Then Eq.(3.11) can be re-written as:

J5 = tr(ZMZT ) + βtr(ZNZT ) = tr(Z(M+ βN)ZT )

where M is an (m + n) × (m + n) matrix found as
M = (I− Ũ)T (I− Ũ). N is also an (m+ n)× (m+ n)
matrix found as N = D − E. To be able to solve
this problem, we can add a well-known orthogonal
constraint: ZZT = I.

Now we need to solve a minimization problem with
orthogonal constraint as follows:

(3.12) min
Z

tr(ZTZT ) s.t. ZZT = I

where T = M+ βN.
According to Ky Fan theorem [24], the solution of

Eq.(3.12) is Z = [z1, z2, ..., zd] where z1...zd are the
eigenvectors corresponding to the smallest d eigenvalues
of T. As result, the original heterogeneous data have
been transformed into a new homogeneous space Z. In
this space, we can directly use Euclidean distance to
measure the distance between any two objects.

3.4 Learning Linear Map Although we can mea-
sure distances between images and texts after heteroge-
neous embedding, we can hardly handle out-of-sample
data. If we get new images and texts, we have to com-
pute reconstruction weights and do embedding once a-
gain. It is impractical obviously. Therefore, we should
learn a map function instead. In heterogeneous data, x
and y are not in a unified space, thus we need to learn
two linear matrices Vx and Vy and rewrite the Maha-
lanobis distance as follows:

(3.13) d(x, y) =
√

(Vxx−Vyy)T (Vxx−Vyy)

In our method, we use two linear function to ap-
proximate the embedding method introduced in previ-
ous subsection. More specifically, we view Vx (Vy) as a
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linear map matrix which transform original image (tex-
t) data X (Y) to embedded data Zx (Zy). Thus we
compute Vx and Vy as follows:

min
Vx

‖Zx −VxX‖2F + γ1‖V
x‖2F

min
Vy

‖Zy −VyY‖2F + γ2‖V
y‖2F

(3.14)

where ‖ · ‖F is the Frobenius norm and Zx, Zy are
computed by solving Eq.(3.12). Eq.(3.14) is classical
ridge regression problem, thus we can get Vx and Vy

as:

Vx = ZxXT (XXT + γ1I)
−1

Vy = ZyYT (YYT + γ2I)
−1

(3.15)

After getting Vx and Vy, when a new text or
image comes, we use Vx or Vy to transform it into
the new space, and compute Euclidean distance in the
new space.

Algorithm 1 summarizes the whole process:

Algorithm 1 HLLE Algorithm Description

Input: Image dataset X ∈ R
dx∗n, text dataset Y ∈

R
dy∗m, heterogeneous constraint matrix C ∈ Z

n∗m

Output: Linear map matrix Vx ∈ R
d∗dx

and Vy ∈
R

d∗dy

1: Compute locally linear reconstruction weights wx
ij

and w
y
ij by Eq.(3.5);

2: Compute embedding vectors of all the images and
texts by optimizing Eq.(3.12);

3: Compute map matrix Vx and Vy by Eq.(3.15).

3.5 Discussion In the Locally Linear Reconstruction

stage, we need to compute matrix inverse ((Qi+γI)−1)
in Eq.(3.5). Since (Qi + γI) is a k × k matrix, the
time complexity is O(k3). While k � n + m in
practice, the inverse is not the computationally heaviest
step. Similarly, in Eq.(3.15), we need to compute
dx × dx and dy × dy matrices inverse, and dx, dy �
n + m, thus this step is also not very expensive. In
the Heterogeneous Embedding stage, we need do an
eigenvalue decomposition of the (m + n) × (m + n)
matrix T, whose complexity is O((m + n)3). This is
the computationally heaviest problem in our method.
One of our future work is to further reduce the time
complexity. However, due to Learning Linear Map, all
these three stages can be done offline. In offline process,
we learn the map function, and in online process, we just
need to use the function to map data into new space and
retrieve in new space. Therefore, the efficiency of our
method is acceptable.

Table 2: Cross-media retrieval on Wikipedia
dataset(MAP scores). I → T means use Image as
query to retrieve Text. T → I means use Text as query
to retrieve Image.

