
Jointly Learn the Base Clustering and Ensemble for
Deep Image Clustering

Chen Liang
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

e21301210@stu.ahu.edu.cn

Zhiqian Dong
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

e22301269@stu.ahu.edu.cn

Sheng Yang
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

e22201048@stu.ahu.edu.cn

Peng Zhou
Anhui Provincial International Joint Research Center

for Advanced Technology in Medical Imaging,
School of Computer Science and Technology,

Anhui University
Hefei, China

zhoupeng@ahu.edu.cn

Abstract—Deep image clustering attracts increasingly more
attention in computer vision and multimedia communities. To
tackle the stableness and robustness problems in clustering,
clustering ensemble is applied to generate a better result by
fusing multiple weak base clustering results. However, the existing
deep clustering ensemble methods only focus on how to ensem-
ble multiple fixed weak base results and ignore the influence
of the consensus result on the base results. Alternatively, in
this paper, we propose another question, i.e., how to use the
ensemble to improve the base results? To this end, we present
a novel joint deep clustering ensemble framework, which jointly
generates the base results and does the ensemble, so that the
deep clustering and the clustering ensemble can boost each
other. In this framework, we design a base clustering generation
module and an ensemble module and integrate them into a
unified neural network architecture. The extensive experiments
on benchmark datasets well demonstrate the effectiveness and
superiority of the proposed method. The code is available at
https://github.com/liangchen98/JDCE.

Index Terms—Image clustering, deep clustering, clustering
ensemble

I. INTRODUCTION

Image clustering is a fundamental task in computer vision
and multimedia. In recent years, since deep learning has
achieved promising performance in many tasks, deep cluster-
ing for images has been widely studied [1]–[5]. These methods
apply a deep neural network backbone, such as Convolutional
Neural Network (CNN) and ResNet, to extract a semantic
representation for each image, and then design a clustering
layer for image clustering. For example, Xie et al. applied the

Peng Zhou is the corresponding author.

AutoEncoder to extract representations and designed a KL-
divergence minimization method for clustering [1]; Yang et al.
used the CNN to learn the embedding and proposed a merging
operation to obtain the final clustering results [3].

Although deep clustering often achieves promising perfor-
mance, since clustering is an unsupervised learning task that
cannot use the labels to guide the training, it often suffers
from robustness and stableness problems [6], [7]. To address
these issues, clustering ensemble has been proposed [8]–
[15]. Clustering ensemble first generates multiple weak base
clustering results and then fuses these base results to obtain a
consensus one, which is often more robust and stable than the
base ones. For example, Huang et al. fused the base results
by a locally weighted method [13]; Zhou et al. learned a
consensus result from multiple base kmeans with graph filter
learning [16]. The above-mentioned methods are all shallow
methods, which do not use neural networks to extract rich
information from data. Most recently, few works focus on the
deep clustering ensemble [7], [17]. For example, Huang et al.
first applied a neural network to extract features and ensembled
the base results obtained from the feature maps in each layer
of the network to obtain a consensus result [7]; Metaxas et
al. utilized the clustering ensemble to control the diversity of
each cluster [17].

Notice that both [7] and [17] are two-step methods, i.e.,
they first use the neural networks to generate the base results,
and then do the ensemble on the base results. The base results
generation (i.e., the neural networks training) and the ensemble
are two separate steps. However, since the base results are
weak, which is one of the most important motivations of

https://github.com/liangchen98/JDCE


clustering ensemble, why not apply the ensemble to improve
the base results and do the ensemble on the improved ones?
To this end, in this paper, we propose a novel Joint Deep
Clustering Ensemble (JDCE) framework for image clustering,
jointly generating base results and doing the ensemble.

The basic idea of this framework is that, on one hand,
the deep neural network can learn more informative repre-
sentations for generating base results and doing ensemble; on
the other hand, the ensemble can in turn guide the neural
network training to refine the representations and improve
base results. Therefore, the base results generation and the
ensemble can be boosted by each other. Notice that, this idea
is significantly different from the above-mentioned clustering
ensemble methods, including both the shallow ones and the
deep ones. In their methods, the base results are pre-given or
fixed, and they only focus on how to ensemble the fixed base
results to learn a consensus result. Different from them, we
propose an alternative idea of clustering ensemble, which is
to utilize the ensemble to improve or refine the base results
and try to obtain a better ensemble result from the better base
results.