Method I → T T → I Average

RANDOM 0.1179 0.1179 0.1179
CCA 0.1719 0.1904 0.1812
CFA 0.1552 0.1835 0.1694
PLS 0.2622 0.1804 0.2213

CCA+SMN 0.2439 0.1964 0.2202
IMH 0.2220 0.1740 0.1980

JGRHML 0.2768 0.1880 0.2324
LLEHML 0.2930 0.2236 0.2583

4 Experiments

We conduct experiments on two publicly available real-
world datasets to verify the effectiveness of our method.

4.1 Datasets Wikipedia dataset∗ [18] is chosen
from the Wikipedia’s ”featured articles”. The dataset
contains 2866 documents which belong to 10 categories,
which are text-image pairs, and it is randomly split in-
to a training set of 2173 documents and a test of 693
documents. In this dataset texts are represented us-
ing a histogram of a 10-topic latent Dirichlet allocation
(LDA) model and images are represented using a his-
togram of a 128-codeword SIFT codebook [5]. In the
training set, we randomly choose 1000 images and texts
to construct constraints. More specifically, in the chosen
image and text sets, if the image and text belong to the
same category, there is a must-link constraint between
them, otherwise, there is a cannot-link constraint.

NUS-WIDE dataset† [4] is a web image dataset
containing 269648 images downloaded from Flickr.
Each image has a short text description. Tagging
ground-truth for 81 semantic concepts is provided for
evaluation. Since some of the concepts are very scarce,
we considered only the 10 most populated ones. Then
we randomly choose 4000 images and texts which have
at least one of the 10 concepts as its tag. We use 3000
as the training set and 1000 as the test set. In training
set, we randomly choose 1000 to construct constraints.
If the text and image have at least one same concept,
there is a must-link between them, otherwise there is a
cannot-link constraint. The texts are represented with
1000-dimension word vector, The images are represent-
ed with 500-dimension bag of visual words [15].

∗http://www.svcl.ucsd.edu/projects/crossmodal
†http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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4.2 Compared Methods, Experimental Setting

and Evaluation Metrics Several different heteroge-
neous metric learning methods are compared:

• Random: Randomly retrieving the results.

• CCA: Canonical Correlation Analysis (CCA)[11]
is used in [18] to learn two linear transformation
matrices which maximize the correlation between
two sets of heterogeneous objects.

• CFA: Cross-modal Factor Analysis (CFA) [14]
also learns two linear transformation matrices. It
adopts a criterion of minimizing the Frobenius
norm between pairwise data in the new space.

• PLS: [22] uses Partial Least Square (PLS) to
learn two orthogonal transformation matrices by
minimizing the distances between relevant objects
and maximizing them between irrelevant objects.

• CCA+SMN: CCA+SMN [18] considers not only
correlation analysis but also semantic abstraction
for different modalities.

• IMH: Inter-Media Hashing (IMH) [20] is current
state-of-the-art cross-media hash method. It learns
two linear hash function to transform texts and
images into a unified Hamming space.

• JGRHML: Joint Graph Regularized Heteroge-
neous Metric Learning (JGRHML) [25] learns two
transformation which minimizing (maximizing) the
distances between the objects with the similar (dis-
similar) constraints with joint graph regularization.

To run all of these compared methods, we use their
own heterogeneous constraints introduced in related
literatures, and we use the distance suggested in their
respect related literatures to retrieval in the new space.

On Wikipedia dataset, we build ground-truth with
category information as [25] did. If the query data and
the result data belong to the same category, this result is
correct. On Nus-Wide dataset, similarly, ground-truth
is built based on concept information. If the query data
and result data have same concept, the result is correct.

On both datasets, we perform two cross-media
retrieval tasks: using texts to retrieve images and using
images to retrieve texts. We evaluate the retrieving
results with precision-recall (PR) curves and mean
average precision (MAP), which are widely used in the
image retrieval literature.

4.3 Experimental Results Table 2 shows the MAP
scores of our method LLEHML and compared meth-
ods on Wikipedia dataset. LLEHML outperforms all

Table 3: Cross-media retrieval on NUS-WIDE
dataset(MAP scores).