To fulfill this idea, we design a neural network with two
modules: a base clustering generation module and an ensemble
module. Since we focus on image clustering, in the base
clustering generation module, we first use ResNet [18] to learn
the representation of each image. Then, we feed the represen-
tations into a cluster head to generate multiple base clustering
results. At last, in the ensemble module, we ensemble the
multiple base results to a consensus one. We train the two
modules in an iterative way, so that the ensemble can influence
and guide the base clustering generation to improve the base
results.

Our main contributions are summarized as follows:
• We propose a novel framework for deep clustering en-

semble, i.e., applying the ensemble to improve the base
results in turn.

• We design a new neural network to jointly generate
multiple base results and do the ensemble.

• Extensive experiments show that the proposed method
outperforms the deep image clustering methods and even
the state-of-the-art deep clustering ensemble methods.

II. JOINT DEEP CLUSTERING ENSEMBLE

In this section, we introduce our JDCE method in more
detail.

A. Overview

In image clustering, we aim to partition a set of N images
into K clusters. To this end, we design a novel joint deep
clustering ensemble framework JDCE, whose architecture is
shown in Figure 1. It consists of two main modules, i.e.,
a base clustering generation module denoted as the purple
dashed box in Figure 1 and an ensemble module denoted as the
orange dashed box. Specifically, the base clustering generation
module contains two parts: a representation learning backbone

that can extract feature representations from images and a clus-
ter head that generates multiple base clustering results from
the learned representations. The ensemble module integrates
base clusterings to obtain a consensus result. Moreover, the
consensus result can in turn guide the representation learning
and further improve the quality of the base clustering results.

B. Base Clustering Generation Module

Since we aim to handle images, we adopt ResNet [18] as the
backbone network, which is denoted as the grey box in Figure
1. This backbone is pre-trained following the [19]. Then, we
feed the representations into a cluster head denoted as the blue
dashed box. The cluster head consists of two fully connected
layers and a ReLu as the activation function.

For an image X ∈ RH×W×C , where H , W , and C denote
the height, width, and channel of the image, respectively, we
extract the representation by using the backbone network F(·),
denoted as

f = F(X; θF ) (1)

where f ∈ R128 is a 128-dimensional representation vector
of image X , and θF denotes the parameters in the network
F(·). Then, we feed f into the cluster head (C(·)) to obtain the
clustering probability vector y = [p1, · · · , pk] ∈ RK , where
pi denotes the probability that image X belongs to the i-th
cluster. This process can be denoted as:

y = C(f; θC) (2)

where θC denotes the parameters in C(·). Then, we assign each
image to the cluster with the highest probability.

Notice that, by using Eq.(2), we can only generate one
base clustering result. Since we need the ensemble to improve
the base results, we should generate multiple base results.
To achieve this, we run the cluster head C multiple times
with random dropout with different ratios to generate multiple
base clustering results with diversity. To further increase the
diversity among the base results, we design a base results
selection method. In more detail, supposing we wish to en-
semble M base results, we run C 2M times with different
dropout ratios to generate 2M base results as a candidate
set. Then, we select M base results from the candidate set
according to their diversity. Here, we compute the Normalized
Mutual Information (NMI) between each pair of the base
results first. Notice that the lower the NMI is, the more
different the two base results are. Then, given any base result,
we compute the average NMI between it and all other base
results as its diversity score. Finally, we select M results
Y1, · · · ,YM ∈ {0, 1}N×K with the lowest score as the base
results for ensemble, where (Yk)ij = 1 means that in the k-
th base result, the i-th image belongs to the j-th cluster, and
(Yk)ij = 0 otherwise.

C. Ensemble Module

In the ensemble module, we need to ensemble the multiple
base results Y1, · · · ,YM to a consensus result Y∗. Notice
that, we cannot directly ensemble them because of the un-
aligned problem in base clusterings [20]. For example, the



Fig. 1. The architecture of JDCE. It contains two modules: a base clustering generation module denoted as the purple dashed box, and an ensemble module
denoted as the orange dashed box. Solid arrows mean the data flow and dashed arrows represent the gradient flow.

first cluster in Y1 is not necessarily to be the same as the
first cluster in Y2. To tackle this problem, similar to the
spectral rotation, we utilize a learnable orthogonal rotation
matrix Ri ∈ RK×K to align the clusters. Thus, YiRi is
the i-th aligned base clustering which is ready to ensemble.
Moreover, since the quality of each base result differs, we
wish the better base results contribute more. To this end, we
apply 0 ≤ αi ≤ 1 as the weight of the i-th base result for
the ensemble. Then, we obtain the clustering ensemble loss
function Lens as follows:

min
H,Ri,α

Lens =

M∑
i=1

α2
i ∥H−YiRi∥2F , (3)

s.t. RT
i Ri = I, HT H = I,

0 ≤ αi ≤ 1,

M∑
i=1

αi = 1,

where I denotes the identity matrix. H ∈ RN×K is the
consensus embedding of all images. We impose the orthogonal
constraint on H because in the clustering task, we often wish
each cluster to be far away from other clusters.

After obtaining the consensus embedding H, we run k-
means [21] on H to generate the consensus clustering result
Y∗ ∈ {0, 1}N×K , where Y ∗

ij = 1 denotes the i-th image
belongs to the j-th cluster and Y ∗

ij = 0 otherwise.
When we obtain the consensus result Y∗, we can apply it

to improve the representation learning in the base clustering
generation module. In more detail, we regard the Y∗ as
pseudo-labels and refine the backbone network F(·) and
cluster head C(·) in a self-supervised way. Here, we design
the self-supervised clustering loss Lclu with the cross-entropy
loss (LCE) between the learned embedding C(F(X, θF ), θC)
and the consensus result Y∗, which is shown as follows:

min
θF ,θC

Lclu = LCE(C(F(X, θF ), θC),Y∗) (4)

D. Optimization

There are two groups of parameters in our method, i.e., θF
and θC in the base clustering generation module and H, R,
and α in the ensemble module. We optimize them iteratively.
At first, we initialize H = 0, Ri = I, αi =

1
M , where 0 denotes

the all-zero matrix. θF and θC are initialized by the pre-
training. Then we first optimize the parameters in ensemble
module i.e., Eq.(3).

Optimizing H: Denoting Ai = YiRi, Eq.(3) can be
rewritten as follows:

min
HTH=I

M∑
i=1

α2
i ∥H−Ai∥2F

= min
HTH=I

M∑
i=1

α2
i

(
tr(HT H)− 2tr(HT Ai) + tr(AT

i Ai)
)

= min
HTH=I

tr

(
HT

(
−2

M∑
i=1

α2
i Ai

))
(5)

The second equation holds because HTH = I and AT
i Ai is

a constant. Now, we denote A = 2
∑M

i=1 α
2
i Ai, and denote the

singular value decomposition (SVD) of A as A = U1Σ1VT
1 ,

where U1 and V1 are orthogonal matrices and Σ1 is a diagonal
matrix. Then, according to Theorem 3 in [20], the closed-form
solution of Eq.(5) is:

H = U1VT
1 (6)

Optimizing Ri: When fixing other variables, we can sim-
plify Eq.(3) to:

min
Ri

tr(−α2
iR

T
i Y

T
i H), (7)

s.t. RT
i Ri = I.



Similar to the optimization of H, we can get the SVD of
α2
i YT

i H as α2
i YT

i H = U2Σ2VT
2 and the closed-form solution

of Ri is :

Ri = U2VT
2 (8)

Optimizing αi: By denoting di = ∥H−YiRi∥2F , we obtain:

min
αi

M∑
i=1

α2
i di

s.t. 0 ≤ αi ≤ 1,

M∑
i=1

αi = 1

(9)

According to the Cauchy-Buniakowsky-Schwarz Inequality,
we can obtain the closed-form solution of αi:

αi =
d−1
i∑M

j=1 d
−1
j

(10)

Optimizing θF and θC : When optimizing θF and θC , we
fix the variables H, R, and α and optimize the clustering loss
Lclu. We first generate the consensus result Y∗ by running
k-means on H as the pseudo-labels. Then, we utilize Adam
optimizer to optimize θF and θC by minimizing Lclu.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Joint Deep Clustering Ensemble
Input: Image set X , number of iterations maxIter, training

epochs E, size of base clusterings M .
Output: Final clustering results

1: Initialize H = 0, Ri = I, αi =
1
M .