Method I → T T → I Average

RANDOM 0.2456 0.2456 0.2456
CCA 0.2471 0.2466 0.2469
CFA 0.3784 0.2498 0.3141
PLS 0.3334 0.3285 0.3310

CCA+SMN 0.2599 0.2601 0.2600
IMH 0.3632 0.3145 0.3389

JGRHML 0.3658 0.3171 0.3415
LLEHML 0.4334 0.3419 0.3877
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Figure 2: Precision recall curves on Wikipedia dataset

of these compared methods in two query tasks on this
dataset. From the table, we can see that CCA+SMN,
in addition to using CCA, also uses high level seman-
tic information and it can improve CCA to some ex-
tent. CCA, CFA, and IMH use coupled constraints,
but IMH also considers homogeneous graphs of texts
and images and it can get a better result. Different
from CCA and CFA, PLS uses must-link and cannot-
link constraints, which is more informative than coupled
constraints and works better than CCA and CFA. Al-
though IMH considers more on homogeneous graphs, it
does not work better than PLS on this dataset. It shows
that, on Wikipedia dataset, heterogeneous constraints
play a more important role, i.e. in order to get a bet-
ter result, we should get better supervised information.
JGRHML not only uses must-link and cannot-link con-
straints, but also considers joint graph regularization,
which can make the solution smoother for both media,
and this makes it outperform other methods. However,
their graph regularization is completely from label in-
formation and it does not consider data feature itself,
i.e. if the text or image does not have constraint, this
method will not use any information from this text or
image. Different from JGRHML, LLEHML uses locally
linear embedding to deal with homogeneous data, and
this method uses all data whether it has constraint or
not, i.e. we use more information from the dataset. The
results show that the information hidden in the uncon-
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Figure 3: Precision recall curves on NUS-WIDE dataset
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Figure 4: Study of parameter sensitivity on Wikipedia
dataset

straint data is helpful to learn the metric.
Table 3 shows the MAP scores of LLEHML and

compared methods on NUS-WIDE dataset. LLEHML
also outperforms all compared methods in two query
tasks. On this dataset, all methods work better than on
Wikipedia dataset. It shows that, cross-media retrieval
on this dataset is easier. There is no wonder why
IMH can outperform PLS on this dataset. Because
retrieval on this dataset is easier, we do not need too
much supervised information to get a better result,
and the advantage of a more informative heterogeneous
constraints is not so significant. CCA does not work
well on this dataset, and is just comparable to randomly
search. CCA+SMN also does not work well. It shows
that, when CCA does not work well, CCA+SMN’s
improvement may be limited.

Figure 2 and Figure 3 show the precision recall
curve of the above methods on wikipedia dataset and
NUS-WIDE dataset respectively. It can be seen that
LLEHML also attains higher precision at most levels of
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Figure 5: Study of parameter sensitivity on Nus-Wide
dataset

recall, outperforming those compared methods.

4.4 Parameter Sensitivity We test different pa-
rameter settings for LLEHML to see the perfor-
mance variation. We test k-NN parameter in the
range [10, 100], the balance parameter β in the range
[10−2, 101], and test γ1, γ2 in the range [10−2, 106]. On
wikipedia dataset, text data only have 10 dimensions,
therefore the dimension of the embedding space d is be-
tween 1 to 10. It is a small range and d is insensitive,
thus we fix d to be 5. On NUS-WIDE dataset, we test d
in the range [10, 200]. Figure 4 and 5 show the results.

5 Conclusion

We have proposed a novel heterogeneous metric learning
algorithm LLEHML to measure distances between het-
erogeneous media data. It first obtains homogeneous lo-
cal information using locally linear reconstruction, and
then learns a heterogeneous embedding which can pre-
serve both the constraint of heterogeneous data and the
local information in homogeneous data. To overcome
the out-of-sample problem in LLE, two linear function-
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s are learned to approximate the original embedding
method.

Several questions remain to be investigated in fu-
ture work. The first one is scalability issue with large
scale datasets. The second one is how to get more in-
formative constraints with less cost. Although must-
link and cannot-link are more informative than coupled
constraints, in practical application, most often the rel-
evance of two objects are in between.
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