2: Feed all images to the pre-trained neural network.
3: for iteration = 1 to maxIter do
4: Generate M base clusterings Y1, · · · ,YM .
5: while not converge do
6: Update H, Ri, and αi by Eqs.(6), (8), and (10),

respectively.
7: end while
8: Generate Y∗ from H.
9: for training epoch = 1 to E do

10: Update θF and θC with Adam optimizer.
11: end for
12: end for
13: Generate Y by Eqs.(1) and (2).
14: Run k-means on Y to obtain the final clustering result.

III. EXPERIMENTS

A. Datasets

We conduct experiments on 5 benchmark datasets, including
CIFAR-10 [22], CIFAR-100 [22], STL-10 [23], ImageNet-10
[19], and ImageNet-Dogs [19]. In CIFAR-100, following [7],
[17], [19], [24], we also use 20 super-classes rather than 100
classes. The details of these datasets are shown in Table I.

B. Implementation Details and Experiments Setup

We adopt ResNet34 as our backbone for representation
learning. There are two fully connected layers in our cluster
head, which can be mainly described as 128-128-K, where
128 is the dimension of features in hidden layers, and K is
the number of clusters, which is predefined as the number of
classes of each dataset. In the experiments, our model uses the
same parameter setting on all datasets. We fix the batch size
to 128. The Adam optimizer is applied with a learning rate of
0.0001 without weight decay. The number of base results M
is 10. The number of iterations maxIter is fixed to 5, and
the number of epochs in each iteration E is fixed to 50. The
experiments are conducted by Pytorch on an NVIDIA GeForce
RTX 3090 24GB GPU.

TABLE I
THE DETAIL OF DATASETS

Datasets Size Samples Classes
CIFAR-10 32× 32 60000 10

CIFAR-100 32× 32 60000 20
STL-10 96× 96 13000 10

ImageNet-10 96× 96 13000 10
ImageNet-Dogs 96× 96 19500 15

We compare our method with other representative tradi-
tional clustering methods, including k-means [21], SC [25],
AC [26], and NMF [27]; and deep clustering methods, in-
cluding AE [28], DAE [29], DeCNN [30], VAE [31], JULE
[3], DEC [1], DAC [2], ADC [32], DCGAN [33], DDC [34],
DCCM [35], IIC [36], PICA [24] and CC [19]. Moreover,
we also compare against two state-of-the-art deep clustering
ensemble methods, namely, DeepCluE [7] and DivClust [17].

To evaluate the clustering performance, we use three popular
metrics: Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI), and clustering ACCuracy (ACC).

C. Experimental Results

Table II shows the ACC, NMI, and ARI results of all
methods on all datasets. Especially, compared with both the
conventional methods and deep clustering methods, our deep
ensemble method can outperform them, which shows the
effectiveness of the ensemble learning. Moreover, compared
with the two state-of-the-art deep clustering ensemble methods
DeepCluE and DivClust, ours also often achieves better per-
formance, which demonstrates the superiority of the schema
that jointly does the clustering and ensemble.

To further show the effects of the ensemble on the repre-
sentation learning, we show the t-SNE visualization results
on STL-10 and ImageNet-10 in Figure 2. Figure 2(a) and (c)
show the clustering performances before the ensemble, and
Figure 2(b) and (d) show the results after the ensemble. We
can find that, after the ensemble, the learned representations
display a clearer clustering structure, which demonstrates the
motivation of our method, that is the ensemble is indeed
helpful to learn a good representation to improve the base
results.



TABLE II
THE CLUSTERING PERFORMANCE ON ALL DATASETS. RED TEXTS INDICATE THE BEST RESULTS, BLUE TEXTS INDICATE THE SECOND BEST RESULTS,

AND GREEN TEXTS INDICATE THE THIRD BEST RESULTS.

Datasets CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means [21] 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020
SC [25] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013
AC [26] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021

NMF [27] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016
AE [28] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073

DAE [29] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078
DCGAN [33] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078
DeCNN [30] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073

VAE [31] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079
JULE [3] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028
DEC [1] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079
DAC [2] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111

ADC [32] - 0.325 - - 0.160 - - 0.530 - - - - - - -
DDC [34] 0.424 0.524 0.329 - - - 0.371 0.489 0.267 0.433 0.577 0.345 - - -

DCCM [35] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182
IIC [36] - 0.617 - - 0.257 - - 0.610 - - - - - - -

PICA [24] 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201
CC [19] 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.862 0.895 0.825 0.401 0.342 0.225

DeepCluE [7] 0.727 0.764 0.646 0.472 0.457 0.288 - - - 0.882 0.924 0.856 0.448 0.416 0.273
DivClust [17] 0.724 0.819 0.681 0.440 0.437 0.283 - - - 0.891 0.936 0.878 0.516 0.529 0.376
JDCE (ours) 0.711 0.843 0.688 0.418 0.472 0.325 0.773 0.870 0.747 0.897 0.944 0.902 0.556 0.590 0.403

(a) The clustering performance of
STL-10 before ensemble.

(b) The clustering performance of
STL-10 after ensemble.

(c) The clustering performance of
ImageNet-10 before ensemble.

(d) The clustering performance of
ImageNet-10 after ensemble.

Fig. 2. t-SNE results on STL-10 and ImageNet-10.

D. Ablation Study

To further evaluate the effects of jointly generating base
results and doing the ensemble, in this section, we compare
our method with a variant of the two-step way, which is similar
to [7] and [17]. Specifically, we first train the base clustering
generation module alone and generate multiple base results.
Then, we freeze the base clustering generation module and
train the ensemble module alone to learn the final consensus
result. The results are shown in Table III. We can see that our
original model performs much better than the two-step variant,

which well demonstrates the superiority of the joint learning
framework and is consistent with our motivation.

TABLE III
THE CLUSTERING PERFORMANCE OF DIFFERENT STRATEGIES ON ALL

DATASETS. THE BEST SCORE ON EACH DATASETS IS IN BOLD.

Datasets Two-steps Ours
Metrics NMI ACC ARI NMI ACC ARI

CIFAR-10 0.645 0.807 0.599 0.711 0.843 0.688
CIFAR-100 0.366 0.386 0.242 0.431 0.443 0.276

STL-10 0.719 0.824 0.671 0.766 0.861 0.738
ImageNet-10 0.769 0.842 0.756 0.897 0.944 0.902

ImageNet-Dogs 0.458 0.464 0.259 0.553 0.554 0.383

IV. CONCLUSION

In this paper, we propose a new joint deep clustering
ensemble framework, which jointly generates the base results
with the representation learning and does the ensemble. In this
framework, ensemble learning can guide the representation
learning and further improve the base results, so that the deep
clustering and ensemble can boost each other. We design a
base clustering generation module and an ensemble module,
and integrate them into a unified framework. The extensive
experiments show that our proposed method outperforms the
deep clustering methods and even the state-of-the-art deep
clustering ensemble methods, which demonstrates the effec-
tiveness and superiority of the proposed method.

ACKNOWLEDGMENTS

This paper is supported by the National Natural Science
Foundation of China grants 62176001, and the Natural Science
Project of Anhui Provincial Education Department under grant
2023AH030004.



REFERENCES

[1] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in ICML, pp. 478–487, PMLR, 2016.

[2] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in ICCV, pp. 5879–5887, 2017.

[3] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in CVPR, pp. 5147–5156, 2016.

[4] C. Niu, H. Shan, and G. Wang, “Spice: Semantic pseudo-labeling for
image clustering,” IEEE TIP, vol. 31, pp. 7264–7278, 2022.

[5] B. Sun, P. Zhou, L. Du, and X. Li, “Active deep image clustering,” KBS,
vol. 252, p. 109346, 2022.

[6] F. Wang, X. Wang, and T. Li, “Generalized cluster aggregation,” in IJCAI
(C. Boutilier, ed.), pp. 1279–1284, 2009.

[7] D. Huang, D.-H. Chen, X. Chen, C.-D. Wang, and J.-H. Lai, “Deepclue:
Enhanced deep clustering via multi-layer ensembles in neural networks,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
2024.

[8] P. Zhou, B. Hu, D. Yan, and L. Du, “Clustering ensemble via diffusion
on adaptive multiplex,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 4,
pp. 1463–1474, 2024.

[9] A. Strehl and J. Ghosh, “Cluster ensembles — A knowledge reuse
framework for combining multiple partitions,” JMLR, vol. 3, pp. 583–
617, 2002.

[10] A. Topchy, A. K. Jain, and W. Punch, “A mixture model for clustering
ensembles,” in SDM, pp. 379–390, SIAM, 2004.

[11] P. Zhou, B. Sun, X. Liu, L. Du, and X. Li, “Active clustering ensemble
with self-paced learning,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–15, 2023.

[12] N. Iam-On, T. Boongoen, S. Garrett, and C. Price, “A link-based
approach to the cluster ensemble problem,” IEEE TPAMI, vol. 33, no. 12,
pp. 2396–2409, 2011.

[13] D. Huang, C.-D. Wang, and J.-H. Lai, “Locally weighted ensemble
clustering,” IEEE TCYB, vol. 48, no. 5, pp. 1460–1473, 2017.

[14] P. Zhou, L. Du, Y.-D. Shen, and X. Li, “Tri-level robust clustering
ensemble with multiple graph learning,” in AAAI, vol. 35, pp. 11125–
11133, 2021.

[15] P. Zhou, X. Liu, L. Du, and X. Li, “Self-paced adaptive bipartite graph
learning for consensus clustering,” TKDD, vol. 17, no. 5, pp. 62:1–62:35,
2023.

[16] P. Zhou, L. Du, and X. Li, “Adaptive consensus clustering for multiple k-
means via base results refining,” IEEE Trans. Knowl. Data Eng., vol. 35,
no. 10, pp. 10251–10264, 2023.

[17] I. M. Metaxas, G. Tzimiropoulos, and I. Patras, “Divclust: Controlling
diversity in deep clustering,” in CVPR, pp. 3418–3428, 2023.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, pp. 770–778, 2016.

[19] Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive
clustering,” in AAAI, vol. 35, pp. 8547–8555, 2021.

[20] P. Zhou, L. Du, X. Liu, Z. Ling, X. Ji, X. Li, and Y. Shen, “Partial
clustering ensemble,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 5,
pp. 2096–2109, 2024.

[21] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, pp. 281–297,
Oakland, CA, USA, 1967.

[22] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[23] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in AISTATS, pp. 215–223, 2011.

[24] J. Huang, S. Gong, and X. Zhu, “Deep semantic clustering by partition
confidence maximisation,” in CVPR, pp. 8849–8858, 2020.

[25] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14,
2001.

[26] K. C. Gowda and G. Krishna, “Agglomerative clustering using the
concept of mutual nearest neighbourhood,” Pattern recognition, vol. 10,
no. 2, pp. 105–112, 1978.

[27] D. Cai, X. He, X. Wang, H. Bao, and J. Han, “Locality preserving
nonnegative matrix factorization,” in IJCAI, 2009.

[28] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” NeurIPS, vol. 19, 2006.

[29] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, “Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion.,” JMLR, vol. 11,
no. 12, 2010.

[30] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in CVPR, pp. 2528–2535, IEEE, 2010.

[31] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[32] P. Haeusser, J. Plapp, V. Golkov, E. Aljalbout, and D. Cremers, “Associa-
tive deep clustering: Training a classification network with no labels,” in
Pattern Recognition: 40th German Conference, GCPR 2018, Stuttgart,
Germany, October 9-12, 2018, Proceedings 40, pp. 18–32, Springer,
2019.

[33] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[34] J. Chang, Y. Guo, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep
discriminative clustering analysis,” arXiv preprint arXiv:1905.01681,
2019.

[35] J. Wu, K. Long, F. Wang, C. Qian, C. Li, Z. Lin, and H. Zha,
“Deep comprehensive correlation mining for image clustering,” in ICCV,
pp. 8150–8159, 2019.

[36] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering
for unsupervised image classification and segmentation,” in ICCV,
pp. 9865–9874, 2019.


	Introduction
	Joint Deep Clustering Ensemble
	Overview
	Base Clustering Generation Module
	Ensemble Module
	Optimization

	Experiments
	Datasets
	Implementation Details and Experiments Setup
	Experimental Results
	Ablation Study

	Conclusion
	References

